• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南岭地区温公岩体的岩石成因及其构造指示

    甘成势 王岳军 蔡永丰 刘汇川 张玉芝 宋菁菁 郭小飞

    甘成势, 王岳军, 蔡永丰, 刘汇川, 张玉芝, 宋菁菁, 郭小飞, 2016. 南岭地区温公岩体的岩石成因及其构造指示. 地球科学, 41(1): 17-34. doi: 10.3799/dqkx.2016.002
    引用本文: 甘成势, 王岳军, 蔡永丰, 刘汇川, 张玉芝, 宋菁菁, 郭小飞, 2016. 南岭地区温公岩体的岩石成因及其构造指示. 地球科学, 41(1): 17-34. doi: 10.3799/dqkx.2016.002
    Gan Chengshi, Wang Yuejun, Cai Yongfeng, Liu Huichuan, Zhang Yuzhi, Song Jingjing, Guo Xiaofei, 2016. The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range. Earth Science, 41(1): 17-34. doi: 10.3799/dqkx.2016.002
    Citation: Gan Chengshi, Wang Yuejun, Cai Yongfeng, Liu Huichuan, Zhang Yuzhi, Song Jingjing, Guo Xiaofei, 2016. The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range. Earth Science, 41(1): 17-34. doi: 10.3799/dqkx.2016.002

    南岭地区温公岩体的岩石成因及其构造指示

    doi: 10.3799/dqkx.2016.002
    基金项目: 

    国家自然科学基金项目 41402165

    国家自然科学基金项目 41372198

    国家重点基础研究发展计划项目 2014CB440901

    详细信息
      作者简介:

      甘成势(1990-),男,硕士,主要从事构造地质学研究.E-mail: ganchengshi@gig.ac.cn

      通讯作者:

      王岳军, E-mail: wangyuejun@mail.sysu.edu.cn

    • 中图分类号: P548

    The Petrogenesis and Tectonic Implication of Wengong Intrusion in the Nanling Range

    • 摘要: 南岭构造带处于古特提斯构造域与古太平洋构造域的复合部位,是研究古特提斯构造域向古太平洋构造域转换的理想地区.温公岩体位于广东省梅州兴宁地区的南岭构造带东段.该岩体LA-ICP-MS锆石U-Pb年代学定年结果为196.9±4.4 Ma,具A型花岗岩的典型地球化学特征,如富硅(69.22%~76.33%)、高Zr+Nb+Ce+Y含量、高FeOt/MgO和10 000×Ga/Al比值、亏损高场强元素和Eu负异常明显等.样品具高钾低镁、准铝质到弱过铝质的特征,其K2O含量为3.81%~4.43%,MgO为0.20%~0.82%,A/CNK比值为0.95~1.10,属于高钾钙碱性花岗岩.样品具相对亏损的Sr-Nd-Hf同位素组成,其εNd(t)为-2.7~-0.5,εHf(t)为+2.1~+7.7.传统观点认为华南地区缺少205~180 Ma的岩浆记录,而本文温公岩体的精确定年结果说明华南东南部地区存在早侏罗世(~197 Ma)岩浆活动.结合区域相关地质资料,我们认为温公岩体形成于陆内伸展的构造背景,主要是基性下地壳部分熔融的产物,并在成岩过程中发生了分离结晶作用.~197 Ma的温公A型花岗岩体是目前华南东南部燕山期识别出的最老A型花岗岩体,结合区域内196~156 Ma的A型花岗岩的特征,指示华南东南部从古特提斯构造域向古太平洋构造域转换的时限应晚于早侏罗世.

       

    • 图  1  (a)南岭构造带内燕山期花岗岩分布;(b)南岭地区温公岩体地质简图

      陈忠权等(2002)Zhu et al.(2010)修改

      Fig.  1.  (a) Distributed pattern of the Yanshanian granites in the Nanling range and (b) geological map of the Wengong intrusions

      图  2  南岭地区温公A型花岗岩的显微岩相学特征

      Qz.石英;Pl.斜长石;Kf.钾长石;Hb.角闪石;Bi.黑云母

      Fig.  2.  Photomicrographs of the Wengong A-type granite in the Nanling range

      图  3  A/CNK-A/NK和SiO2-K2O

      1.温公A型花岗岩(本文);2.温公A型花岗岩(Zhu et al., 2010);3.西山岩体(Jiang et al., 2009)

      Fig.  3.  A/CNK versus A/NK and SiO2 versus K2O for the Wengong A-type granite

      图  4  南岭地区温公A型花岗岩的Harker图(图例同图 3)

      Fig.  4.  Harker diagrams for the Wengong A-type granite in the Nanling range

      图  5  (a)原始地幔标准化微量元素蛛网图;(b)球粒陨石标准化稀土元素配分曲线

      灰色数据引自Zhu et al.(2010);西山A型花岗岩数据引自Jiang et al.(2009);球粒陨石和原始地幔标准化数据引自文献Sun and McDonough(1989)

      Fig.  5.  Primitive mantle-normalized spidergram (a) and chondrite-normalized REE pattern (b) for the Wengong A-type granite in the Nanling range

      图  6  (a)SiO2-Rb图解;(b)SiO2-Ba图解;(c)SiO2-Zr图解;(d)SiO2-Nb图解(图例同图 3)

      Fig.  6.  Variation diagrams of trace elements versus SiO2 for the Wengong A-type granite in the Nanling range

