Osmium Isotopic Compositions and Osmium Distribution in the Mid-Ocean Ridge Hydrothermal System
-
摘要: 洋中脊热液系统是将相对富集在深部的Os运移到海底表面的重要媒介,同时该过程也是全球Os循环的重要组成部分.在归纳总结洋中脊热液系统各物源组分和产物中Os的化学形态、含量及其同位素组成特征的基础上,探讨了Os在洋中脊热液活动各阶段中的分布演化规律及物源贡献特征.在缺乏沉积物覆盖的洋中脊区域,热液系统中的Os及其同位素组成特征主要受控于海水和不同构造环境下洋壳组分特征的差异以及这两种物源组分混合比例的不同.经历了海底之下的水岩反应后,围岩会将下渗海水中的部分放射性成因Os固定,而将自身富集的非放射性成因Os释放进入热液流体中.堆积在海底之上的各种热液产物中的Os大多来自海水,而海底之下的热液产物则因为海水下渗深度以及海水与热液流体混合程度的差异而体现出宽泛的Os含量和187Os/188Os比值变化范围.Abstract: The hydrothermal fluids occur along the mid-ocean ridges are capable of transporting a great amount Os from deep interior of the earth where it is relatively enriched to the ocean floor, this process plays a significant role in the global cycling of Os. The geochemical behavior of Os during the various stages of the hydrothermal circulation, its distribution and evolution features and source contributions are estimated basing on the chemical speciation, concentrations and isotopic compositions of Os in the sources for the hydrothermal systems and the hydrothermal deposits. The Os data from the sediment-free mid-ocean ridge systems indicated that there is a nearly complete Os isotope exchange between the interacting seawater and the oceanic crust during the hydrothermal circulation, the behavior of Os appears to be controlled by the relative proportions of seawater and crustal composition in the different tectonic areas. Reactions of seawater with surrounding rock result in the radiogenic Os removing from seawater to the altered host rock, and the nonradiogenic Os lost from the wall rock to the hydrothermal fluid. The hydrothermal deposits accumulated above the seafloor carry Os which is predominately seawater-derived, the Os of the hydrothermal products beneath the the seafloor reflecting mixing of seawater-derived and ocean crust-derived Os.
-
Key words:
- Mid-ocean ridge /
- Hydrothermal system /
- Osmium /
- isotopics
-
图 1 Os在洋中脊热液系统中的循环过程
底图改编自美国国家海洋和大气管理局网站(http://oceanexplorer.noaa.gov/explorations/02fire/background/vent_chem/media/chemistry.html),圆括号中从左到右依次标注的是热液系统各端元和产物的Os同位素组成特征及Os含量的平均值(单位为10-12),方括号中标注的是其可能的组成形态,数据出处见下文
Fig. 1. The cycle process of Os in the mid-ocean ridge hydrothermal system
图 2 高温和低温热液流体的Os含量的倒数与Os同位素组成之间的关系
高温和低温热液流体数据引自Sharma et al.(2000, 2007);海水的数据引自Levasseur(1998)、Woodhouse et al.(1999)、Chen and Sharma(2009);洋壳的数据引自Peucker-Ehrenbrink et al.(2012)
Fig. 2. Os contents versus 187Os/188Os plots for the high temperature and low temperature fluids
图 3 热液硫化物的Os含量与Os同位素组成之间的关系
表层硫化物数据引自Ravizza et al.(1996)、Zeng et al.(2014);深部硫化物数据引自Brügmann et al.(1998);海水的数据引自Levasseur(1998)、Woodhouse et al.(1999)、Chen and Sharma(2009);洋壳的数据引自Peucker-Ehrenbrink et al.(2012)
Fig. 3. Os concentrations versus 187Os/188Os plots for the hydrothermal massive sulfide
-
