Geotectonic Setting of Coal-Bearing Basins Being Transformed into Coal-and Gas-(Oil-) Bearing Basins
-
摘要: 与含煤岩系相关大气田的开发是中国天然气储产量快速增长的主体,为了进一步阐明与含煤岩系相关大气田的勘探前景,在概述了已发现大气田分布特征的基础上,用实例总结了含煤-含气(油)盆地形成条件,明确指出虽然不同类型含煤盆地发展演化的构造地质环境不完全相同,但是所有含煤盆地能否转化成为含煤-含气(油)盆地的关键因素是相同的,即:含煤岩系沉积期间和含煤岩系沉积后是否以沉降为主,沉积期间及沉积后所经历的构造地质作用能否有效匹配.上述构造地质环境持续时间越长,各种构造地质作用有效匹配程度越好,越利于转化成为含煤-含气(油)盆地,越有利于形成大型气田.中国特定的构造地质环境决定了含煤岩系是中国最重要的气源岩,一些大中型含煤盆地是构造地质环境最优越的盆地,还有较大勘探潜力,仍然可以继续发现更多的大型煤成气田,是未来相当长一段时间内中国天然气产量持续快速增长的主要勘探方向.
-
关键词:
- 含煤岩系 /
- 含煤盆地 /
- 含煤-含气(油)盆地 /
- 构造地质环境 /
- 石油地质
Abstract: The development of large coal-bearing gas fields is a major part of the rapid growth of the nature gas resource and production in China, this paper discusses the forming geotectonic setting affecting the hydrocarbon accumulation during and after the coal-bearing strata source rocks depositon period based on the distribution features of large coal-bearing gas fields, aiming to clarify the exploration potential of the large coal-related gas fields in China. It is found that potential coal-related basins being transformed into the coal-and gas-(oil-) bearing basins share the following key factors with different tectonic evolutions: there should mainly be stable subsidence both during and after the deposition of coal-bearing strata, and the various geotectonisms should effectively be matching to each other, and ensuring the total gas accumulation should be much larger than the total gas dissipation. The longer the above-mentioned geotectonic process is and the better matched the geotectonic factors are, the more favorable to large coal-and gas-(oil-) bearing basin formation. The coal-related basins are confirmed to be the most promising ones for future exploration due to the fact that they are major gas-source rocks and they remain the major exploration targets for large gas fields ensuring sharp increase of the production of natural gas industry. -
图 2 鄂尔多斯盆地石炭纪-二叠纪含煤岩系生气强度与煤成大气田
Fig. 2. Gas genereation strength and coal-bearing fields of Carboniferous-Permian in Ordos basin
图 4 四川盆地普光气田区气藏储盖层组合示意面
Fig. 4. Sketch showing reservoir and cap rocks assemblages of Puguang gas field in Sichuan basin
图 7 库车坳陷克拉2气田成藏事件
Fig. 7. Hydrocarbon accumulation event of Kela 2 gas field in Kuqa depression
表 1 中国大型、特大型气田
Table 1. Large and giant gas field in China
气田规模 主要气源 气田名称 特大型 煤岩系 苏里格气田和大牛地气田 含煤岩系与海相层混源 靖边气田和普光气田 源自海相层 塔中1气田 大型 源自含煤岩系 榆林气田、子洲气田、乌审旗气田、神木气田、米脂气田、新场气田、安岳气田、广安气田、合川气田、八角场气田、洛带气田、邛西气田;克拉2气田、迪那2气田、大北1气田、大北气田、英迈7气田、克拉美丽气田、玛河气田、松辽气田、长岭1号气田、松南气田、龙深气田、春晓气田以及崖13-1气田 含煤岩系与海相层混源 元坝气田、大天池气田、罗家寨气田、磨溪气田、铁山坡气田、渡口河气田以及卧龙河气田 含煤岩系与湖相层混源 东方1-1气田、乐东22-1气田、荔湾3-1气田、番禹30-1气田、柯克亚气田、涩北1号气田、涩北2号气田、台南气田以及徐深气田(可能含有无机气) 源自海相层 威远气田、和田河气田以及塔河气田 表 2 5大含煤成气区与7套含煤岩系气源相关储量及其特大型、大型气田储量比例
Table 2. Gas reserves related to five major coal-related gas areas and seven sets of coal-bearing sequence and the percentage of large and giant gas field in China
