Inversion and Geological Significance of Minerals in Dark Matter of Craters of Oceanus Procellarum of Lunar Surface
-
摘要: 月表主要矿物的空间分布是研究月球起源及演化等科学问题的重要信息之一.以风暴洋地区为例, 根据不同矿物光谱在可见光-近红外波段的吸收特征, 使用印度M3(moon mineralogy mapper)数据, 应用波谱特征拟合法(SFF)反演了火山口附近暗物质区域的单斜辉石、斜方辉石、橄榄石和尖晶石等铁镁质矿物的分布, 反演结果显示: 风暴洋地区提取的铁镁质矿物分布较集中, 其中辉石含量较多, 橄榄石和尖晶石含量相对较少.另外着重分析了橄榄石、尖晶石与周围矿物的关系及其地质意义.将提取结果与Lucey用于Clementine影像的光学模型填图结果进行对比显示, 提取的橄榄石分布集中, 但不存在大尺度的分布, 这与本文的研究区域面积有关; 就位置而言, 二者具有较好的一致性.Abstract: There are a variety of geological structures in the Oceanus Procellarum, including 43 craters, some famous lunar mares like Mare Imbrium and Mare Frigoris, and so on. Since the Oceanus Procellarum is the candidate landing area of lunar exploration for some countries, it is important to carry out the inversion of the minerals in the dark matter of craters of the area to facilitate research, exploration and utilization of lunar resources in the future. In addition, distribution of minerals on lunar surface is important since it concerns the origin and evolution of the moon. In this paper, the Oceanus Procellarum is taken as study area, the minerals in the dark matter of crater are inversed according to the spectra absorption characteristics in the visible and near-infrared bands of different minerals like clinopyroxene, orthopyroxene, olivine and spinel from M3 (moon mineralogy mapper) data by spectral feature fitting. The mafic minerals extracted from the Oceanus Procellarum are relatively concentrated. The content of pyroxene is more than spinel and olivine. And the geological significance and relationship among olivine, spinel and other extracted minerals in the vicinity are analyzed. A comparison of the mapping results of the optical model of Lucey on Clementine data reveals that the distribution of inversion results is consistent. In this paper, the extracted olivine distributed concentratively, but there is no large scale distribution, it is associated with the study area of this article.
-
图 4 月球硅酸盐矿物分布
经度:90°W~270°E,纬度:70°N~70°S;WRMB.月海玄武岩西部地区;MO.东方海;MF.冷海;据Lucey(2004)
Fig. 4. Images of lunar silicate minerals
-
[1] Burns, R.G., 1993. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, New York, 44-86. [2] Clark, R.N., 2003. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. Journal of Geophysical Research, 108(E12): 1-44. doi: 10.1029/2002je001847 [3] Heiken, G.H., Vaniman, D.T., French, B.M., 1991. Lunar Source Book: A User's Guide to the Moon. Cambridge University Press, New York, 123-151. [4] Isaacson, P.J., Pieters, C.M., Besse, S., et al., 2011. Remote Compositional Analysis of Lunar Olivine-Rich Lithologies with Moon Mineralogy Mapper (M3) Spectra. Journal of Geophysical Research, 116(E6): E00G11. doi: 10.1029/2010je003731 [5] Klima, R.L., Pieters, C.M., Boardman, J.W., et al., 2011. New Insights into Lunar Petrology: Distribution and Composition of Prominent Low-Ca Pyroxene Exposures as Observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116(E6): 0-6. doi: 10.1029/2010je003719 [6] Lucey, P.G., 2004. Mineral Maps of the Moon. Geophysical Research Letters, 31(8): 701-704. doi:10.1029/2003 GL019406 [7] Mouélic, S.L., Langevin, Y., 2001. The Olivine at the Lunar Crater Copernicus as Seen by Clementine NIR Data. Planetary and Space Science, 49(1): 65-70. doi: 10.1016/s0032-0633(00)00091-x [8] Mouélic, S.L., Langevin, Y., Erard, S., 1999. The Distribution of Olivine in the Crater Aristarchus Inferred from Clementine NIR Data. Geophysical Research Letters, 26(9): 1195-1198. doi: 10.1029/1999gl900180 [9] Ouyang, Z.Y., Zou, Y.L., Li, C.L., et al., 2002. Prospect of Exploration and Utilization of Some Lunar Resources. Earth Science—Journal of China University of Geosciences, 27(5): 498-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205003.htm [10] Pieters, C.M., Besse, S., Boardman, J., et al., 2011. Mg-Spinel Lithology: A New Rock Type on the Lunar Farside. Journal of Geophysical Research, 116, E00G08. doi: 10.1029/2010je003727 [11] Pieters, C.M., Head, J.W., Gaddis, L., et al., 2001. Rock Types of South Pole-Aitken Basin and Extent of Basaltic Volcanism. Journal of Geophysical Research, 106(E11): 28001. doi: 10.1029/2000je001414 [12] Pieters, C.M., Boardman, J., Buratti, B., et al., 2009. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Current Science, 96(4): 500-505. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Current%20Science&atitle=The%20Moon%20mineralogy%20mapper%20%28M3%29%20on%20Chandrayaan-1 [13] Staid, M.I., Pieters, C.M., 2001. Mineralogy of the Last Lunar Basalts: Results from Clementine. Journal of Geophysical Research, 106(E11) : 27887- 27990. doi: 10.1029/2000JE001387 [14] Sunshine, J.M., Pieters, C.M., 1998. Determining the Composition of Olivine from Reflectance Spectroscopy. Journal of Geophysical Research, 103(E6): 13675-13688. doi: 10.1029/98JE01217 [15] Taylor, L.A., Pieters, C.M., Keller, L.P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. Journal of Geophysical Research, 106(E11): 27985- 27999. doi: 10.1029/2000je001402 [16] Xu, N., Hu, Y.X., Lei, B., et al., 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31(6): 1639-1643(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21847949 [17] Yamamoto, S., Nakamura, R., Matsunaga, T., et al., 2010. Possible Mantle Origin of Olivine around Lunar Impact Basins Detected by SELENE. Nature Geoscience, 3(8): 533-536. doi: 10.1038/ngeo897 [18] Yan, B.K., Gan, F.P., Wang, R.S., et al., 2009. Mineral Mapping of the Lunar Surface Using Clementine UV/VIS/NIR Data Based on Unmixing of Spectral. Remote Sensing for Land & Resources, (4): 19-24(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_remote-sensing-land-resources_thesis/0201253538408.html [19] Zhou, C., Wang, D.M., Chen, S.B., et al., 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science—Journal of China University of Geosciences, 40(8): 1365-1370 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.119 [20] 欧阳自远, 邹永廖, 李春来, 等, 2002. 月球某些资源的开发利用前景. 地球科学——中国地质大学学报, 27(5): 498-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205003.htm [21] 许宁, 胡玉新, 雷斌, 等, 2011. 基于改进光谱特征拟合算法的高光谱数据矿物信息提取. 光谱学与光谱分析, 31(6): 1639-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201106053.htm [22] 闫柏琨, 甘甫平, 王润生, 等, 2009. 基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图. 国土资源遥感, (4): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200904005.htm [23] 周超, 汪大明, 陈圣波, 等, 2015. 植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型. 地球科学——中国地质大学学报, 40(8): 1365-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201508014.htm