      图  7  代表性锆石的阴极发光照片

      Fig.  7.  Representive cathodoluminescence images for the Wengong A-type granite

      图  8  南岭地区温公A型花岗岩的锆石U-Pb年龄谐和图

      Fig.  8.  U-Pb concordia diagram for the Wengong A-type granite in the Nanling range

      图  9  (a)10 000×Ga/Al-K2O/MgO图解;(b)(Zr+Nb+Ce+Y)-10 000×Ga/Al图解;(c)Nb-Y-Ce图解;(d)Nb-Y-3×Ga图解(图例同图 3)

      FG.高分异的I型花岗岩;OGT.未分异的I、S和M型花岗岩

      Fig.  9.  Plots of (a) 10 000×Ga/Al-K2O/MgO; (b) (Zr+Nb+Ce+Y)-10 000×Ga/Al; (c) Nb-Y-Ce and (d) Nb-Y-3×Ga for the Wengong A-type granite in the Nanling range

      图  10  南岭地区温公A型花岗岩的εNd(t)-T图解

      南岭地区前寒武纪地壳演化域,据孙涛等(2003);温公岩体数据引自Zhu et al.(2010)Yu et al.(2010);南昆山岩体数据引自Li et al.(2007b);陂头岩体数据引自He et al.(2010);西山岩体数据引自Jiang et al.(2009)付建明等(2004a);寨背岩体数据引自Li et al.(2003);金鸡岭岩体数据Jiang et al.(2009)

      Fig.  10.  Plot of εNd(t)-T for the Wengong A-type granite in the Nanling range

      图  11  南岭地区温公A型花岗岩锆石εHf(t)-T图解

      Fig.  11.  Plot of εHf(t)-T for the Wengong A-type granite in the Nanling range

      图  12  (a)Sr-Rb/Sr图解;(b)Sr-Ba图解;(c)Eu*-Sr图解;(d)Sr-Rb图解(图例同图 3)

      Pl为斜长石;Kf为钾长石;Hb为角闪石;Bi为黑云母;Cpx为单斜辉石;Opx为斜方辉石

      Fig.  12.  Sr-Rb/Sr, Sr-Ba, Eu*-Sr and Sr-Rb plots for the Wengong A-type granite in the Nanling range

      图  13  南岭地区温公A型花岗岩的构造判别图(图例同图 3)

      WPG.板块内花岗岩;VAG.火山弧火山岩;ORG.洋中脊花岗岩;Syn-COLG.同构造的碰撞带花岗岩

      Fig.  13.  Discrimination diagrams for the Wengong A-type granite in the Nanling range

      表  1  南岭地区温公花岗岩的主微量测试结果

      Table  1.   Major oxides and trace element compositions of the Wengong granitic samples in the Nanling range

      样品编号 09XL-18 09XL-19 09XL-22 09XL-24 09XL-31 09XL-32
      主量元素(%)
      SiO2 72.99 73.16 76.12 76.33 69.34 69.22
      TiO2 0.44 0.43 0.15 0.16 0.59 0.63
      Al2O3 12.92 12.80 12.61 12.52 14.08 14.29
      Fe2O3t 3.30 3.25 1.32 1.16 4.06 4.01
      CaO 1.27 0.77 0.32 0.36 1.81 1.96
      MgO 0.34 0.30 0.23 0.20 0.71 0.82
      K2O 3.90 4.15 4.43 4.39 3.83 3.81
      Na2O 3.87 3.92 3.71 3.79 4.52 4.36
      MnO 0.07 0.06 0.02 0.02 0.06 0.06
      P2O5 0.05 0.05 0.02 0.02 0.07 0.08
      LOI 0.35 0.62 0.54 0.52 0.48 0.29
      Total 99.50 99.51 99.47 99.47 99.55 99.53
      FeOt 2.97 2.92 1.19 1.04 3.65 3.61
      mg-number 0.19 0.18 0.29 0.29 0.29 0.32
      FeOt/MgO 8.73 9.75 5.16 5.22 5.15 4.40
      A/CNK 1.00 1.04 1.10 1.07 0.95 0.96
      A/NK 1.22 1.17 1.16 1.14 1.21 1.26
      微量元素(10-6)
      Sc 6.02 5.78 0.84 0.88 4.74 5.26
      V 3.75 4.36 2.07 3.03 32.00 38.30
      Cr 1.11 2.29 1.68 1.71 3.17 4.33
      Co 1.63 1.46 0.43 0.46 5.35 6.09
      Ni 0.71 0.83 0.12 0.06 2.03 7.78
      Ga 20.5 19.4 21.5 21.7 23.3 22.4
      Rb 141 153 191 175 103 121
      Sr 117.00 123.00 25.40 29.20 113.00 101.00
      Y 62.2 47.5 64.6 73.2 57.1 56.5
      Zr 423 385 287 358 642 468
      Nb 36.4 31.3 31.6 29.2 24.4 34.1
      Cs 3.99 2.69 4.73 2.93 1.51 3.46
      Ba 736 843 590 673 1 090 841
      La 46.6 62.8 67.6 70.0 74.6 71.5
      Ce 94.9 127.0 141.0 145.0 154.0 144.0
      Pr 12.5 15.8 17.3 17.3 18.8 18.0
      Nd 50.4 60.4 64.5 66.2 72.5 70.1
      Sm 11.2 12.0 13.0 13.2 13.6 13.3
      Eu 2.41 2.34 1.38 1.46 2.58 2.22
      Gd 11.7 10.9 12.5 13.0 12.2 12.3
      Tb 1.92 1.68 2.02 2.13 1.82 1.81
      Dy 11.20 9.53 11.70 12.50 10.40 10.30
      Ho 2.21 1.85 2.35 2.49 2.05 2.06
      Er 6.14 4.90 6.34 6.81 5.59 5.72
      Tm 0.90 0.74 0.96 0.99 0.83 0.85
      Yb 5.65 4.86 6.00 6.24 5.32 5.50
      Lu 0.84 0.75 0.88 0.93 0.83 0.83
      Hf 9.71 10.70 9.01 9.92 13.30 11.70
      Ta 2.37 2.17 2.56 2.12 1.50 2.18
      Pb 27.7 20.8 29.7 20.9 17.7 23.1
      Th 14.5 19.8 21.5 19.7 14.5 19.3
      U 3.08 3.11 3.64 3.41 2.22 3.24
      Mn 584 534 125 172 553 594
      Ge 1.70 1.87 1.56 1.54 1.73 1.63
      Zr+Nb+Ce+Y 617 591 524 606 878 703
      Eu* 0.64 0.61 0.33 0.34 0.60 0.52
      10 000×Ga/Al 3.00 2.90 3.20 3.30 3.10 3.00
      TZr(℃) 890 898 888 909 911 875
      (La/Yb)N 5.90 9.30 8.10 8.00 10.10 9.30
      下载: 导出CSV