含煤岩系气源 含煤成气区 主要含煤盆地 与煤成气相关气田 特大型气田 大型气田 储量(108m3) 比例(%) 气田(个) 储量(108m3) 比例(%) 气田(个) 储量(108m3) 比例(%) C2-P2 华北区、西北区 鄂尔多斯、准噶尔 28975 43.42 3 21592 74.52 6 6315 21.86 P3 南方区 四川 9890 14.82 1 3762 38.04 7 5206 52.64 T3 南方区 四川 9000 12.19 7 8778 97.53 J1-2 西北区 塔里木、准噶尔 8597 12.88 7 6653 77.39 J3-K1 东北区 松辽 3501 5.25 4 3279 93.66 E-N 海域区 莺琼、东海、珠江口 4578 6.86 6 3291 71.89 N-Q 西北区 柴达木三湖区 3056 4.58 3 2877 94.14 小计 全国与煤成气相关大气田储量 61753 100.00 4 25 354 41.06 40 36399 58.94 注:数据源自国土资源部(2011,全国各油气田油气矿产探明储量表,北京),储量为约数. 表 3 与含煤岩系相关的不同圈闭类型特大型、大型气田储量及储量丰度
Table 3. Statistics of reserves and reserve abundance of large and giant gas field of different coal related gas trap types
圈闭类型 气田规模 特大型 气田名称 大型 气田名称 累计
储量比例 最大~最小储量丰度 累计
储量比例 最大~最小
储量丰度丰度平
均值构造圈闭 10253 29.56 59.05~2.20 13.04(以
特高-高为主)克拉2、迪那2、大北、大北1、英迈7、柯克亚、邛西、八角场、卧龙河、春晓、荔湾3-1、番禹30-1、崖13-1、乐东22-1、东方1-1以及玛河 构造-岩性
圈闭3762 14.84 29.72(特高) 普光 8831 25.46 28.80~2.00 12.19(以
特高-高为主)新场、广安、台南洛带、涩北1、涩北2、铁山坡、罗家寨、渡口河以及磨溪 构造-火山
机构圈闭4575 13.19 28.80~7.79 14.57(以
特高-高为主)徐深、克拉美丽、长岭1号、松南以及龙深 地层岩性圈闭 4699 18.53 0.78(特低) 靖边 岩性圈闭 16893 66.63 1.38~2.41
(低)苏里格、
大牛地11030 31.79 7.78~
0.752.31(以
低为主)神木、米脂、榆林、子洲、乌审旗、合川、安岳、元坝以及洛带 注:累计储量的单位是108m3;比例单位是%;丰度单位是108m3/km2. 表 4 盆地类型与含煤岩系相关的大型、特大型气田储量
Table 4. Basin types and reserves of large and giant caol-related gas fields
盆地(坳陷) 克拉通内坳陷盆地 类前陆盆地 陆内坳陷盆地 陆内断陷盆地 陆缘断陷盆地 鄂尔多斯 26854(8)(1.21) 川西 2691(3)(6.23) 四川 川中 2200(2)(3.07) 6086(4)(3.20) 川东北 5291(4)(16.15)
塔里木库车 5993(5)(22.86) 塔西南 348(1)(17.98) 准噶尔 1366(2)(15.55) 柴达木 2878(3)(22.07) 松辽 3279(4)(17.45) 东海 西湖 330(1)(17.12) 珠江口 白云 775(2)(10.94) 莺琼 琼东南 978(1)(17.94) 莺歌海 1208(2)(2.87) 小计 34345(14)(42.10) 10398(11)(12.75) 8964(7)(10.99) 3279(4)(4.02) 3291(6)(4.10) 注:表中34345(14)(56.03) 含意为:探明储量(108m3)、大型及特大型气田数(个)和全国气层气储量中的百分比(%);川东的卧龙河、大池干井气田未统计在内;数据王庭斌(2004a). 表 5 成藏期盆地演化特征与特大型、大型煤成气田关系
Table 5. The relationship between evolution features of various coal-bearing basins and large and giant coal-related gas fields
类型 特大型+大型 特大型 大型 原型盆地-转化后
盆地类型气田数
(个)累计储量
(108m3)比例
(%)气田数
(个)累计储量
(108m3)比例
(%)气田数
(个)累计储量
(108m3)比例
(%)克拉通内坳陷 8 26854 43.49 3 21592 85.16 5 5262 14.45 克拉通内坳陷-高陡构造带 2 1477 2.39 2 1 477 4.06 克拉通内坳陷-陆内坳陷 1 702 1.14 1 702 1.93 克拉通坳陷-类前陆 5 6789 10.99 1 3762 14.84 4 3027 8.32 类前陆 11 10398 16.84 11 10398 28.57 陆内断陷-坳陷 4 3279 5.31 4 3279 9.01 陆内坳陷 7 8963 14.51 7 8963 24.62 陆缘断陷-坳陷 6 3291 5.33 6 3291 9.04 小计 44 61753 100.00 4 25354 100.00 40 36399 100.00 -