[1] Alt, J.C., 1995.Subseafloor Processes in Mid-ocean Ridge Hydrothermal Systems.In:Humphris S.E., Zierenberg R.A., Mullineaux L.S., eds., Geophysical Monograph Series 91, Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions.American Geophysical Union, Washington D.C., 85-114.doi:10.1029/GM091p0085 [2] Alt, J.C., Teagle, D.A.H., 2003.Hydrothermal Alteration of Upper Oceanic Crust Formed at a Fast-Spreading Ridge:Mineral, Chemical, and Isotopic Evidence from ODP Site 801.Chemical Geology, 201(3-4):191-211.doi: 10.1016/s0009-2541(03)00201-8 [3] Baioumy, H.M., Eglinton, L.B., Peucker-Ehrenbrink, B., 2011.Rhenium-Osmium Isotope and Platinum Group Element Systematics of Marine Vs.Non-Marine Organic-Rich Sediments and Coals from Egypt.Chemical Geology, 285(1-4):70-81.doi: 10.1016/j.chemgeo.2011.02.026 [4] Baker, J.A., Jensen, K.K., 2004.Coupled 186Os-187Os Enrichments in the Earth s Mantle-Core-mantle Interaction or Recycling of Ferromanganese Crusts and Nodules?Earth and Planetary Science Letters, 220(3-4):277-286.doi: 10.1016/s0012-821x(04)00059-7 [5] Berglund, M., Wieser, M.E., 2011.Isotopic Compositions of the Elements 2009 (IUPAC Technical Report).Pure and Applied Chemistry, 83(2):397-410.doi: 10.1351/pac-rep-10-06-02 [6] Brügmann, G.E., Birck, J.L., Herzig, P.M., et al., 1998.Os Isotopic Composition and Os and Re Distribution in the Active Mound of the TAG Hydrothermal System, Mid-Atlantic Ridge.Proceedings of the Ocean Drilling Program, 92-100.doi: 10.2973/odp.proc.sr.158.209.1998 [7] Burton, K.W., Gannoun, A., Birck, J.L., et al., 2002.The Compatibility of Rhenium and Osmium in Natural Olivine and their Behaviour during Mantle Melting and Basalt Genesis.Earth and Planetary Science Letters, 198(1-2):63-76.doi: 10.1016/s0012-821x(02)00518-6 [8] Cave, R.R., German, C.R., Thomson, J., et al., 2002.Fluxes to Sediments Underlying the Rainbow Hydrothermal Plume at 36°14′N on the Mid-Atlantic Ridge.Geochimica et Cosmochimica Acta, 66(11):1905-1923.doi: 10.1016/s0016-7037(02)00823-2 [9] Cave, R.R., Ravizza, G.E., German, C.R., et al., 2003.Deposition of Osmium and other Platinum-Group Elements beneath the Ultramafic-Hosted Rainbow Hydrothermal Plume.Earth and Planetary Science Letters, 210(1-2):65-79.doi: 10.1016/s0012-821x(03)00135-3 [10] Chen, C., Sedwick, P.N., Sharma, M., 2009.Anthropogenic Osmium in Rain and Snow Reveals Global-Scale Atmospheric Contamination.Proceedings of the National Academy of Sciences, 106(19):7724-7728.doi: 10.1073/pnas.0811803106 [11] Chen, C., Sharma, M., 2009.High Precision and High Sensitivity Measurements of Osmium in Seawater.Analytical Chemistry, 81(13):5400-5406.doi: 10.1021/ac900600e [12] Colodner, D., Sachs, J., Ravizza, G., et al., 1993.The Geochemical Cycle of Rhenium:A Reconnaissance.Earth and Planetary Science Letters, 117(1-2):205-221.doi: 10.1016/0012-821x(93)90127-u [13] Dill, H.G., 2010.The "Chessboard" Classification Scheme of Mineral Deposits:Mineralogy and Geology from Aluminum to Zirconium.Earth-Science Reviews, 100(1-4):1-420.doi: 10.1016/j.earscirev.2009.10.011 [14] Escrig, S., Capmas, F., Dupré, B., et al., 2004.Osmium Isotopic Constraints on the Nature of the DUPAL Anomaly from Indian Mid-Ocean-Ridge Basalts.Nature, 431(7004):59-63.doi: 10.1038/nature02904 [15] Escrig, S., Schiano, P., Schilling, J.G., et al., 2005.Rhenium-osmium Isotope Systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50° S).Earth