      表  2  南岭地区温公花岗岩的Sr-Nd同位素测试结果

      Table  2.   Sr and Nd isotopic compositions of the Wengong granitic samples in the Nanling range

      样品号 年龄(Ma) Rb Sr Rb/Sr 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i Sm Nd 147Sm/144Nd 143Nd/144Nd 2σ TDM(Ga) εNd(t)
      09XL-18 197 141 117 1.2 3.501 0.720一264 6 0.710一461 11.2 50.4 0.135 0.512一422 5 1.41 -2.7
      09XL-32 197 121 101 1.2 3.452 0.717一175 6 0.707一509 13.3 70.1 0.114 0.512一505 4 0.99 -0.5
      下载: 导出CSV

      表  3  南岭地区温公花岗岩(09XL-22) 的LA-ICP-MS锆石U-Pb同位素测试结果

      Table  3.   Laser zircon U-Pb dating results for the Wengong granitic sample (09XL-22) in the Nanling range

      分析点 U(10-6) Th(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U
      比值 1σ 比值 1σ 比值 1σ 比值 1σ 比值 1σ 比值 1σ
      温公花岗岩(09XL-22)
      1 619 648 1.05 0.049 51 0.002 20 0.219 80 0.009 10 0.032 20 0.000 82 172.0 100.7 204.3 5.2 201.7 7.6
      2 417 380 0.91 0.050 02 0.001 99 0.230 42 0.008 59 0.033 40 0.000 80 196.1 89.9 211.8 5.0 210.5 7.1
      3 607 660 1.09 0.050 03 0.002 61 0.220 66 0.010 68 0.031 98 0.000 89 196.5 116.9 202.9 5.6 202.5 8.9
      4 712 657 0.92 0.049 63 0.002 01 0.213 61 0.008 02 0.031 21 0.000 77 177.6 91.8 198.1 4.8 196.6 6.7
      5 601 651 1.08 0.051 97 0.003 64 0.237 19 0.015 27 0.033 09 0.001 15 284.1 152.6 209.9 7.2 216.1 12.5
      6 468 316 0.68 0.049 15 0.001 93 0.223 24 0.008 28 0.032 93 0.000 76 155.0 89.3 208.9 4.8 204.6 6.9
      7 721 710 0.98 0.052 73 0.002 76 0.217 81 0.010 46 0.029 95 0.000 86 317.2 114.4 190.2 5.4 200.1 8.7
      8 704 631 0.90 0.051 29 0.002 05 0.214 47 0.007 96 0.030 31 0.000 75 253.8 89.5 192.5 4.7 197.3 6.7
      9 630 590 0.94 0.052 29 0.001 84 0.229 29 0.007 51 0.031 79 0.000 74 297.9 78.1 201.7 4.6 209.6 6.2
      10 1 134 1 365 1.20 0.051 50 0.001 62 0.211 85 0.006 22 0.029 82 0.000 67 263.5 70.8 189.4 4.2 195.1 5.2
      11 594 507 0.85 0.051 50 0.005 54 0.216 21 0.021 33 0.030 43 0.001 48 263.5 229.3 193.2 9.2 198.8 17.8
      12 700 717 1.02 0.051 58 0.002 41 0.207 77 0.008 95 0.029 19 0.000 78 267.0 103.5 185.5 4.9 191.7 7.5
      13 428 405 0.95 0.053 51 0.004 32 0.202 74 0.015 09 0.027 46 0.001 03 350.6 172.8 174.6 6.5 187.4 12.7
      14 663 604 0.91 0.049 91 0.002 04 0.212 44 0.008 09 0.030 85 0.000 75 190.6 92.3 195.9 4.7 195.6 6.8
      15 384 344 0.90 0.049 17 0.002 19 0.207 69 0.008 73 0.030 61 0.000 74 156.1 101.0 194.4 4.7 191.6 7.3
      16 501 499 1.00 0.050 85 0.001 84 0.221 06 0.007 48 0.031 50 0.000 73 234.2 81.4 199.9 4.6 202.8 6.2
      17 827 771 0.93 0.049 74 0.001 38 0.200 96 0.005 27 0.029 28 0.000 62 183.0 63.5 186.0 3.9 185.9 4.5
      下载: 导出CSV

