Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates
-
摘要: 2013年我国首次在南海东北部东沙陆坡实施天然气水合物钻探,并获取块状等可视天然气水合物样品.为了解钻区地层、天然气水合物产出带(the zone of gas hydrate occurrence)或天然气水合物储层的地层时代和沉积速率特征,对其中5个站位(GMGS05、GMGS07、GMGS08、GMGS09和GMGS16) 的岩心沉积物进行钙质超微化石、有孔虫生物地层学和沉积速率变化的研究.钻孔取心最大深度为213.55 m.共识别出第四纪中更新世以来3个钙质超微化石事件和2个有孔虫事件,确定了钻探区所钻达最老地层为中更新统;天然气水合物产出带的地层时代为中更新世-全新世约0.44 Ma以来.钻区0.12 Ma以来的沉积速率介于36.9~73.3 cm/ka之间,平均值高达54.2 cm/ka,0.44 Ma以来平均沉积速率为47.4 cm/ka,表明东沙海域天然气水合物钻探区位于一高沉积速率堆积体上,高沉积速率更有利于天然气水合物的成藏,该结论与前人研究结果一致.Abstract: Middle Pleistocene to Holocene calcareous nannofossils and foraminifera biostratigraphy in 5 sites (GMGS05、GMGS07、GMGS08、GMGS09 and GMGS16) from the Dongsha gas hydrate drilling area of the northeastern South China Sea have been studied. A total of 3 nannofossils events and 2 foraminifera events from middle Pleistocene to Holocene were recognized. The oldest sediments recovered are in an age of middle Pleistocene, younger than 0.50 Ma, the age assigned for gas hydrate occurrence zone is middle Pleistocene to Holocene in sites GMGS05、GMGS07、GMGS08 and GMGS16.Sedimentation rates varied from 36.9 cm/ka to 73.3 cm/ka, and reaching the highest average value 54.2 cm/ka since 0.12 Ma in the Dongsha gas hydrate drilling area. The mean sedimentation rate has been 47.4 cm/ka since 0.44 Ma.The results suggested that the gas hydrate drilling area is located at sedimentary body with high sedimentation rate, which is advantageous to gas hydrate formation. This conclusion is consistent with the previous research.
-
图 1 南海东北部天然气水合物钻探区地理位置及钻孔位置
Fig. 1. The geography location and sites location in the Dongsha gas hydrate-drilling area of SCS
表 1 南海中更新世以来钙质超微化石、有孔虫事件及年代
Table 1. Calcareous nannofossils and foraminifera events chronology scheme since Middle Pleitocene in South China Sea
事件 属种 年龄(Ma) B AcmeEmiliania huxleyi 0.09 T Globigerinoides ruber(pink) 0.12 B Emiliania huxleyi 0.29 B Globigerinoides ruber(pink) 0.40 T Pseudoemiliania lacunosa 0.44 注:B=Base/FO初现面(First Occurrence);T=Top/LO末现面(Last Occurrence). 表 2 南海东北部天然气水合物钻探区各站位生物事件的深度(mbsf,海底以下深度)分布
Table 2. The depths of bioevents at sites GMGS05,GMGS07,GMGS08,GMGS09 and GMGS16
生物事件 生物类型 年龄(Ma) 深度(mbsf) GMGS5 GMGS7 GMGS8 GMGS9 GMGS16 B E.huxleyi Acme 钙质超微化石 中更新世以来 0.09 56.27>203.30 44.30>74.76 67.90>93.84 88.00>104.85 44.00 T G.ruber(pink) 有孔虫 0.12 61.50 B E.Huxleyi 钙质超微化石 0.29 167.30 B G.ruber(pink) 有孔虫 0.40 197.60 T P.Lacunose 钙质超微化石 0.44 213.45 钻孔取心最大深度(mbsf) 203.30 74.76 93.84 104.95 213.55 表 3 南海东北部天然气水合物钻探区各站位0.12 Ma以来的沉积速率(cm/ka)
Table 3. Variation in sedimentation rates since 0.12 Ma in gas hydrate-drilling area of the northeastern SCS
站位 0.12 Ma以来 T G.ruber(pink)(cm) 厚度(cm) 沉积速率(cm/ka) GMGS05 5 627 5 627 46.9 GMGS07 4 430 4 430 36.9 GMGS08 6 790 6 790 56.6 GMGS09 8 800 8 800 73.3 GMGS16 6 150 6 150 51.3 表 4 南海天然气水合物钻探区沉积速率的比对
Table 4. Comparison of sedimentation rates between Shenhu and Dongsha gas hydrate-drilling areas in SCS
