Complex Linkage and Transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin
-
摘要: 边界断裂控制断陷盆地的形成和构造格局,不同边界断裂联接模式对不同类型盆地演化具有差异性.基于井控高精度3D地震资料,通过对边界断裂几何学特征描述和“四级小层”刻画,结合裂陷Ⅰ幕边界断裂不同区段的活动差异性以及与沉积中心迁移的空间匹配关系,剖析珠江口盆地惠州凹陷北部边界断裂的形成和演化.惠州凹陷北部边界断裂始新世早期分段孤立发育,逐渐以纵向和横向双向联接的模式发展.纵向联接为断层软联接和硬联接复合联接和转换,形成转换斜坡和横向背斜,控制凹(洼)陷的结构与演化,制约沉积中心及层序的迁移.横向联接表现为转换斜坡内横向断层的多阶段联接,联接过程可划分为孤立正断层、同向叠置及硬联接3个阶段,控制转换斜坡带内沉积体系的发育和展布.研究给出了一个裂陷盆地边界断裂时空演化、复合联接和转换模式的独特案例,对丰富裂陷盆地边界断裂及其与沉积层序、凹陷演化和区域动力学机制的响应关系的研究具有积极的意义和价值.Abstract: The formation and tectonic framework of a faulted basin are controlled by boundary fault, which have different types of basin evolution under different boundary connection modes. The purpose of this study is to recognize the linkage model of boundary faults of northern Huizhou sag in Zhu Ⅰ depression, Pearl River Mouth basin (PRMB), the South China Sea, which is a representative of global passive continental margin basins. Based on well controlling high-precision 3D seismic survey, the geometry of boundary faults and the framework of "four-order sequences" are determined in PRMB. The fault activities of different boundary fault sections and the spatial change of depocenters during rift episode Ⅰ are analyzed. An evolution model of boundary fault system in northern Huizhou sag, PRMB is established in this study. The results show that the northern bounding faults of northern Huizhou sag have an offset geometry in Early Eocene, characterized by along-strike and transverse two-way linkage. The along-strike linkage is a composite connection-transformation of "soft and hard" linkage, forming a relay ramp and transverse folds which restrict the structural evolution within Huizhou sag and the migration of its depocenters and sequences. The transverse linkage means the multiple-stage linkage of the transfer faults in relay ramp, including three stages, namely, isolated normal faulting, synthetic overlapping and hard linkage, which control the migration and distribution of depositional system within the relay ramp. This paper presents a unique case of spatial evolution, complex linkage and transformation model of boundary faults in a rift basin, which can facilitate further studies on the response relationship among the boundary fault, sedimentary sequence, sag evolution and regional dynamics mechanism.
-
Key words:
- fault linkage /
- fault transformation /
- boundary fault /
- Huizhou sag /
- Pearl River Mouth basin /
- tectonics
-
图 3 不同洼陷的结构样式
剖面AA′.HZ10洼;剖面BB′.HZ09洼;剖面CC′.HZ08洼和HZ14洼.测线位置依次见图 2
Fig. 3. Structural styles of different depressions
图 8 洼陷层序迁移演化剖面
测线位置见图 2中的FF′
Fig. 8. The cross-section showing the sequence migration and evolution of depression in Huibei
图 11 "四级小层"迁移反应横向断层发育次序
测线位置见图 2,HH′
Fig. 11. The migration of "Fourth layer" reflecting the order of transfer faults development
图 12 边界断裂陡坡带及分段断层联接部位主要地震相类型
测线位置见图 13,II′和JJ′
Fig. 12. The main seismic facies types of steep slope zones and segment fault linkage part of border fault
表 1 不同裂陷盆地边界断裂模式
Table 1. Border fault patterns under different rift basin types
盆地类型 边界模式 实例 相关文献 陆内裂陷盆地(大陆裂谷) 软联接为主(转换带) 东非裂谷系
莱茵地堑系
贝加尔裂谷Morley et al., 1990
Younes and McClay, 2002
Hus et al., 2006陆间裂陷盆地 硬联接为主(横向褶皱) 红海-亚丁湾
苏伊士湾Jackson et al., 1988
McClay et al., 1998
Chris et al., 2002
Bosworth et al., 2005被动大陆边缘盆地 复合联接(转换斜坡和横向褶皱并存) 大西洋两侧的大陆边缘
南海北部陆坡Shelton, 1984
Bally, 1981表 2 横向断层几何要素统计
Table 2. Statistic of geometry elements for transfer faults
断层名称 断开层位 文昌组 延伸长度(km) 走向(°) 倾角(°) 最大断距(km) F10-1 Tg-T80 2.4 SEE116.2 40~50 1.105 F10-2 Tg-T80 3.1 SEE135.1 70 1.489 F10-3 Tg-T80 1.8 SEE106.7 35~50 0.671 F13-1 Tg-T80 3.5 NW48.1 30~40 1.624 F13-2 Tg-T80 6.9 NW59.7 40~50 1.464 F13-3 Tg-T80 2.6 NW54.5 30~40 1.182 -