      表  4  南岭地区温公花岗岩(09XL-22) 的LA-ICP-MS锆石Lu-Hf同位素测试结果

      Table  4.   Laser zircon Lu-Hf isotopic compositions of the Wengong granitic sample (09XL-22) in the Nanling range

      分析点 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) TDM(Ma) TDMC(Ma) fLu/Hf
      09XL-22-01 197 0.041 161 0.001 394 0.282 811 0.000 034 0.282 806 1.4 5.5 632 886 -0.96
      09XL-22-02 197 0.032 502 0.001 114 0.282 786 0.000 032 0.282 782 0.5 4.7 663 939 -0.97
      09XL-22-03 197 0.050 930 0.001 711 0.282 762 0.000 030 0.282 756 -0.3 3.8 708 999 -0.95
      09XL-22-04 197 0.052 799 0.001 723 0.282 748 0.000 033 0.282 742 -0.8 3.3 728 1 030 -0.95
      09XL-22-05 197 0.059 279 0.002 011 0.282 787 0.000 034 0.282 780 0.5 4.6 678 945 -0.94
      09XL-22-06 197 0.029 062 0.000 985 0.282 820 0.000 029 0.282 816 1.7 5.9 613 862 -0.97
      09XL-22-07 197 0.068 443 0.002 298 0.282 717 0.000 037 0.282 709 -1.9 2.1 785 1 105 -0.93
      09XL-22-08 197 0.041 146 0.001 385 0.282 821 0.000 034 0.282 816 1.7 5.9 618 863 -0.96
      09XL-22-09 197 0.063 868 0.002 145 0.282 842 0.000 033 0.282 834 2.5 6.5 601 822 -0.94
      09XL-22-10 197 0.065 760 0.002 176 0.282 794 0.000 034 0.282 786 0.8 4.8 671 931 -0.93
      09XL-22-11 197 0.033 654 0.001 124 0.282 739 0.000 030 0.282 735 -1.2 3.0 730 1 047 -0.97
      09XL-22-12 197 0.047 202 0.001 588 0.282 741 0.000 033 0.282 735 -1.1 3.0 736 1 045 -0.95
      09XL-22-13 197 0.039 899 0.001 351 0.282 874 0.000 037 0.282 869 3.6 7.7 542 743 -0.96
      09XL-22-14 197 0.058 096 0.001 972 0.282 798 0.000 043 0.282 790 0.9 5.0 662 921 -0.94
      09XL-22-15 197 0.040 332 0.001 396 0.282 812 0.000 033 0.282 806 1.4 5.5 632 884 -0.96
      09XL-22-16 197 0.058 469 0.001 998 0.282 857 0.000 035 0.282 850 3.0 7.1 575 786 -0.94
      09XL-22-17 197 0.052 682 0.001 758 0.282 776 0.000 034 0.282 770 0.2 4.3 689 967 -0.95
      下载: 导出CSV

      表  5  华南东南部中生代A型花岗岩锆石U-Pb年代学统计

      Table  5.   Synthesis of zircon U-Pb age data of the Mesozoic A-type granites in SE South China