[1] Chen, Z.H., 1988.Sedimentary Environment of Coal and Coal-Bearing Layer.China University of Geosciences Press, Wuhan, 9-15, 20-33(in Chinese). [2] Dai, J.X., 2007.Potential Areas for Coal-Formed Gas Exploration in China.Petroleum Exploration and Development, 34(6):641-645(in Chinese with English abstract). [3] Dai, J.X., 2009.Major Developments of Coal-Formed Gas Exploration in the Last 30 years in China.Petroleum Exploration and Development, 36(3):264-271(in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60125-7 [4] Dai, J.X., Huang, S.H., Liu, Y., et al., 2010.Significant Advancement in Natural Gas Exploration and Development in China during the Past Sixty Years.Oil & Gas Geology, 31(6):689-698(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X16300815 [5] Dai, J.X., Shi, X., Wei, Y.Z., 2001.Summary of the Abiogenic Origin Theory and the Abiogenic Gas Pools (Fields).Acta Petrolei Sinica, 22(6):5-10(in Chinese with English abstract). http://taggedwiki.zubiaga.org/new_content/8619854d59216e4e6bb52f3e9c5ddcfa [6] Dai, J.X., Wang, T.B., Song, Y., et al., 1997.Formation and Distribution of Medium-Large-Sized Gas Fields in China.Geological Publishing House, Beijing, 118-140(in Chinese). [7] Dai, J.X., Zhong, N.N., Liu, D.H., et al., 2000.Geologic Basis and Major Controlling Factors of Large-Middle Coal-Formed Gas Fields in China.Petroleum Industry Press, Beijing, 165-223(in Chinese). [8] Feng, F.K., Wang, T.B., Zhang, S.Y., et al., 1995.Natural Gas Geology in China.Geological Publishing House, Beijing (in Chinese). [9] Feng, F.K., Wu, N.L., 1988.Dissection of Coal to Gas-(Oil-)Bearing Basins in China.In:Ministry of Geology and Mineral Resources, ed., Selected Papers on Petroleum and Natural Gas Geology, Humic Type Gas Study in China (Volume 1), Geological Publishing House, Beijing (in Chinese). [10] Hao, G.L., Liu, G.D., Xie, Z.Y., et al., 2010.Gas-Water Distributed Pattern in Xujiahe Formation Tight Gas Sandstone Reservoir and Influential Factor in Central Sichuan Basin.Natural Gas Geoscience, 21(3):427-433(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X16300657 [11] Hao, S.S., 2002.Selected Academic Paper on Oil and Gas of Hao Shisheng.Petroleum Industry Press, Beijing, 21-26, 32-40(in Chinese). [12] Jia, C.Z., Zhou, X.Y., Wang, Z.M., et al., 2002.Petroleum Geology of Kela 2 Gas Field.China Science Bulletin, 47(Suppl.):90-96(in Chinese). https://www.researchgate.net/publication/225735641_Petroleum_geological_characteristics_of_Kela-2_gas_field [13] Lei, C., Ye, J.R., Wu, J.F., et al., 2014.Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins:A Case Study of Xihu Depression.Earth Science, 39(7):837-847 (in Chinese with English abstract). https://www.researchgate.net/publication/287606377_Dynamic_process_of_hydrocarbon_accumulation_in_low-exploration_basins_a_case_study_of_Xihu_depression [14] Li, F., Jiang, Z.X., Li, Z., et al., 2015.Enriched Mechanism of Natural Gas of Lower Jurassic in Dibei Area, Kuqa Depression.Earth Science, 40(9):1538-1548 (in Chinese with English abstract). https://www.researchgate.net/publication/283659471_Enriched_mechanism_of_natural_gas_of_lower_jurassic_in_Dibei_Area_Kuqa_depression [15] Li, S.T., 2004.Basin