and Planetary Science Letters, 235(3-4):528-548.doi: 10.1016/j.epsl.2005.04.035 [16] Gannoun, A., 2004.Osmium Isotope Heterogeneity in the Constituent Phases of Mid-Ocean Ridge Basalts.Science, 303(5654):70-72.doi: 10.1126/science.1090266 [17] Gannoun, A., Burton, K.W., Parkinson, I.J., et al., 2007.The Scale and Origin of the Osmium Isotope Variations in Mid-Ocean Ridge Basalts.Earth and Planetary Science Letters, 259(3-4):541-556.doi: 10.1016/j.epsl.2007.05.014 [18] Georg, R.B., West, A.J., Vance, D., et al., 2013.Is the Marine Osmium Isotope Record a Probe for CO2 Release from Sedimentary Rocks?Earth and Planetary Science Letters, 367:28-38.doi: 10.1016/j.epsl.2013.02.018 [19] German, C.R., Higgs, N.C., Thomson, J., et al., 1993.A Geochemical Study of Metalliferous Sediment from the TAG Hydrothermal Mound, 26°08′N, Mid-Atlantic Ridge.Journal of Geophysical Research, 98(B6):9683.doi: 10.1029/92jb01705 [20] German, C.R., Seyfried, W.E., 2014.Hydrothermal Processes.In:Holland, H., Turekian, K., eds., Treatise on Geochemistry (Second Edition).Elsevier, Oxford, 191-233.doi:10.1016/B978-0-08-095975-7.00607-0 [21] Hannington, M., Jamieson, J., Monecke, T., et al., 2011.The Abundance of Seafloor Massive Sulfide Deposits.Geology, 39(12):1155-1158.doi: 10.1130/g32468.1 [22] Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981.Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures:Ⅳ.Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 ℃ and 5 kBar.American Journal of Science, 281:1249-1516.doi: 10.2475/ajs.281.10.1249 [23] Humphris, S.E., Herzig, P.M., Miller, D.J., et al., 1995.The Internal Structure of an Active Sea-Floor Massive Sulphide Deposit.Nature, 377(6551):713-716.doi: 10.1038/377713a0 [24] Koide, M., Hodge, V.F., Yang, J.S., et al., 1986.Some Comparative Marine Chemistries of Rhenium, Gold, Silver and Molybdenum.Applied Geochemistry, 1(6):705-714.doi: 10.1016/0883-2927(86)90092-2 [25] Koide, M., Goldberg, E.D., Niemeyer, S., et al., 1991.Osmium in Marine Sediments.Geochimica et Cosmochimica Acta, 55(6):1641-1648.doi: 10.1016/0016-7037(91)90135-r [26] Lassiter, ,J..C, 2003.Rhenium Volatility in Subaerial Lavas:Constraints from Subaerial and Submarine Portions of the HSDP-2 Mauna Kea Drillcore.Earth and Planetary Science Letters, 214(1-2):311-325.doi: 10.1016/s0012-821x(03)00385-6 [27] Levasseur, S., 1998.Direct Measurement of Femtomoles of Osmium and the 187Os/186Os Ratio in Seawater.Science, 282(5387):272-274.doi: 10.1126/science.282.5387.272 [28] Li, J., Sun, Z.L., Huang, W., et al., 2014.Modern Seafloor Hydrothevinal Processes and Mineralization.Earth Science, 39(3):312-324 (in Chinese with English abstract). [29] Mills, R., Elderfield, H., Thomson, J., 1993.A Dual Origin for the Hydrothermal Component in a Metalliferous Sediment Core from the Mid-Atlantic Ridge.Journal of Geophysical Research, 98(B6):9671.doi: 10.1029/92jb01414 [30] Pester, N.J., Rough, M., Ding, K., et al., 2011.A New Fe/Mn Geothermometer for Hydrothermal Systems:Implications for High-Salinity Fluids at 13°N on the East Pacific