      岩体名称 岩石类型 测试方法 年龄值(Ma) 参考文献 省份
      髙溪 碱性花岗岩 LA-ICP-MS锆石U-Pb 229.0±2.0 Zhao et al.(2013) 福建
      蔡江 二长花岗岩 LA-ICP-MS锆石U-Pb 228.0±2.0 Zhao et al.(2013) 江西
      翁山 二长花岗岩 SHRIMP锆石U-Pb 225.0±1.0 Sun et al.(2011) 浙江
      靖居 正长花岗岩 LA-ICP-MS锆石U-Pb 215.0±2.0 李万友等(2012) 浙江
      温公 石英二长岩 SHRIMP锆石U-Pb 196.0±2.0 余心起等(2009) 广东
      钾长花岗岩 SIMS锆石U-Pb 192.0±1.0 Zhu et al.(2010) 广东
      柯树北 黑云母花岗岩 SHRIMP锆石U-Pb 189.0±3.0 Li et al.(2007) 江西
      陂头 碱长花岗岩 LA-ICP-MS U-Pb锆石 178.6±1.5 He et al.(2010) 江西
      寨背 钾长花岗岩 SHRIMP锆石U-Pb 171.6±4.6 Li et al.(2003) 江西
      菜岭 二长花岗岩 SHRIMP锆石U-Pb 160.0±2.0 付建明等(2004c) 湖南
      南昆山 铝质花岗岩 SHRIMP锆石U-Pb 158.0±5.0 Li et al.(2007) 广东
      芙蓉 二长花岗岩 SHRIMP锆石U-Pb 157.0±3.0 Zhu et al.(2009) 湖南
      金鸡岭 铝质花岗岩 SHRIMP锆石U-Pb 156.0±2.0 付建明等(2004b) 湖南
      西山 铝质花岗岩 SHRIMP锆石U-Pb 156.0±2.0 付建明等(2004a) 湖南
      杨梅湾 花岗岩 LA-ICP-MS锆石U-Pb 135.1±1.7 Yang et al.(2012) 浙江
      大桥坞 花岗斑岩 LA-ICP-MS锆石U-Pb 134.3±1.2 Yang et al.(2012) 浙江
      大洲 流纹岩 SHRIMP锆石U-Pb 127.3±1.7 Yang et al.(2013) 浙江
      白菊花尖 准铝质花岗岩 SHRIMP锆石U-Pb 126.0±3.0 Wong et al.(2009) 浙江
      城山 碱性花岗岩 LA-ICP-MS U-Pb锆石 124.8±2.1 Wu et al.(2012) 安徽
      花山 碱性花岗岩 SHRIMP锆石U-Pb 125.0±2.0 王强等(2005) 安徽
      新村 碱性花岗岩 LA-ICP-MS锆石U-Pb 105.0±1.0 Chen et al.(2013) 福建
      青田 碱性花岗岩 LA-ICP-MS锆石U-Pb 101.2±2.0 邱检生等(1999) 浙江
      普陀岛 碱性花岗岩 LA-ICP-MS锆石U-Pb 93.4±0.6 邱检生等(1999) 福建
      桃花岛 碱性花岗岩 LA-ICP-MS锆石U-Pb 92.9±0.6 邱检生等(1999) 浙江
        注:数据来自邱检生等, 1999; Li et al., 2003, 2007b; 付建明等, 2004a, 2004b, 2004c; 王强等, 2005; Li and Li, 2007; Wong et al., 2009; 余心起等, 2009; Zhu et al., 2009, 2010; He et al., 2010; Sun et al., 2011; 李万友等, 2012; Yang et al., 2012, 2013; Chen et al., 2013; Zhao et al., 2013.
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/S0009-2541(02)00195-X
      [2] Blichert, T.J., Chauvel, C., Albarede, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278
      [3] Chen, C.H., Lee, C.Y., Lu, H.Y., et al., 2008.Generation of Late Cretaceous Silicic Rocks in SE China:Age, Major Element and Numerical Simulation Constraints.Journal of Asian Earth Sciences, 31(4):479-498.doi: 10.1016/j.lithos.2008.06.009
      [4] Chen, G.X., Liu, T.Y., Sun, J.S., et al., 2014.Characteristics of Multi-Scale Gravity Field and Deep Structures in Nanling Metallogenic Belt.Earth Science, 39(2):240-250 (in Chinese with English abstract).doi: 10.3799/dqkx.2014.023
      [5] Chen, J.Y., Yang, J.H., Zhang, J.H., et al., 2013.Petrogenesis of the Cretaceous Zhangzhou Batholith in Southeastern China:Zircon U-Pb Age and Sr-Nd-Hf-O Isotopic Evidence.Lithos, (162-163):140-156.doi: 10.1016/j.lithos.2013.01.003
      [6] Chen, R.X., Zheng, Y.F., Xie, L.W., 2010.Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen.Lithos, 114(1-2):132-154.doi: 10.1016/j.lithos.2009.08.006
      [7] Chen, Y.X., Zheng, Y.F., Chen, R.X., et al., 2011.Metamorphic Growth and Recrystallization of Zircons in Extremely 18O-Depleted Rocks during Eclogite-Facies Metamorphism:Evidence from U-Pb Ages, Trace Elements, and O-Hf Isotopes.Geochimica et Cosmochimica Acta, 75(17):4877-4898.doi: 10.1016/j.gca.2011.06.003
      [8] Chen, Z.Q., Li, W.H., 2001.Granite of Proterozoic Eon Found in Northeast Guangdong.Guangdong Geology, 16(4):16-21 (in Chinese with English abstract).
      [9] Chen, Z.Q., Li, W.H., Guo, L., 2002.Geological and Geochemical Characteristics of Wengong Pluton and the Relation with Xianlan Pluton in Xingning.Guangdong Geology, 17(3):15-20 (in Chinese with English abstract).
      [10] Clemens, J.D., Holloway, J.R., White, A.J.R., 1986.Origin of an A-Type Granite:Experimental Constraints.American Mineralogist, 71:317-324. http://www.minsocam.org/ammin/AM71/AM71_317.pdf
      [11] Collins, W., Beams, S., White, A., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200.doi: 10.1007/Bf00374895
      [12] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on their Petrogenesis.Lithos, 26(1-2):115-134.doi: 10.1016/0024-4937(90)90043-z
      [13] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641-644.doi:10.1130/0091-7613(1992)020<0641:Csotat>2.3.Co;2
      [14] Fan, W.M., Wang, Y.J., Guo, F., et al., 2003.Mesozoic Mafic Magmantism in Hunan-Jiangxi Provinces and the Lithosperic Extension.Earth Science Frontiers, 10(3):159-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200303022.htm
      [15] Frost, C.D., Frost, B.R., Chamberlain, K.R., et al., 1999.Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA:A Reduced, Rapakivi-Type Anorogenic Granite.Journal of Petrology, 40(12):1771-1802.doi: 10.1093/petroj/40.12.1771
      [16] Frost, C.D., Frost, B.R., 1997.Reduced Rapakivi-Type Granites:The Tholeiite Connection.Geology, 25(7):647.doi:10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2
      [17] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004a.Geochemistry and Tectonic Setting of Xishan Alumious A-Type Granitic Volcanic-Intrusiove Complex, Southern Hunan.Joural of Earth Sciences and Environment, 26(4):15-23 (in Chinese with English abstract). http://max.book118.com/html/2015/0503/16270824.shtm
      [18] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004b.Shrimp U-Pb Zircon Dating of the Jiuyishan Composite Granite in Hunan and Its Geological Significance.Geotectonica et Metallogenia, 28(4):370-378 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dgyk200404002.htm
      [19] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004c.Zircon SHRIMP Dating of the Cailing Granite on the Eastern Margin of the Qitianling Granite, Hunan, South China, and Its Significance.Geology in China, 31(1):96-100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200401013.htm
      [20] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011
