Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China
-
摘要: 四川乌斯河铅锌矿床是赋存于震旦系灯影组白云岩中的大型铅锌矿床.本次研究结合最新的野外地质现象发现该矿床除存在前人所强调的沉积成矿作用以外,热液成矿作用非常明显.对该矿床流体包裹体进行细致的岩相学、显微测温和激光拉曼研究,揭示成矿流体特征,并探讨成矿机制.研究结果显示该矿床包裹体类型较为单一,以气液两相为主,均一温度主要集中于120~260 ℃,平均盐度为10.0% NaCl eqv,压力为32~68 MPa,成矿流体为中-低温、中等盐度.激光拉曼测试显示包裹体气相成分含有CH4、H2S、C2H6、C2H2、N2和NH3,为多元共存的流体体系.在热驱动力下(120~260 ℃),流体混合作用提供了物质基础(SO42-)、催化剂(Mg2+)和还原剂(有机质、CH4和H2S)促使硫酸盐热化学还原反应(TSR)启动.TSR反应过程中流体pH发生变化,进一步促进了金属硫化物沉淀.Abstract: The Wusihe lead-zinc deposit, hosted in the Dengying Formation, is a large lead-zinc deposit in the Sichuan Province, China. The previous research noted the Wusihe deposit was classified as a sediment-hosted stratiform lead-zinc deposit. However, our field survey result suggests that hydrothermal ore-forming processes are crucial to lead-zinc mineralization. In this paper, we present a detailed petrographic, microthermometric and laser Raman spectroscopy study of fluid inclusions from the Wusihe deposit reveals the characteristics of ore-forming fluids and mineralization mechanism. Primary fluid inclusions (FIs) in dolomite, quartz, calcite, fluorite and sphalerite are mainly two phases (L+V type). Microthermometric data show the homogenization temperatures range from 120 ℃ to 260 ℃, and the average of salinity is 10.0% NaCl eqv. The estimated trapping pressures are 32 MPa to 68 MPa. The laser Raman spectroscopy shows that the gas components have a certain amount of CH4, H2S, C2H6, C2H2, N2 and NH3. The mixed ore-forming fluids offer heat, SO42-, and Mg2+ to provoke the thermochemical sulfate reduction (TSR). The TSR could be a key factor for sulfur source and H+. The change of pH value leads to the precipitation of metallogenic elements.
-
图 5 流体包裹体的均一温度-盐度直方图
a.沉积期,闪锌矿、白云石和石英中流体包裹体均一温度直方图;b.沉积期流体包裹体盐度直方图;c.热液期第Ⅰ成矿阶段,闪锌矿、白云石和石英中流体包裹体均一温度直方图;d.热液期第Ⅰ成矿阶段流体包裹体盐度直方图;e.热液期第Ⅱ成矿阶段,闪锌矿和石英中流体包裹体均一温度直方图;f.热液期第Ⅱ成矿阶段流体包裹体盐度直方图;g.热液期第Ⅲ成矿阶段,闪锌矿、方解石、萤石和石英中流体包裹体均一温度直方图;h.热液期第Ⅲ成矿阶段盐度直方图; i.热液期第Ⅳ成矿阶段,方解石和石英中流体包裹体均一温度直方图;j.热液期第Ⅳ成矿阶段流体包裹体盐度直方图
Fig. 5. Histograms of microthermometric and salinity for each stage
图 6 乌斯河矿床包裹体激光拉曼图谱
a.闪锌矿内包裹体,含有CH4和N2,其中CH4特征峰值为2 914.8 cm-1,N2特征峰值为2 327.5 cm-1;b.闪锌矿内包裹体,含有C2H2和H2O,其中C2H2特征峰值为1 961.6 cm-1,H2O特征峰值为3 386.9 cm-1;c.石英内包裹体,含有CH4和H2O,其中CH4特征峰值为2 914.7 cm-1,H2O特征峰值为3 544.3 cm-1;d.石英内包裹体,含有NH3和H2O,其中NH3特征峰值为3 339.7 cm-1,H2O特征峰值为3 618.2 cm-1;e.闪锌矿内包裹体,含H2S,特征峰值为2 614.4 cm-1;f.白云石内包裹体,含有C2H6,其中C2H6特征峰值为2 975.2 cm-1
Fig. 6. Raman spectra of fluid inclusions from the Wusihe deposit
图 7 乌斯河矿床成矿压力估算
a.热液期第Ⅰ成矿阶段,闪锌矿包裹体的等容线分布在ρ=0.90和ρ=0.79之间的红色区域,结合平均温度250 ℃投影,获得的最小捕获压力为32 MPa;b.热液期第Ⅱ成矿阶段,闪锌矿包裹体的等容线分布在ρ=0.97和ρ=0.87之间的红色区域,结合平均温度207 ℃投影,获得的最小捕获压力为58 MPa;c.热液期第Ⅲ成矿阶段,闪锌矿包裹体的等容线分布在ρ=1.07和ρ=0.92之间的红色区域,结合平均温度172 ℃投影,获得的最小捕获压力为68 MPa
Fig. 7. Estimation for the metallogenic pressure of Wusihe deposit
表 1 各成矿阶段流体包裹体显微测温数据
Table 1. Summary of fluid inclusion data from each stage of mineralization
成矿期成矿阶段(测试个数) 寄主矿物 初熔温度(℃) 均一温度(℃) 冰点(℃) 盐度(% NaCl eqv) 密度(g/cm3) 沉积期