Geodynamics Background of Formation of Huge Petroleum Systems.Earth Science, 29(5):505-512(in Chinese with English abstract). https://www.researchgate.net/publication/296174290_Basin_geodynamics_background_of_formation_of_huge_petroleum_systems [16] Liu, S.G., Li, G.R., Li, J.C., et al., 2005.Fluid Cross Formation Flow and Gas Explosion Accumulation in Western Sichuan Foreland Basin, China.Acta Geological Sinica, 79(5):690-697(in Chinese with English abstract). https://www.researchgate.net/publication/279910368_Fluid_cross_formation_flow_and_gas_explosion_accumulation_in_Western_Sichuan_foreland_basin_China [17] Ma, Y.S., Cai, X.Y., Guo, X.S., et al., 2010.The Discovery of Puguang Gas Field.Engineering Science, 12(10):14-23(in Chinese with English abstract). [18] Shen, P., Xu, Y.C., Wang, X.B., et al., 1991.Gas Source Rocks, Gas Geochemical Features and Gas Accumulation Mechenism.Science and Technology Press in Lanzhou, Lanzhou, 12-26, 43-53, 72-88 (in Chinese). [19] Strategic Research Center of Oil and Gas of the Ministry of Land and Resources, 2010.Resources Assessment.Geological Publishing House, Beijing (in Chinese). [20] Tian, Z.J., Hu, J.Y., Song, J.G., et al., 2002.The Kuqa Intracontinental Foreland Basin and Its Significance for Petroleum Exploration.Chinese Journal of Geology, 37(Suppl.):105-112(in Chinese with English abstract). doi: 10.1201/9780203930649.ch4 [21] Wang, F.Y., Du, Z.L., Zhang, S.C., et al., 2009.Source Kitchen and Natural Gas Accumulation in Kuqa Depression, Tarim Basin.Xinjiang Petroleum Geology, 30(4):431-439(in Chinese with English abstract). https://www.researchgate.net/publication/292732613_Accumulation_timing_and_history_of_Kuqa_petroleum_system_Tarim_Basin [22] Wang, J.Q., 1997.The Chimney Effects of Hydrocarbon Activity.Petroleum Geology & Experiment, 19(3):193-200(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199703000.htm [23] Wang, R.N., Li, G.C., 1998.Evolution and Accumulation Rules of Coal-Bearing Basin in China.China Coal Industry Publishing House, Beijing, 67-100 (in Chinese). [24] Wang, T., 1997.Natural Geological Theory and Practice of China.Petroleum Industry Press, Beijing, 190-212(in Chinese). [25] Wang, T.B., 1994.Characteristics of Gas Fields (Poors) and Their Forming Conditions in China.In:Ministry of Geology and Mineral Resources, ed., Selected Papers on Petroleum and Natural Gas Geology, Humic Type Gas Study in China (Volume 4).Geological Publishing House, Beijing, 11-26 (in Chinese). [26] Wang, T.B., 2003.Differences in Reservoiring Conditions of Oil and Natural Gas and Reservoiring Models of Gas Fields in China.Natural Gas Geoscience, 14(2):79-86(in Chinese with English abstract). http://www.oalib.com/paper/1417176 [27] Wang, T.B., 2004a.Gas Pools in China Have Mainly Been Formed and Finalized during Tectonic Movements since