      [21] He, Z.Y., Xu, X.S., Niu, Y.L., 2010.Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China.Lithos, 119(3-4):621-641.doi: 10.1016/j.lithos.2010.08.016
      [22] Hu, J., Qiu, J.S., Wang, D.Z., et al., 2005.Comparative Investigations of A-Type Granites in the Coastal and the Nanling Inland Areas of SE China, and Their Tectonic Significances.Geological Journal of China Universities, 11(3):404-414 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gxdx200503011.htm
      [23] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017
      [24] Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009.Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for A Continental Arc to Rifting.Lithos, 107(3-4):185-204.doi: 10.1016/j.lithos.2008.10.006
      [25] King, P.L., Chappell, B.W., Allen, C.M., et al., 2001.Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite.Australian Journal of Earth Sciences, 48(4):501-514.doi: 10.1046/j.1440-0952.2001.00881.x
      [26] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391.doi: 10.1093/petroj/38.3.371
      [27] Li, W.Y., Ma, C.Q., Liu, Y.Y., et al., 2012.Discovery of the Indosinian Aluminum A-Type Granite in Zhejiang Province and Its Geological Significance.Science China:Earth Science, 42(2):164-177 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201201003&dbname=CJFD&dbcode=CJFQ
      [28] Li, X.H., Chen, Z.G., Liu, D.Y., et al., 2003.Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China:Age, Origin, and Tectonic Significance.International Geology Review, 45(10):898-921.doi: 10.2747/0020-6814.45.10.898
      [29] Li, X.H., Chung, S.L., Zhou, H.W., et al., 2004.Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi:40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China.Geological Society, London, Special Publications, 226(1):193-215.doi: 10.1144/Gsl.Sp.2004.226.01.11
      [30] Li, X.H., Li, W.X., Li, Z.X., 2007a.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 52(14):1873-1885.doi: 10.1007/s11434-007-0259-0
      [31] Li, X.H., Li, Z.X., Li, W.X., et al., 2007b.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic Ⅰ-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1):186-204.doi: 10.1016/j.lithos.2006.09.018
      [32] Li, X.H., Qi, C.S., Liu, Y., et al., 2005.Petrogenesis of the Neoproterozoic Bimodal Volcanic Rocks along the Western Margin of the Yangtze Block:New Constraints from Hf Isotopes and Fe/Mn Ratios.Chinese Science Bulletin, 50(19):109-114 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200521014&dbname=CJFD&dbcode=CJFQ
      [33] Li, Z.X., Li, X.H., 2007.Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-slab Subduction Model.Geology, 35(2):179-182.doi: 10.1130/G23193a.1
      [34] Liang, X.R, Wei, G.J, Li, X.H, et al., 2003.Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS).Geochimica, 32(1):91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200301012.htm
      [35] Liu, Y., Liu, H.C., Li, X.H., 1996.Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS.Geochimica, 25(6):552-558 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX606.003.htm
      [36] Ludwig, K., 2009.Sqiud 2:A User's Manual.Berkeley Geochron Center Special Publication, German.
      [37] Martin, H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24.doi: 10.1016/j.lithos.2004.04.048
      [38] Muir, R.J., Weaver, S.D., Bradshaw, J.D., et al., 1995.The Cretaceous Separation Point Batholith, New Zealand:Granitoid Magmas Formed by Melting of Mafic Lithosphere.Journal of the Geological Society, 152(4):689-701.doi: 10.1144/gsjgs.152.4.0689
      [39] Mushkin, A., Navon, O., Halicz, L., et al., 2003.The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel.Journal of Petrology, 44(5):815-832.doi: 10.1093/petrology/44.5.815
      [40] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [41] Qiu, J.S., Wang, D.Z., Brent, I.A.M., 1999.Geochemistry and Petrogenesis of the Ⅰ-and A-Type Composite Granite Masses in the Coastal Area of Zhejiang and Fujian Province.Acta Petrological Sinica, 15(2):237-246 (in Chinese with English abstract). http://www.oalib.com/paper/1471246
      [42] Rubatto, D., Hermann, J., 2007.Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks.Chemical Geology, 241(1-2):38-61.doi: 10.1016/j.chemgeo.2007.01.027
      [43] Scherer, E., Munker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.American Association for the Advancement of Science, Washington D.C., 293(5530):683-687. doi: 10.1126/science.1061372
      [44] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block.Geological Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201207004.htm
      [45] Shu, L.S., Deng, P., Wang, B., et al., 2004.The Constrain of Late Mesozoic Basin Evolution on Petrochemistry, Kinematics and Geochronology.Science in China (Series D), 34(1):1-13 (in Chinese).
      [46] Shu, L.S., Zhou, X.M., Deng, P., et al., 2006.Principal Geological Features of Nanling Tectonic Belt, South China.Geological Review, 52(2):251-265 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200602017.htm
      [47] Skjerlie, K.P., Johnston, A.D., 1992.Vapor-Absent Melting at 10 kbar of A Biotite-and Amphibole-Bearing Tonalitic Gneiss:Implications for the Generation of A-Type Granites.Geology, 20(3):263-266.doi:10.1130/0091-7613(1992)020<0263:Vamako>2.3.Co;2
      [48] Sun, Q.H., Yang, Z.L., Chen, Y., et al., 2002.Metallogenic Geology of the Xianlan-Yonghe Vanadic Titanomagnetite Deposit Belt in Xingning of Guangdong Province.Resources Survey and Environment, 23(4):266-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ200204005.htm