n=36白云石 -33.8 181~221 -6.5~-2.9 3.6~9.9 0.90~0.97 闪锌矿 -21.6~-19.1 132~223 -10.8~-4.1 6.5~14.8 0.91~1.02 石英 191~194 / / / 热
液
期Ⅰ
n=73白云石 -41.6 216~266 -8.7~-7.2 10.7~12.5 0.87~0.93 石英 -16.3 203~291 -18.9~-4.2 6.7~21.6 0.84~0.97 闪锌矿 -23.8~-17.8 217~282 -10.3~-3.3 5.4~14.3 0.79~0.90 Ⅱ
n=79石英 178~269 -9.0~-2.5 4.2~12.9 0.85~0.96 闪锌矿 -25.1~-19.7 168~238 -9.1~-4.3 6.9~13.0 0.87~0.98 Ⅲ
n=65萤石 159~227 -9.2~-3.9 6.3~14.0 0.94~1.00 闪锌矿 -25.4~-20.6 133~211 -19.2~-4.8 7.6~21.8 0.92~1.07 方解石 208~218 -14.5~-10.1 14.0~18.2 0.96~0.99 石英 154~229 -8.2~-5.0 7.9~11.9 0.91~0.97 3Ⅳ
n=35石英 -18.1 141~199 -10.4~-1.6 2.7~14.4 0.90~1.01 方解石 -22.4 102~197 -13.5~-3.0 5.0~15.2 0.89~1.02 表 2 热液期流体包裹体激光拉曼测试结果
Table 2. Raman spectra of fluid inclusions from the hydrothermal stage
序号 成矿阶段 主矿物 包裹体类型 测试对象 成分 拉曼特征峰(cm-1) 采样位置 1 第Ⅰ阶段 石英 L+V型 气相 N2 2 339.4 角砾岩带 2 第Ⅰ阶段 石英 L+V型 气相 C2H6 2 974.0 角砾岩带 3 第Ⅰ阶段 白云石 L+V型 气相 C2H6 2 975.2 麦地坪上矿段 4 第Ⅰ阶段 白云石 L+V型 气相 CH4 2 912.3 麦地坪上矿段 5 第Ⅰ阶段 白云石 L+V型 气相 N2 2 330.5 麦地坪上矿段 6 第Ⅰ阶段 闪锌矿 L+V型 气相 CH4和N2 2 914.8和2 327.5 麦地坪上矿段 7 第Ⅱ阶段 闪锌矿 L+V型 气相 C2H2和H2O 1 961.6和3 386.9 麦地坪上矿段 8 第Ⅱ阶段 闪锌矿 L+V型 液相 H2O 3 443.3 麦地坪上矿段 9 第Ⅱ阶段 闪锌矿 L+V型 气相 N2 2 329.2 麦地坪上矿段 10 第Ⅱ阶段 石英 L+V型 气相 CH4和H2O 2 914.7和3 544.3 麦地坪上矿段 11 第Ⅱ阶段 石英 L+V型 气相 NH3和H2O 3 339.7和3 618.2 麦地坪上矿段 12 第Ⅲ阶段 闪锌矿 L+V型 气相 H2S 2 614.4 麦地坪上矿段 13 第Ⅲ阶段 闪锌矿 L+V型 气相 CH4 2 914.7 麦地坪下矿段 14 第Ⅲ阶段 石英 V型 气相 CH4 2 915.9 麦地坪下矿段 表 3 乌斯河铅锌矿床金属硫化物硫同位素
Table 3. δ34S values of sulfides in the Wusihe lead-zinc deposit
样品编号 矿物 δ34SCDT(‰) 资料来源 送样号 矿物 δ34SCDT (‰) 资料来源 Hx001 闪锌矿 +14.83 Hx003 方铅矿 +14.41 Hx003 闪锌矿 +14.53 Hx006 方铅矿 +13.99 Hx005 闪锌矿 +12.65 Hx015 方铅矿 +13.92 Hx006 闪锌矿 +14.82 Hx001 方铅矿 +11.78 林方成,2005b Hx052 闪锌矿 +12.82 Hx044 方铅矿 +12.07 Hx044 闪锌矿 +10.48 林方成,2005b Hx052 方铅矿 +8.85 Hx055 闪锌矿 +10.43 Hx055 方铅矿 +11.20 Hx020 闪锌矿 +8.52 Wh-1 闪锌矿 +8.61 Hx021 闪锌矿 +7.48 Wh-2 闪锌矿 +14.05 李同柱等,2007 Hx025 闪锌矿 +13.13 Wh-3 闪锌矿 +13.75 Hx041 黄铁矿 +15.51 -
[1] Anderson, G.M., 1975.Precipitation of Mississippi Valley-Type Ores.Economic Geology, 70(5):937-942.doi: 10.2113/gsecongeo.70.5.937 [2] Anderson, G.M., 1991.Organic Maturation and Ore Precipitation in Southeast Missouri.Economic Geology, 86(5):909-926.doi: 10.2113/gsecongeo.86.5.909 [3] Bildstein, O., Worden, R.H., Brosse, E., 2001.Assessment of Anhydrite Dissolution as the Rate-Limiting Step during Thermochemical Sulfate Reduction.Chemical Geology, 1176(1-4):173-189.doi: 10.1016/s0009-2541(00)00398-3 [4] Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphic Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. doi: 10.1016/0016-7037(89)90057-4 [5] Chen, Y., Zhou, Y.Q., Liu, C.Y., et al., 2005.Quantitatively Analyzing the Homogenization Process of CH4-H2O Fluid Inclusion by Laser Raman Spectroscopy.Earth Science Frontiers, 12(4):592-596(in Chinese with English abstract). http://www.academia.edu/15964319/Methane_CH4_-bearing_fluid_inclusions_in_the_Myanmar_jadeitite [6] Chen, Y., Zhou, Y.Q., Yan, S.Y., et al., 2006.The Application