Neogene.Oil & Gas Geology, 25(2):126-132(in Chinese with English abstract). [28] Wang, T.B., 2004b.Geological Conditions of Coal and Gas-(Oil)-Bearing Basins in China.Science in China (Series D), 34(2):117-124(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200702002.htm [29] Wang, Z.C., Chen, M.J., Wang, Z., et al., 2006.Simulation Analysis on Formation Mechanism of Coal-Formed Gas Reservoir in Intercratonic Depression of the Upper Paleozoic in Ordos Basin.Acta Petrolei Sinica, 27(1):8-12(in Chinese with English abstract). https://www.researchgate.net/publication/285225176_Simulation_analysis_on_formation_mechanism_of_coal-formed_gas_reservoir_in_intercratonic_depression_of_the_Upper_Paleozoic_in_Ordos_Basin [30] Yang, K.M., 2006.Gas Reservoiring Mode in Xujiahe Formation of Western Sichuan Depression.Oil & Gas Geology, 27(6):786-793(in Chinese with English abstract). https://www.researchgate.net/publication/298161799_Reservoiring_mechanism_of_natural_gas_in_West_Sichuan_Depression [31] Yang, L.N., Wang, L.S., 2007.The Effect of Rupture on Oil Accumulation in Baochu Slope of Xihu Sag.Offshore Oil, 27(1):19-24 (in Chinese with English abstract). [32] Yang, Q., Han, D.X., 1979.Coal Geology in China.China Coal Industry Publishing House, Beijing (in Chinese). [33] Zeng, L.B., Zhou, T.W., Lü, X.X., 2002.Influence of Himalayan Orogeny on Oil & Gas Forming in Kuqa Depression, Tarim Basin.Earth Science, 27(6):741-744(in Chinese with English abstract). [34] Zhao, W.Z., Wang, H.J., Xu, C.C., et al., 2010.Reservoir-Forming Mechanism and Enrichment Conditions of the Extensive Xujiahe Formation Gas Reservoirs, Central Sichuan Basin.Petroleum Exploration and Development, 37 (2):146-157(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60022-5 [35] Zhou, X.X., 2003.Recognition on Reservoir-Forming Mechanism of Kela 2 Gas Field in Tarim Basin.Natural Gas Geoscience, 14(4):90-96(in Chinese with English abstract). http://www.oalib.com/paper/1416388 [36] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2005.Alteration of Thermochemical Sulfate Reduction to Hydrocarbons.Acta Petrolei Sinica, 26(5):48-52(in Chinese with English abstract). [37] 陈钟惠, 1988.煤和含煤岩系的沉积环境.武汉:中国地质大学出版社, 9-15, 20-33. [38] 戴金星, 2007.中国煤成气潜在区.石油勘探与开发, 34(6):641-645. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200706002.htm [39] 戴金星, 2009.中国煤成气研究30年来勘探的重大进展.石油勘探与开发, 36(3):264-271. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200903006.htm [40] 戴金星, 黄士鹤, 刘岩, 等, 2010.中国天然气勘探开发60年的重大进展.石油与天然气地质, 31(6):689-698. doi: 10.11743/ogg20100601 [41] 戴金星, 石昕, 卫延召, 2001.无机成因油气论和无机成因的气田(藏)概略.石油学报, 22(6):5-10. doi: 10.7623/syxb200106002 [42] 戴金星, 王庭斌, 宋岩, 等, 1997.中国大中型天然气田形成条个与分布规律.北京:地质出版社, 118-140. [43] 戴金星, 钟宁宁, 刘德汉, 等, 2000.中国煤成大中型气田地质基础和主控因素.北京, 石油工业出版社, 165-223. [44] 冯福凯, 王庭斌, 张士亚, 等, 1995.中国天然气地质.北京:地质出版社. [45] 冯福凯, 吴乃苓, 1988.