Rise.Geochimica et Cosmochimica Acta, 75(24):7881-7892.doi: 10.1016/j.gca.2011.08.043 [31] Peucker-Ehrenbrink, B., Ravizza, G., 2000.The Marine Osmium Isotope Record.Terra Nova, 12(5):205-219.doi: 10.1046/j.1365-3121.2000.00295.x [32] Peucker-Ehrenbrink, B., Bach, W., Hart, S.R., et al., 2003.Rhenium-Osmium Isotope Systematics and Platinum Group Element Concentrations in Oceanic Crust from DSDP/ODP Sites 504 and 417/418.Geochemistry, Geophysics, Geosystems, 4(7):253.doi: 10.1029/2002gc000414 [33] Peucker-Ehrenbrink, B., Ravizza, G., 2012.Osmium Isotope Stratigraphy.In:Gradstein, F.M., Ogg, J.G., Schmitz, M.D., eds., The Geologic Time Scale.Elsevier, Boston, 145-166.doi:10.1016/B978-0-444-59425-9.00008-1 [34] Peucker-Ehrenbrink, B., Hanghoj, K., Atwood, T., et al., 2012.Rhenium-Osmium Isotope Systematics and Platinum Group Element Concentrations in Oceanic Crust.Geology, 40(3):199-202.doi: 10.1130/g32431.1 [35] Ravizza, G., McMurtry, G.M., 1993.Osmium Isotopic Variations in Metalliferous Sediments from the East Pacific Rise and the Bauer Basin.Geochimica et Cosmochimica Acta, 57(17):4301-4310.doi: 10.1016/0016-7037(93)90324-p [36] Ravizza, G., Martin, C.E., German, C.R., et al., 1996.Os Isotopes as Tracers in Seafloor Hydrothermal Systems:Metalliferous Deposits from the TAG Hydrothermal Area, 26°N Mid-Atlantic Ridge.Earth and Planetary Science Letters, 138(1-4):105-119.doi: 10.1016/0012-821x(95)00216-y [37] Ravizza, G., Blusztajn, J., Prichard, H.M., 2001.Re-Os Systematics and Platinum-Group Element Distribution in Metalliferous Sediments from the Troodos Ophiolite.Earth and Planetary Science Letters, 188(3-4):369-381.doi: 10.1016/s0012-821x(01)00337-5 [38] Reisberg, L., Rouxel, O., Ludden, J., et al., 2008.Re-Os Results from ODP Site 801:Evidence for Extensive Re Uptake during Alteration of Oceanic Crust.Chemical Geology, 248(3-4):256-271.doi: 10.1016/j.chemgeo.2007.07.013 [39] Rona, P.A., Scott, S.D., 1993.A Special Issue on Sea-Floor Hydrothermal Mineralization; New Perspectives; Preface.Economic Geology, 88(8):1935-1976.doi: 10.2113/gsecongeo.88.8.1935 [40] Rouxel, O., Dobbek, N., Ludden, J., et al., 2003.Iron Isotope Fractionation during Oceanic Crust Alteration.Chemical Geology, 202:155-182.doi: 10.1016/j.chemgeo.2003.08.011 [41] Roy-Barman, M., Allègre, C.J., 1994.187Os/186Os Ratios of Mid-ocean Ridge Basalts and Abyssal Peridotites.Geochimica et Cosmochimica Acta, 58(22):5043-5054.doi: 10.1016/0016-7037(94)90230-5 [42] Roy-Barman, M., Wasserburg, G.J., Papanastassiou, D.A., et al., 1998.Osmium Isotopic Compositions and Re-Os Concentrations in Sulfide Globules from Basaltic Glasses.Earth and Planetary Science Letters, 154(1-4):331-347.doi: 10.1016/s0012-821x(97)00180-5 [43] Seewald, J.S., Seyfried, W.E., 1990.The Effect of Temperature on Metal Mobility in Subseafloor Hydrothermal Systems:Constraints from Basalt Alteration Experiments.Earth and Planetary Science Letters, 101(2-4):388-403.doi: 10.1016/0012-821x(90)90168-w [44] Seyfried, W.E., Shanks, W.C., 2004.Alteration and Mass Transport in Mid-ocean Ridge Hydrothermal