of Laser Raman Spectroscopy to Obtaining Internal Pressure of Fluid Inclusions.Acta Geoscientica Sinica, 27(1):69-73 (in Chinese with English abstract). https://www.researchgate.net/publication/285520689_The_application_of_laser_Raman_spectroscopy_to_obtaining_internal_pressure_of_fluid_inclusion [7] Cloetingh, S., Thybo, H., Faccenna, C., 2009.Topo-Europe:Studying Continental Topography and Deep Earth-Surface Processes in 4D.Techonophysics, 474(1-2):4-32.doi: 10.1016/j.tecto.2009.04.015 [8] Farbre, D., Oksengorn, B., 1992.Pressure and Density Dependence of CH4 and N2 Raman Lines in an Equimolar CH4/N2 Gas Mixture.Applied Spectroscopy, 46(3):468-471 doi: 10.1366/0003702924125348 [9] Ghazban, F., Schwarcz, H.P., Ford, D.C., 1990.Carbon and Sulfur Isotope Evidence for in Situ Reduction of Sulfate, Nanisivik Lead-Zinc Deposits, Northwest Territories, Baffin Island, Canada.Economic Geology, 85(2):360-375.doi: 10.2113/gsecongeo.85.2.360 [10] Goldhaber, M.B., Orr, W.L., 1995.Kinetic Controls on Thermochemical Sulfate Reduction as a Source of Sedimentary H2S.In:Vairavamurthy, M.A., Schoonen, M.A.A., eds., Geochemical Transformations of Sedimentary Sulfur.ACS Symposium Series, (612):412-425. [11] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. doi: 10.2113/gsecongeo.83.1.197 [12] He, M.C., Zhang, Z.J., 2001.The Application of Laser Raman Microspectroscopy to Study of Mineral Deposits.Rock and Mineral Analysis, 20(1):43-47 (in Chinese with English abstract). [13] Jeffery, C.S., Jill, D.P., Ming, I.C., 1993.Raman Spectroscopic Characterization of Gas Mixtures.1.Quantitative Composition and Pressure Determination of CH4, N2, and Their Mixtures.American Journal of Science, 293(4):297-321. https://www.researchgate.net/publication/275801028_Raman_spectroscopic_characterization_of_gas_mixtures_II_Quantitative_composition_and_pressure_determination_of_the_CO_2_-CH_4_system [14] Jeffery, C.S., Jill, D.P., Ming, I.C., 1996.Raman Spectroscopic Characterization of Gas Mixtures.2.Quantitative Composition and Pressure Determination of CO2-CH4 System.American Journal of Science, 296(6):577-600. https://www.researchgate.net/publication/275801028_Raman_spectroscopic_characterization_of_gas_mixtures_II_Quantitative_composition_and_pressure_determination_of_the_CO_2_-CH_4_system [15] Jochum, J., 2000.Variscan and Post-Variscan Lead-Zinc Mineralization, Rhenish Massif, Germany:Evidence for Sulfide Precipitation via Thermochemical Sulfate Reduction.Mineralium Deposita, 35(5):451-464.doi: 10.1007/s001260050255 [16] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005.Sediment-Hosted Lead-Zinc Deposits:A Global Perspective.Economic Geology, 100(Anniversary Volume):561-608. [17] Li, N., Ulrich, T., Chen, Y.J., et al., 2012.Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China.Ore Geology Reviews, (48):442-459.doi: 10.1016/j.oregeorev.2012.06.002 [18] Li, R.X., Dong, S.W., Zhang, S.N., et al., 2012.Features and Formation of Organic Fluids during Dabashan Orogenesis.Journal of Nanjinu University(Natural Sciences), 48(3):295-307(in Chinese with English abstract). https://www.researchgate.net/publication/291036067_Formation_and_evolution_of_Dabashan_Foreland_basin_and_fold-and-thrust_belts_Sichuan_China_Beijing [19] Li, T.Z., 2007.The Genesis and Metallogenic Model of Lead-Zinc Deposits in the Middle Part of Dadu River Valley (Dissertation).Chengdu Institute of Technology, Chengdu (in Chinese with English abstract). [20] Lin, F.C., 2005a.Geological and Geochemical Characteristics and Genesis of Supper-Large-Scale Sedex-Type Stratiform Lead-Zinc Deposits in the Dadu River Valley on the Western Margin of the Yangtze Craton.Acta Geologica Sinica, 79(4):540-556(in Chinese with English abstract). https://www.researchgate.net/publication/289158429_Geological_and_geochemical_characteristics_and_genesis_of_supper-large-scale_sedex-type_stratiform_lead-zinc_deposits_in_the_Dadu_River_Valley_on_the_western_margin_of_the_Yangtze_Craton [21] Lin, F.C., 2005b.Hydrothermal Exhalative Metallogeny of Stratiform Pb-Zn Deposits on Western Margin of the Yangtze Craton (Dissertation).Chengdu Institute of Technology, Chengdu (in Chinese with English abstract). [22] Liu, B., Duan, G.X., 1987.The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity≤25 wt%) and Their Applications.Acta Mieralogica Sinica, 7(4):345-352(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780128032411000046 [23] Liu, S.G., Deng, B., Li, Z.W., et al., 2011.The Texture of Sedimentary Basin-Orogenic Belt System and Its Influence on Oil/Gas Distribution:A Case Study from Sichuan Basin.Actor Petrologica Sinica, 27(3):621-635(in Chinese with English abstract). http://www.oalib.com/paper/1473888 [24] Liu, S.G., Luo, Z.L., Zhao, X.K., et al., 2003.Coupling Relationships of Sedimentary Basin-Orogenic Belt Systems and Their Dynamic Models in West China—A Case Study of the Longmenshan Orogenic Belt-West Sichuan Foreland Basin System.Acta Geologica Sinica, 77(2):177-186(in Chinese with English abstract). https://www.researchgate.net/publication/282684750_Coupling_of_sedimentary_basin-orogenic_belt_systems_and_their_dynamic_models_in_West_China_-_A_case_study_of_the_Longmenshan_orogenic_belt_-_West_Sichuan_Foreland_basin_system [25] Liu, W.Z., Wang, J.Z., Li, Z.Q., 2002.Geochemical Characteristics of Lead-Zinc Deposits at Eastern Margin of Kangdian Axis.Mineral Deposits, 21:173-176(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198606002.htm [26] Lu, H.Z, Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing(in Chinese). [27] Lu, W.J., Chou, I.M., Burruss, R.C., et al., 2007.A Unified Equation for Calculating Methane Vapor Pressures in the CH4-H2O System with Measured Raman Shifts.Geochimica et Cosmochimica Acta, 71(16):3969-3978.doi: 10.1016/j.gca.2007.06.004 [28] Machel, H.G., 2001.Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings-Old and New Insights.Sedimentary Geology, 140(1-2):143-175.doi: 10.1016/S0037-0738(00)00176-7 [29] Machel, H.G., Krouse, H.R., Sassen, R., 1995.Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction.Applied Geochemistry, 10(4):373-389.doi: 10.1016/0883-2927(95)00008-8 [30] Mougin, P., Lamoureux-Var, V., Bariteau, A., et al., 2007.Thermodynamic of Thermochemical Sulphate Reduction.Journal of Petroleum Science and Engineering, 58(3-4):413-427.doi: 10.1016/j.petrol.2007.01.005 [31] Sangster, D.F., 2002.The Role of Dense Brines in the Formation of Vent-Distal Sedimentary-Exhalative(SEDEX)Lead-Zinc Deposits:Field and Laboratory Evidence.Mineralium Deposita, 37(2):149-157.doi: 10.1007/s00126-001-0216-9 [32] Seewald, J.S., 2003.Organic-Inorgainc Interactions in Petroleum-Producing Sedimentary Basins.Nature, 426:327-333.doi: 10.1038/nature02132 [33] Shen, C.B., Mei, L.F., Xu, Z.P., et al., 2007.Architecture and Tectonic Evolution of Composite Basin-Mountain System in Sichuan Basin and Its Adjacent Ares.Geotectonica et Metallogenia, 31(3):288-299(in Chinese with English abstract). https://www.researchgate.net/publication/292305399_Tectonic_evolution_and_oil_and_gas_accumulation_in_the_east_Micangshan_foreland_Basin_Sichuan [34] Tang, Y.C., Ellis, G.S., Zhang, T.W., et al., 2005.Effect of Aqueous Chemistry on the Thermal Stability of Hydrocarbons in Petroleum Reservoirs.Geochimica et Cosmochimica Acta, 69(10):A559 https://www.researchgate.net/publication/259665139_Effect_of_aqueous_chemistry_on_the_thermal_stability_of_hydrocarbons_in_petroleum_reservoirs [35] Wilkinson, J.J., 2001.Fluid Inclusions in Hydrothermal Ore Deposits.Lithos, 55(1-4):229-272.doi: 10.1016/S0024-4937(00)00047-5 [36] Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995.Gas Souring by Thermochemical Sulfate Reduction at 140 ℃.AAPG Bulletin, 79(6):854-863. [37] Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1996.The Effects of Thermochemical Sulfate Reduction upon Formation Water Salinity and Oxygen Isotopes in Carbonate Gas Reservoirs.Geochimica et Cosmochimica Acta, 60(20):3925-3931.doi: 10.1016/0016-7037(96)00216-5 [38] Wu, Y., Zhang, C.Q., Mao, J.W., et al., 2013.The Relationship between Oil-Gas Organic Matter and MVT Mineralization:A Case Study of the Chipu Lead-Zinc Deposit, Sichuan.Acta Geoscientia Sinica, 34(4):425-436 (in Chinese with English abstract). https://www.researchgate.net/publication/283856889_The_relationship_between_oil-gas_organic_matter_and_MVT_mineralization_A_case_study_of_the_Chipu_lead-zinc_deposit_Sichuan [39] Xie, S.C., Yin, H.F., Wang, H.M., et al., 1997.A Potential Microbial Method of Mineral Exploration:Study on Bacillus Cereus as an Indicator of Gold Mineralization.Earth Science, 22(4):47-50 (in Chinese with English abstract). https://www.researchgate.net/publication/289323672_Molecular_identification_of_gold-mineralization_indicating_bacteria [40] Xiong, S.F., He, M.C., Yao, S.Z, et al., 2014.Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range:Implications for Ore Genesis.Earth Science, 39(7):820-836. https://www.researchgate.net/profile/Qingdong_Zeng/citations?sorting=recent&page=3 [41] Xiong, S.F., He, M.C., Yao, S.Z., et al., 2015.Fluid Evolution of the Chalukou Giant Mo Deposit in the Northern Great Xing'an Range, NE China.Geological Journal, 50(6):720-738.doi: 10.1002/gj.2588 [42] Zhang, C.Q., 2008.The Genetie Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guzhou Provinces, China (Dissertation).Chinese Academy of Geological Science, Beijing (in Chinese with English abstract). [43] Zhang, S.C., Shuai, Y.H., He, K., et al., 2012.Research on the Initiation Mechanism of Thermochemical Sulfate Reduction(TSR).Actor Petrologica Sinica, 28(3):739-748. doi: 10.1007/BF02547004 [44] Zhang, S.C., Zhu, G.Y., 2006.Gas Accumulation Characteristics and Exploration Potential of Marine Sediments in Sichuan Basin.Acta Petrolei Sinica, 27(5):1-8. https://www.researchgate.net/publication/294235285_Gas_accumulation_characteristics_and_exploration_potential_of_marine_sediments_in_Sichuan_Basin [45] Zhang, T.G., Chu, X.L., Zheng, Q.R., et al., 2004.The Sulfur and Carbon Isotopic Records in Carbonates of the Dengying Formation in the Yangtze Platform, China.Acta Petrologica Sinica, 20(3):717-724. https://www.researchgate.net/publication/292689163_The_sulfur_and_carbon_isotopic_records_in_carbonates_of_the_Dengying_Formation_in_the_Yangtze_Platform_China [46] Zhang, T.W., Amrani, A., Ellis, G.S., et al., 2008.Experimental Investigation on Thermochemical Sulfate Reduction by H2S Initiation.Geochimica et Cosmochimica Acta, 72(14):3518-3530.doi: 10.1016/j.gca.2008.04.036 [47] Zheng, X.Z., 2012.Geological Features and Genesis of WuSiHe Pb-Zn Deposit, Sichuang(Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [48] Zheng, Y., Zhang, L., Chen, Y.J., et al., 2012.Geology, Fluid Inclusion Geochemistry, and 40Ar/39Ar Geochronology of the Wulasigou Cu Deposit, and Their Implications for Ore Genesis, Altay, Xinjiang, China.Ore Geology Reviews, 49:128-140.doi: 10.1016/j.oregeorev.2012.09.005 [49] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2005.Isotopic Evidence of TSR Origin for Natural Gas Bearing High H2S Contents within the Feixianguan Formation of the Northeastern Sichuan Basin, Southwestern China.Science in China(Series D), 48(11):1960.doi: 10.1360/082004-147 [50] Zhu, G.Y., Zhang, S.C., Liang, Y.B., et al., 2006.Distribution of High H2S-Bearing Natural Gas and Evidence of TSR Origin in the Sichuan Basin.Acta Geologica Sinica, 80(8):1208-1218. https://www.researchgate.net/publication/297837649_Origins_of_high_H2S-bearing_natural_gas_in_China [51] Zhu, H.D., Luo, Q., Zhou, L., et al., 2013.Application Prospect of Natural Gas Component Analysis Using Laser Raman Spectroscopy.Nature Gas Industry, 33(11):110-114(in Chinese with English abstract). https://www.researchgate.net/publication/288545258_Application_prospect_of_natural_gas_component_analysis_using_Laser_Raman_spectroscopy [52] Zhuang, H.P., Lu, J.L., 1996.The Metal Deposits Related to the Organic Matter.Geology-Geochemistry, 4:6-11(in Chinese). [53] 陈勇, 周瑶琪, 刘超英, 等, 2005.CH4-H2O体系流体包裹体均一过程激光拉曼光谱定量分析.