中国含煤-含气(油)盆地分析.见:地质矿产部编, 石油地质研究所石油与天然气地质文集(第1集).北京:地质出版社. [46] 郝国丽, 柳广弟, 谢增业, 等, 2010.川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析.天然气地球科学, 21(3):427-433. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201003014.htm [47] 郝石生, 2002.郝石生石油天然气学术论文选集.北京, 石油工业出版社, 21-26, 32-40. [48] 贾承造, 周新源, 王招明, 等, 2002.克拉2气田石油地质特征.科学通报, 47(增刊):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1013.htm [49] 雷闯, 叶加仁, 吴景富, 等, 2014.低勘探程度盆地成藏动力学过程:以西湖凹陷中部地区为例.地球科学, 39(7):837-847. http://www.earth-science.net/WebPage/Article.aspx?id=2886 [50] 李峰, 姜振学, 李卓, 等, 2015.库车坳陷迪北地区下侏罗统天然气富集机制.地球科学, 40(9):1538-1548. http://www.earth-science.net/WebPage/Article.aspx?id=3157 [51] 李思田, 2004.大型油气系统形成的盆地动力学背景.地球科学, 29(5):505-512. http://www.earth-science.net/WebPage/Article.aspx?id=1479 [52] 刘树根, 李国蓉, 李巨初, 等, 2005.川西前陆盆地流体的跨层流动和天然气爆发式成藏.地质学报, 79(5):690-697. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505014.htm [53] 马永生, 蔡勋育, 郭旭升, 等, 2010.普光大气田的发现.中国工程科学, 12(10):14-23. doi: 10.3969/j.issn.1009-1742.2010.10.003 [54] 沈平, 徐永昌, 王先彬, 等, 1991.气源岩和天然气地球化学特征及成气机理研究.兰州:甘肃科学技术出版社, 12-26, 43-53, 72-88. [55] 田作基, 胡见义, 宋建国, 等, 2002.塔里木库车陆内前陆盆地及其勘探意义.地质科学, 37(增刊):105-112. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1014.htm [56] 王飞宇, 杜治利, 张水昌, 等, 2009.塔里木盆地库车坳陷烃源灶特征和天然气成藏过程.新疆石油地质, 30(4):431-439. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200904010.htm [57] 王金琪, 1997.油气活动的烟囱作用.石油实验地质, 19(3):193-200. doi: 10.11781/sysydz199703193 [58] 王仁农, 李桂春, 1998.中国含煤盆地演化和聚煤规律.北京:煤炭工业出版社, 67-100. [59] 王涛, 1997.中国天然气地质理论基与实践.北京:石油工业出版社, 190-212. [60] 王庭斌, 1994.中国天然气田(藏)特征及成藏条件.见:地质矿产部编, 石油地质研究所石油与天然气地质文集(第4集).北京:地质出版社, 11-26. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606008.htm [61] 王庭斌, 2003.天然气与石油成藏条件差异及中国气田成藏模式.天然气地球科学, 14(2):79-86. doi: 10.11764/j.issn.1672-1926.2003.02.79 [62] 王庭斌, 2004a.中国含煤一含气(油)盆地的地质条件.中国科学(D辑), 34(2):117-124. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200402002.htm [63] 王庭斌, 2004b.中国气藏主要形成, 定型于新近纪以来的构造运动.石油与天然气地质, 25(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200402001.htm [64] 汪泽成, 陈孟晋, 王震, 等, 2006.鄂尔多斯盆地上古生界克拉通坳陷盆地煤成气成藏机制.石油学报, 27(1):8-12. doi: 10.7623/syxb200601002 [65] 杨克明, 2006.川西坳陷须家河组天然气成藏模式探讨.石油与天然气地质, 27(6):786-793. doi: 10.11743/ogg20060609 [66] 杨丽娜, 王丽顺, 2007.西湖凹陷保斜坡断裂特征及与油气成藏的关系.海洋石油, 27(1):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200701003.htm [67] 杨起, 韩德馨, 1979.中国煤田地质学.北京:煤炭工业出版社. [68] 曾联波, 周天伟, 吕修祥, 2002.喜马拉雅运动对库车坳陷油气成藏的影响.地球科学, 27(6):741-744. http://www.earth-science.net/WebPage/Article.aspx?id=1196 [69] 赵文智, 王红军, 徐春春, 等, 2010.川中地区须家河组天然气藏大范围成藏机理与富集条件.石油勘探与开发, 37(2):146-157. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002003.htm [70] 周兴熙, 2003.塔里木盆地克拉2气田成藏机制再认识.天然气地球科学, 14(5):354-361. doi: 10.11764/j.issn.1672-1926.2003.05.354 [71] 朱光有, 张水昌, 梁英波, 等, 2005.硫酸盐热化学还原反应对烃类的蚀变作用.石油学报, 26(5):48-52. doi: 10.7623/syxb200505010