航次 站位 岩心长(m) 沉积速率(cm/ka) 钻井底部年代(Ma) 钻达地层 天然气水合物层位 全新世 更新世 上新世 中新世 南海天然气水合物钻探 神狐海域(GMGS1)(陈芳等,2013) SH1B 261.86 26.25 2.02 2.94 >5.85 <7.362 中新统 中新统 ★SH2B 238.85 -- 1.96 3.27 >4.18 <7.362 中新统 SH5C 175.17 34.16 5.16 -- ~4.470 上新统 ★SH7B 194.18 20.00 5.71 1.88 7.018 中新统 中新统-上新统 东沙海域(GMGS2) ★GMGS05 203.30 46.90 <0.290 中更新统 中更新统以来 ★GMGS07 74.76 36.90 <0.290 中更新统 中更新统以来 ★GMGS08 93.84 56.60 <0.290 中更新统 中更新统以来 GMGS09 104.95 73.30 <0.290 中更新统 ★GMGS16 213.55 51.30 ~0.440 中更新统 中更新统以来 注:★SH2B等代表钻取天然气水合物的站位. -
[1] Anthonissen, D.E., Ogg, J.G., 2012.Cenozoic and Cretaceous Biochronology of Planktonic Foraminifera and Calcareous Nannofossils.In:Gradstein, F.M., Ogg, J.G., Schmitz, M., eds., The Geologic Time Scale 2012.Elsevier Science Press, Amsterdam, 1083-1127. [2] Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., 1985.Plankton Stratigraphy.Cambridge University Press, Cambridge. [3] Blow, W.H., 1979.The Cainozoic Globigerinida.Brill, E.J., (3 Volumes), 1-1413 Leiden. [4] Claypool, G.E., Kaplan, I.R., 1974.The Origin and Distribution of Methane in Marine Sediments.Natural Gases in Marine Sediments.Plenum Press, New York, 99-139. [5] Chen, F., Su, X., Zhou, Y., 2013.Late Miocene-Pleistocene Calcareous Nannofossil Biostratigraphy of Shenhu Gas Hydrate Drilling Area in the South China Sea and Variation in Sedimentation Rates.Earth Science, 38(1):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301004.htm [6] Dillon, W.P., Danforth, W.W., Hutchinson, D.R., et al., 1998.Evidence for Faulting Related to Dissociation of Gas Hydrate and Release of Methane off the Southeastern United States.Geological Society London Special Publications, 137(1):293-302.doi: 10.1144/gsl.sp.1998.01.23 [7] Diaconescu, C.C., Kieckhefer, R.M., Knapp, J.H., 2001.Geophysical Evidence for Gas Hydrate in the Deep Water of the South Caspian Basin, Azerbaijian.Marine and Petroleum Geology, 18(2):209-221. doi: 10.1016/S0264-8172(00)00061-1 [8] Huang, X., Zhu Y.H., Lu, Z.Q., et al., 2010.Study on Genetic Types of Hydrocarbon Gases from the Gas Hydrate Drilling Area, the Northern South China Sea.Geoscience, 24(3):576-580 (in Chinese with English abstract). [9] Jing, C, S., Wang, J, Y., Wang, Y, X., et al., 2004.Geothermal Field Characteristics in the Area of Gas Hydrates Distribution.Chinese Journal of Geology, 39(3):416-423 (in Chinese with English abstract). https://www.researchgate.net/publication/290005571_Geothermal_field_characteristics_in_the_areas_of_gas_hydrates_distribution [10] Li, B.H., Jian, Z.M., Li, Q.Y., et al., 2005.Paleoceanography of the South China Sea since the Middle Miocene:Evidence from Planktonic Foraminifera.Marine Micropaleontology, 54(2005):49-62.doi: 10.1016/j.marmicro.2004.09.003 [11] Li, B.H., Chen, M.P., Zhao, Q.H., et al., 2001.Planktonic Foraminiferal Events and Their Paleoceanographic Signifances in the Southern South China Sea since the Last 800, 000 Years.Acta Micropaleontoligia Sinica, 18(1):1-9 (in Chinese with English abstract). [12] Li, Q.Y., Lourens, L., Wang, P.X., 2007.New Ages for Neocene Marine Biosratigraphic Events.Journal of Stratigraphy, 31(3):197-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200703000.htm [13] Liu, H.L., Yao, Y.J., Shen, B.Y., 2015.On Linkage of Western Boundary Fault Soft the South China Sea.Earth Science, 40(4):615-632 (in Chinese with English abstract). [14] Lourens, L.J., Hilgen, F.J., Shackleton, N.J., et al., 2004.The Neogene Period.In:Gradstein, F.M., Ogg, J.G., Smith, A.G., Eds., A Geological Time Scale 2004.Cambridge University Press, Cambridge, 409-440. [15] Martini, E., 1971.Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation.In:Farinacci, A., ed., Proc.2nd Int.Conf., Planktonic Microfossils Roma:Rome (Ed. Tecnosci.), 2:739-785. [16] Martens, C.S., Klump, J.V., 1980.Biogeochemical Cycling in an Organic-Rich Coastal Marine Basin:Methane and Sediment-Water Exchange Processes.Geochimica et Cosmochimica Acta, 44(3):471-490.doi: 10.1016/0016-7037(80)90045-9 [17] Mountain, G.S., Tucholke, B.E., 1985.Mesozoic and Cenozoic geology of the U.S.Continental Slope and Rise.In:Poag, C.W., ed., Geologic Evolution of the United States Atlantic Margin.Van Nostrand-Reinhold, New York, 293-341. [18] Okada, H., Bukry, D., 1980.Supplementary Modification and Introduction of Code Numbers to the Low-Latitude Coccolith Biostratigraphic Zonation (Bukry, 1973, 1975).Mar.Micropaleontol., 5(3):321-325.doi: 10.1016/0377-8398(80)90016-X [19] Paul, C.K., Matsumotom, R., 2000.Leg 164 Overview.In:Paul C.K., Matsumotom, R., Wallace, P.J., eds., Proceedings of the Ocean Drilling Program, Scientific Results(v.164).Ocean Drilling Program, Texas, 3-10. [20] Raffi, I., Backman, J., Fornaciari, E., et al., 2006.A Review of Calcareous Nannofossil Astrobiochronology Encompassing the Past 25 Million Years.Quaternary Science Reviews, 25(23-24):3113-3137.doi: 10.1016/j.quascirev.2006.07.007. [21] Shao, L., Li, X.J., Qiao, P.J., et al., 2007.Deep Water Bottom Current Deposition in the Northern South China Sea.Scientia Sinica Tervae, 7(6):771-777 (in Chinese with English abstract). [22] Zhang, G.X., Yang, S.X., Zhang, M., et al., 2014.GMGS2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea."Fire in the Ice", the Methane Hydrate Newsletter of the U.S.Department of Energy.Fire in the Ice, 14(1):1-5. https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/methane%20hydrates/MHNews_2014_February.pdf#page=1 [23] Zhang, G.X., Liang, J.Q., Lu, J.A., et al., 2014.Characteristics of Natural Gas Hydrate Reservoirs on the Northeastern Slope of the South China Sea.Natural Gas Industry, 34(11):1-10.doi: 10.3787/j.issn.1000-0976.2014.11.001. [24] 陈芳, 苏新, 周洋, 2013.南海神狐海域天然气水合物钻探区钙质超微化石生物地层与沉积速率.地球科学, 38(1): 1-9. doi: 10.11867/j.issn.1001-8166.2013.01.0001 [25] 黄霞, 祝有海, 卢振权, 等, 2010.南海北部天然气水合物钻探区烃类气体成因类型研究.现代地质, 24(3): 577-580. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201003023.htm [26] 金春爽, 汪集旸, 王永新, 等, 2004.天然气水合物地热场分布特征.地质科学, 39(3): 416-423. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200403011.htm [27] 李前裕, Lucas Lourens, 汪品先, 2007.新近纪海相生物地层事件年龄新编.地层学杂志.31(3): 197-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200703000.htm [28] 刘海龄, 姚永坚, 沈宝云, 2015.南海西缘结合带的贯通性.地球科学, 40(4): 615-632. http://www.earth-science.net/WebPage/Article.aspx?id=3107 [29] 邵磊, 李学杰, 乔培军, 等, 2007.南海北部深水底流沉积作用.中国科学D辑:地球科学, 37(6): 771-777. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706007.htm [30] 张光学, 梁金强, 陆敬安, 等, 2014.南海东北部陆坡天然气水合物藏特征.天然气工业, 34(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001