地学前缘, (4):592-596. [54] 陈勇, 周瑶琪, 颜世永, 等, 2006.激光拉曼光谱技术在获取流体包裹体内压中的应用及讨论.地球学报, 27(1):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200601012.htm [55] 何谋惷, 张志坚, 2001.显微激光拉曼光谱在矿床学中的应用.岩矿测试, 20(1):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200101010.htm [56] 李荣西, 董树文, 张少妮, 等, 2012.大巴山造山过程有机流体研究.南京大学学报(自然科学版), 48(3):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201203007.htm [57] 李同柱, 2007. 大渡河谷中段铅锌矿床成因与成矿模式研究(硕士学位论文). 成都: 成都理工大学. [58] 林方成, 2005a.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因.地质学报, 79(4):540-556. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504017.htm [59] 林方成, 2005b. 论扬子地台西缘层状铅锌矿床热水沉积成矿作用(博士学位论文). 成都: 成都理工大学. [60] 刘树根, 邓宾, 李智武, 等, 2011.盆山结构与油气分布——以四川盆地为例.岩石学报, 27(3):621-635. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013263631.htm [61] 刘树根, 罗志立, 赵锡奎, 等, 2003.中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带—川西前陆盆地系统为例.地质学报, 77(2):177-186. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302007.htm [62] 刘文周, 王奖臻, 李泽琴, 2002.康滇地轴东缘铅锌矿床地球化学特征.矿床地质, 21:173-176. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1051.htm [63] 刘斌, 段光贤, 1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报, 7(4):345-352. [64] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [65] 沈传波, 梅廉夫, 徐振平, 等, 2007.四川盆地复合盆山体系的结构构造和演化.大地构造与成矿学, 31(3):288-299. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200703005.htm [66] 吴越, 张长青, 毛景文, 等, 2013.油气有机质与MVT铅锌矿床的成矿——以四川赤普铅锌矿为例.地球学报, 34(4):425-436. doi: 10.3975/cagsb.2013.04.05 [67] 谢树成, 殷鸿福, 王红梅, 等, 1997.一种潜在的微生物找矿法——蜡样芽孢杆菌指示金矿化的试验研究.地球科学, 22(4):47-50. http://www.earth-science.net/WebPage/Article.aspx?id=529 [68] 熊索菲, 何谋惷, 姚书振, 等, 2014.大兴安岭岔路口斑岩钼矿床流体成分及成矿意义.地球科学, 39(7):820-836. http://www.earth-science.net/WebPage/Article.aspx?id=2893 [69] 张长青, 2008. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型(博士学位论文). 北京: 中国地质科学院. [70] 张水昌, 帅燕华, 何坤, 等, 2012.硫酸盐热化学还原作用的启动机制研究.岩石学报, 28(3):739-748. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203004.htm [71] 张水昌, 朱光有, 2006.四川盆地海相天然气富集成藏特征与勘探潜力.石油学报, 27(5):1-8. doi: 10.7623/syxb200605001 [72] 张同钢, 储雪蕾, 张启锐, 等, 2004.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录.岩石学报, 20(3):717-724. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403036.htm [73] 郑绪忠, 2012. 四川乌斯河铅锌矿床地质特征及矿床成因(硕士学位论文). 西安: 长安大学. [74] 朱光有, 张水昌, 梁英波, 等, 2005.川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据.中国科学(D辑), 35(11):1037-1046. doi: 10.3969/j.issn.1674-7240.2005.11.004 [75] 朱光有, 张水昌, 梁英波, 等.2006.四川盆地高含H2S天然气的分布与TSR成因证据.地质学报, 80(8):1208-1218. [76] 朱华东, 罗勤, 周理, 等.2013.激光拉曼光谱及其在天然气分析中的应用展望.天然气工业, 33(11):110-114. doi: 10.3787/j.issn.1000-0976.2013.11.019 [77] 庄汉平, 卢家烂, 1996.与有机质有成因联系的金属矿床.地质地球化学, 4:6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199604001.htm