      [49] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [50] Sun, T., Zhou, X.M., Chen, P.R., et al., 2003.The Petrogensis and Their Implication of Mesozoic Strongly Peraluminous Granites in Eastern Nanling Region.Science in China (Series D), 33(12):1209-1218 (in Chinese).
      [51] Sun, Y., Ma, C., Liu, Y., et al., 2011.Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China.Journal of Asian Earth Sciences, 42(6):1117-1131.doi: 10.1016/j.jseaes.2011.06.007
      [52] Turner, S.P., Foden, J.D., Morrison, R.S., 1992.Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge, South Australia.Lithos, 28(2):151-179.doi: 10.1016/0024-4937(92)90029-x
      [53] Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica Acta, 63(3-4):533-556.doi: 10.1016/s0016-7037(98)00274-9
      [54] Wan, Y.S., Liu, D.Y., Wilde, S.A., et al., 2010.Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope.Journal of Asian Earth Sciences, 37(2):140-153.doi: 10.1016/j.jseaes.2009.08.002
      [55] Wang, L.J., Yu, J.H., Xu, X.S., et al., 2007.Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southeastern Fujian Province, China.Acta Petrologica Sinica, 23(6):1470-1484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706021.htm
      [56] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005.Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China:Constraints for Late-Mesozoic Tectonic Evolution.Acta Petrologica Sinia, 21(3):795-808 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503020.htm
      [57] Wang, Q., Zhao, Z.H., Xiong, X.L., 2000.The Ascertainment of Late Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt.Acta Petrologica et Mineralogica, 19(4):297-306, 315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200004001.htm
      [58] Wang, Y.J., Fan, W.M., Guo, F., 2003a.Geochemistry of Early Mesozoic Potassium-Rich Diorites-Granodiorites in Southeastern Hunan Province, South China:Petrogenesis and Tectonic Implications.Geochemical Journal, 37:427-448. doi: 10.2343/geochemj.37.427
      [59] Wang, Y.J., Fan, W.M., Guo, F., et al., 2003b.Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China:Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks.International Geology Review, 45(3):263-286.doi: 10.2747/0020-6814.45.3.263
      [60] Wang, Y.J., Liao, C.L., Fan, W.M., et al., 2004.Early Mesozoic OIB-Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications.Geochimica, 33(2):109-117 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200402000.htm
      [61] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2005.Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China:Petrogenesis and Tectonic Implications.International Journal of Earth Sciences (Geol.Rundsch.), 94(1):53-65.doi: 10.1007/s00531-004-0441-4
      [62] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305.doi: 10.1016/j.gr.2012.02.019
      [63] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821x(83)90211-X
      [64] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002.Precise Measurement of Sr Isotopic Com-Positions of Liquid and Solid Base Using (LP) MC-ICP-MS.Geochimica, 31(3):295-305 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200203010.htm
      [65] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419.doi: 10.1007/Bf00402202
      [66] Wickham, S.M., Alberts, A.D., Zanvilevich, A.N., et al., 1996.A Stable Isotope Study of Anorogenic Magmatism in East Central Asia.Journal of Petrology, 37(5):1063-1095.doi: 10.1093/petrology/37.5.1063
      [67] Wong, J., Sun, M., Xing, G.F., et al., 2009.Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-Type Granite:Extension at 125-100 Ma and Its Tectonic Significance for South China.Lithos, 112(3-4):289-305.doi: 10.1016/j.lithos.2009.03.009
      [68] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinia, 23(2):185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm
      [69] Xie, L.W., Zhang, Y.B., Zhang, H.H., et al., 2008.In Situ Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite.Chinese Science Bulletin, 53(2):220-228 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200810017&dbname=CJFD&dbcode=CJFQ
      [70] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009.Early Mesozoic Geotectonic Processes in South China.Geology in China, 36(3):573-593 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi200903009.htm
      [71] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006.A Hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence.Lithos, S89(1-2):89-106.doi: 10.1016/j.lithos.2005.10.002
      [72] Yang, S.Y., Jiang, S.Y., Zhao, K.D., et al., 2012, Geochronology, Geochemistry and Tectonic Significance of Two Early Cretaceous A-Type Granites in the Gan-Hang Belt, Southeast China.Lithos, 150:155-170.doi: 10.1016/j.lithos.2012.01.028
      [73] Yang, S.Y., Jiang, S.Y., Zhao, K.D., et al., 2013.Petrogenesis and Tectonic Significance of Early Cretaceous High-Zr Rhyolite in the Dazhou Uranium District, Gan-Hang Belt, Southeast China.Journal of Asian Earth Sciences, 74:303-315.doi: 10.1016/j.jseaes.2012.12.024
      [74] Yu, X.Q., Di, Y.J., Wu, G.G., et al., 2009.The Early Jurassic Magmatism in Northern Guangdong Province, Southeastern China:Constraints from SHRIMP Zircon U-Pb Dating of Xialan Complex.Science in China (Series D), 39(6):681-693 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg200904005&dbname=CJFD&dbcode=CJFQ
      [75] Yu, X.Q., Wu, G.G., Zhao, X.X., et al., 2010.The Early Jurassic Tectono-Magmatic Events in Southern Jiangxi and Northern Guangdong Provinces, SE China:Constraints from the SHRIMP Zircon U-Pb Dating.Journal of Asian Earth Sciences, 39(5):408-422.doi: 10.1016/j.jseaes.2010.04.008