Systems:Controls on the Chemical and Isotopic Evolution of High-temperature Crustal Fluids.In:Davis, E.E., Elderfield, H., eds., The Hydrogeology of the Oceanic Lithosphere.Cambridge University Press, Cambridge, 451-494. [45] Sharma, M., Papanastassiou, D.A., Wasserburg, G.J., 1997.The Concentration and Isotopic Composition of Osmium in the Oceans.Geochimica et Cosmochimica Acta, 61(16):3287-3299.doi: 10.1016/s0016-7037(97)00210-x [46] Sharma, M., Wasserburg, G.J., Hofmann, A.W., et al., 2000.Osmium Isotopes in Hydrothermal Fluids from the Juan de Fuca Ridge.Earth and Planetary Science Letters, 179(1):139-152.doi: 10.1016/s0012-821x(00)00099-6 [47] Sharma, M., Rosenberg, E.J., Butterfield, D.A., 2007.Search for the Proverbial Mantle Osmium Sources to the Oceans:Hydrothermal Alteration of Mid-Ocean Ridge Basalt.Geochimica et Cosmochimica Acta, 71(19):4655-4667.doi: 10.1016/j.gca.2007.06.062 [48] Sharma, M., 2011.Applications of Osmium and Iridium as Biogeochemical Tracers in the Environment.In:Baskaran, M., Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry.Springer, Berlin, 205-227.doi:10.1007/978-3-642-10637-8_11 [49] Stein, H.J., Sundblad, K., Markey, R.J., et al., 1998.Re-Os Ages for Archean Molybdenite and Pyrite, Kuittila-Kivisuo, Finland and Proterozoic Molybdenite, Kabeliai, Lithuania:Testing the Chronometer in a Metamorphic and Metasomatic Setting.Mineralium Deposita, 33(4):329-345.doi: 10.1007/s001260050153 [50] Tivey, M., 2007.Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits.Oceanography, 20(1):50-65.doi: 10.5670/oceanog.2007.80 [51] Tolstoy, M., Waldhauser, F., Bohnenstiehl, D.R., et al., 2008.Seismic Identification of Along-Axis Hydrothermal Flow on the East Pacific Rise.Nature, 451(7175):181-184.doi: 10.1038/nature06424 [52] Woodhouse, O.B., Ravizza, G., Falkner, K.K., et al., 1999.Osmium in Seawater:Vertical Profiles of Concentration and Isotopic Composition in the Eastern Pacific Ocean.Earth and Planetary Science Letters, 173(3):223-233.doi: 10.1016/s0012-821x(99)00233-2 [53] Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007.Comparison of Reductive Accumulation of Re and Os in Seawater-sediment Systems.Geochimica et Cosmochimica Acta, 71(14):3458-3475.doi: 10.1016/j.gca.2007.05.003 [54] Yang, A.Y., Zhao, T.P., Zhou, M.F., et al., 2013.Os Isotopic Compositions of MORBs from the Ultra-Slow Spreading Southwest Indian Ridge:Constraints on the Assimilation and Fractional Crystallization (AFC) Processes.Lithos, 179:28-35.doi: 10.1016/j.lithos.2013.07.020 [55] Zeng, Z.G., Chen, S., Selby, D., et al., 2014.Rhenium-osmium Abundance and Isotopic Compositions of Massive Sulfides from Modern Deep-Sea Hydrothermal Systems:Implications for Vent Associated Ore Forming Processes.Earth and Planetary Science Letters, 396:223-234.doi: 10.1016/j.epsl.2014.04.017 [56] Zierenberg, R.A., Fouquet, Y., Miller, D.J., et al., 1998.The Deep Structure of a Sea-floor Hydrothermal Deposit.Nature, 392:485-488.doi: 10.1038/33126 [57] 李军, 孙治雷, 黄威, 等, 2014.现代海底热液过程及成矿.地球科学, 39(3): 312-324. http://earth-science.net/WebPage/Article.aspx?id=2841