      [76] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.016
      [77] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009.Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic Systemin South China during the Early Mesozoic.Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm
      [78] Zhao, K.D., Jiang, S.Y., Chen, W.F., et al., 2013.Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China:Implication for Petrogenesis and Indosinian Transtensional Tectonism.Lithos, 160-161:292-306.doi: 10.1016/j.lithos.2012.11.001
      [79] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006.Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution.Episodes, 29(1):26-33. http://www.cqvip.com/Main/Detail.aspx?id=21590196
      [80] Zhu, J.C., Wang, R.C., Zhang, P.H., et al., 2009.Zircon U-Pb Geochronological Framework of Qitianling Granite Batholiths, Middle Part of Nanling Range, South China.Science in China(Series D), 52(9):1279-1294. doi: 10.1007/s11430-009-0154-4
      [81] Zhu, W.G., Zhong, H., Li, X.H., et al., 2010.The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China:Age, Origin, and Tectonic Significance.Lithos, 119(3-4):313-329.doi: 10.1016/j.lithos.2010.07.005
      [82] 陈国雄, 刘天佑, 孙劲松, 等, 2014.南岭成矿带多尺度重力场及深部构造特征.地球科学, 39(2):240-250. http://earth-science.net/WebPage/Article.aspx?id=2823
      [83] 陈忠权, 李文辉, 2001.粤东北发现元古宙花岗岩.广东地质, 16(4):16-21. http://cdmd.cnki.com.cn/Article/CDMD-10491-1011284500.htm
      [84] 陈忠权, 李文辉, 郭良, 2002.兴宁温公岩体的地质地球化学特征及与霞岚岩体的关系.广东地质, 17(3):15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201201015.htm
      [85] 范蔚茗, 王岳军, 郭锋, 等, 2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘, 10(3):159-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303022.htm
      [86] 付建明, 马昌前, 谢才富, 等, 2004a.湘南西山铝质A型花岗质火山-侵入杂岩的地球化学及其形成环境.地球科学与环境学报, 26(4):15-23. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200404004.htm
      [87] 付建明, 马昌前, 谢才富, 等, 2004b.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义.大地构造与成矿学, 28(4):370-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404002.htm
      [88] 付建明, 马昌前, 谢才富, 等, 2004c.湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及其意义.中国地质, 31(1):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401013.htm
      [89] 胡建, 邱检生, 王德滋, 等, 2005.中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义.高校地质学报, 11(3):404-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503011.htm
      [90] 李万友, 马昌前, 刘园园, 等, 2012.浙江印支期铝质A型花岗岩的发现及其地质意义.中国科学(D辑), 42(2):164-177. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202004.htm
      [91] 李献华, 祁昌实, 刘颖, 等, 2005.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约.科学通报, 50(19):109-114. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200519015.htm
      [92] 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICP MS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1):91-96. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200301012&dbname=CJFD&dbcode=CJFQ
      [93] 刘颖, 刘海臣, 李献华, 1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, 25(6):552-558. http://www.cnki.com.cn/Article/CJFDTOTAL-MYKJ201609018.htm
      [94] 邱检生, 王德滋, Brent, I.A.M., 1999.浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因.岩石学报, 15(2):237-246. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm
      [95] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      [96] 舒良树, 邓平, 王彬, 等, 2004.南雄-诸广地区晚中生代盆山演化的岩石化学, 运动学与年代学制约.中国科学(D辑), 34(1):1-13. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200401000.htm
      [97] 舒良树, 周新民, 邓平, 等, 2006.南岭构造带的基本地质特征.地质论评, 52(2):251-265. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200602017.htm
      [98] 孙强辉, 杨祝良, 陈荣, 等, 2002.广东省兴宁市霞岚-永和钒钛磁铁矿带成矿地质特征.资源调查与环境, 23(4):266-271. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200204005.htm
      [99] 孙涛, 周新民, 陈培荣, 等, 2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑), 33(12):1209-1218. doi: 10.3321/j.issn:1006-9267.2003.12.010
      [100] 王丽娟, 于津海, 徐夕生, 等, 2007.闽西南古田-小陶花岗质杂岩体的形成时代和成因.岩石学报, 23(6):1470-1484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706021.htm
      [101] 王强, 赵振华, 熊小林, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4):297-306, 315. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200004001.htm
      [102] 王强, 赵振华, 简平, 等, 2005.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约.岩石学报, 21(3):795-808. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm
      [103] 王岳军, 廖超林, 范蔚茗, 等, 2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学, 33(2):109-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200402000.htm
      [104] 韦刚健, 梁细荣, 李献华, 等, 2002.(LP)MC-ICP MS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3):295-299. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200203010&dbname=CJFD&dbcode=CJFQ
      [105] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [106] 谢烈文, 张艳斌, 张辉煌, 等, 2008.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报, 53(2):220-228. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm
      [107] 徐先兵, 张岳桥, 贾东, 等, 2009.华南早中生代大地构造过程.中国地质, 36(3):573-593. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903009.htm
      [108] 余心起, 狄永军, 吴淦国, 等, 2009.粤北存在早侏罗世的岩浆活动——来自霞岚杂岩SHRIMP锆石U-Pb年代学的证据.中国科学(D辑), 39(6):681-693. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200906001.htm
      [109] 张克信, 潘桂堂, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. http://earth-science.net/WebPage/Article.aspx?id=3179
      [110] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm
    • 加载中
    图(13) / 表(5)
    计量
    • 文章访问数:  4222
    • HTML全文浏览量:  1885
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-09-30
    • 刊出日期:  2016-01-15

    目录

      /

      返回文章
      返回