[1] Anders, M.H., Schlische, R.W., 1994. Overlapping Faults, Intra-Basin Highs, and the Growth of Normal Faults. Journal of Geology, 102(2): 165-180. doi: 10.1086/629661 [2] Bally, A.W., 1981. Geology of Passive Continental Margins. American Association of Petroleum Geologists Course Note Series, 19: 1-48. http://ci.nii.ac.jp/ncid/BA4906204X [3] Bally, A.W., 1982. Musings over Sedimentary Basin Evolution. Philosophical Transactions of the Royal Society of London, 305(1489): 325-338. doi: 10.1098/rsta.1982.0040 [4] Barnett, J.A., Mortimer, J., Rippon, J.H., et al., 1987. Displacement Geometry in the Volume Containing a Single Normal Fault. AAPG Bulletin, 71(8): 925-937. [5] Beach, A., 1984. Structural Evolution of the Witch Ground Graben. Journal of the Geological Society of London, 141(4): 621-628. doi: 10.1144/gsjgs.141.4.0621 [6] Bosworth, W., 1985. Geometry of Propagating Continental Rifts. Nature, 316(6029): 625-627. doi: 10.1038/316625a0 [7] Bosworth, W., 1995. A High-Strain Rift Model for the Southern Gulf of Suez (Egypt). Geological Society Special Publication, 80(1): 75-102. doi: 10.1144/GSL.SP.1995.080.01.04 [8] Bosworth, W., Huchon, P., McClay, K., 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43(1): 334-378. doi: 10.1016/j.jafrearsci.2005.07.020 [9] Briais, A., Patriat, P., Tapponier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. doi: 10.1029/92JB02280 [10] Burke, K., 1980. Intra-Continental Rifts and Anlacogens. In: Continental Tectonics. National Academy of Sciences, Washington D.C., 42: 49. [11] Cartwright, J.A., Bruce, D., Trudgill, B., et al., 1995. Fault Growth by Segment Linkage: An Explanation for Scatter in Maximum Displacement and Trace Length Data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326. doi: 10.1016/0191-8141(95)00033-A [12] Cartwright, J.A., Mansfield, C.S., Trudgill, B., 1996. The Growth of Faults by Segment Linkage. In: Buchanan, P.G., Nieuwland, D.A., eds., Modern Developments in Structural Interpretation, Validation and Modelling. Geological Society Special Publication, 99(1): 163-177. http://adsabs.harvard.edu/abs/1996GSLSP..99..163C [13] Chen, F.J., Jia, Q.S., Zhang, H.N., 2004. Transfer Zone and Its Relation with Distribution of Sand Bodies. Oil & Gas Geology, 25(2): 144-148(in Chinese with English abstract). http://www.researchgate.net/publication/284378335_Transfer_zone_and_its_relation_with_distribution_of_sand_bodies [14] Chen, Z.N., Chen, F.J., Wang, Q., 2005. Types of Normal Faults' Soft Linkage and Corresponding Transfer Zones. Geoscience, 19(4): 495-499(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200504002.htm [15] Childs, C., Watterson, J., Walsh, J.J., 1995. Fault Overlap Zones within Developing Normal Fault Systems. Journal of the Geological Society of London, 152(3): 535-550. doi: 10.1144/gsjgs.152.3.0535 [16] Chris, A.L., Gawthorpe, R., Sharp, I.R., 2002. Growth and Linkage of the East Tanka Fault Zone, Suez Rift: Structural Style and Syn-Rift Stratigraphic Response. Journal of the Geological Society of London, 159(2): 175-187. doi: 10.1144/0016-764901-100 [17] Cowie, P.A., 1998. On Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. doi: 10.1016/S0191-8141(98)00029-7 [18] Cowie, P.A., Scholz, C.H., 1992. Displacement-Length Scaling Relationship for Faults: Data Synthesis and Discussion. Journal of Structural Geology, 14(10): 1149-1156. doi: 10.1016/0191-8141(92)90066-6 [19] Dart, C.J., Collier, R.E., Gawthorpe, R.L. et al., 1994. Sequence Stratigraphy of Pliocene-Quaternary Syn-Rift Gilbert Type Deltas, Northern Peloponnesos, Greece. Marine Petroleum Geology, 11(5): 545-560. doi: 10.1016/0264-8172(94)90067-1 [20] Davison, I., 1994. Linked Faults Systems: Extensional, Strike-Slip and Contractional. In: Hancock, P.L., ed., Continental Deformation. Pergamon Press Ltd., Oxford, 14: 121-142. http://www.researchgate.net/publication/313090091_Linked_fault_systems_Extensional_strike-slip_and_contractional [21] Dawers, N.H., Anders, M.H., 1995. Displacement-Length Scaling and Fault Linkage. Journal of Structural Geology, 17(5): 607-614. doi: 10.1016/0191-8141(94)00091-D [22] Dawers, N.H., Anders, M.H., et al., 1993. Growth of Normal Faults: Displacement-Length Scaling. Geology, 21(12): 1107-1110. doi: 10.1130/0091-7613(1993)021<1107:GONFDL>2.3.CO;2 [23] Dickinson, W.R., 1978. Plate Tectonic Evolution of Sedimentary Basin. AAPG Special Volumes, A157: 1-56. http://www.researchgate.net/publication/292693726_Plate_tectonic_evolution_of_sedimentary_basins [24] Faulds, J.E., Varga, R.J., 1998. The Role of Accommodation Zone and Transfer Zone in the Regional Segmentation of Extended Terranes. Geology Society of America Special Paper, 323: 1-45. doi: 10.1130/0-8137-2323-X.1 [25] Fossen, H., 1997. Geometric Analysis and Scaling Relations of Deformation Bands in Porous Sandstone. Journal of Structural Geology, 19(12): 1479-1493. doi: 10.1016/S0191-8141(97)00075-8 [26] Gawthorpe, R.L., Hurst, J.M., 1993. Transfer Zones in Extensional Basins: Their Structural Style and Influence on Drainage Development and Stratigraphy. Journal of the Geological Society of London, 150(6): 1137-1152. doi: 10.1144/gsjgs.150.6.1137 [27] Gawthorpe, R.L., Sharp, I., Underhill, J.R., et al., 1997. Linked Sequence Stratigraphic and Structural Evolution of Propagating Normal Faults. Geology, 25(9): 795-798. doi: 10.1130/0091-7613(1997)025<0795:LSSASE>2.3.CO;2 [28] Giba, M., Walsh, J.J., Nicol, A., 2012. Segmentation and Growth of an Obliquely Reactivated Normal Fault. Journal of Structural Geology, 39: 253-267. doi: 10.1016/j.jsg.2012.01.004 [29] Gibbs, A.D., 1984. Structural Evolution of Extensional Basin Margins. Journal of the Geological Society of London, 141(4): 609-620. doi: 10.1144/gsjgs.141.4.0609 [30] Gibson, J.R., Walsh J.J., Watterson, J., 1989. Modelling of Bed Contours and Cross-Sections Adjacent to Planar Normal Faults. Journal of Structural Geology, 11(3): 317-328. doi: 10.1016/0191-8141(89)90071-0 [31] Goguel, J., 1952. Traite de Tectonique, Masson, Paris. In: Thalmann, H.E., Trans., Tectonics. Freeman, San Francisco. [32] Gregory, J.W., 1984. Contribution to the Physical Geography of British East Africa. Geographical Journal, 4(4): 289-315. [33] Gudmundsson, A., 1987. Geometry, Formation and Development of Tectonics Fractures on the Reykjanes Peninsula, Southwest Iceland. Tectonophysics, 139(3): 295-308. doi: 10.1016/0040-1951(87)90103-X [34] Gupta, A., Scholz, C., 2000. A Model of Normal Fault Interaction Based on Observations and Theory. Journal of Structural Geology, 22(7): 865-879. doi: 10.1016/S0191-8141(00)00011-0 [35] Hus, R., Acocella, V., Funiciello, R., et al., 2005. Sandbox Models of Relay Ramp Structures and Evolution. Journal of Structural Geology, 27(3): 459-473. doi: 10.1016/j.jsg.2004.09.004 [36] Hus, R., Batist, M.D., Klerkx, J., et al., 2006. Fault Linkage in Continental Rifts: Structure and Evolution of a Large Relay Ramp in Zavarotny, Lake Baikal (Russia). Journal of Structural Geology, 28(7): 1338-1351. doi: 10.1016/j.jsg.2006.03.031 [37] Jackson, J.A., White, N.J., Garfunkel, Z., et al., 1988. Relations between Normal-Fault Geometry, Tilting and Vertical Motions in Extensional Terrains: An Example from the Southern Gulf of Suez. Journal of Structural Geology, 10(2): 155-170. doi: 10.1016/0191-8141(88)90113-7 [38] Larsen, P., 1988. Relay Structures in a Lower Permian Basement-Involved Extension System, East Greenland. Journal of Structural Geology, 10(1): 3-8. doi: 10.1016/0191-8141(88)90122-8 [39] Leeder, M.R., Gawthorpe, R.L., 1987. Sedimentary Models for Extensional Tilt-Block/Graben Basins. In: Coward, M.P., Dewey, J.F., Hancock, P.L., eds., Continental Extensional Tectonics. Geological Society Special Publication, 28: 139-152. http://adsabs.harvard.edu/abs/1987gslsp..28..139l [40] Li, S.Z., 2012. Cenozoic Faulting of the Bohai Bay Basin and Its Bearing on the Destruction of the Eastern North China Craton. Journal of Asian Earth Sciences, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011 [41] Lister, G.S., Etheridge, M.A., Symonds, P.A., 1986. Detachment Faulting and the Evolution of Passive Continental Margins. Geology, 14(3): 246-250. doi: 10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2 [42] McClay, K.R., Nichols, G.J., Khalil, S.M., et al., 1998. Extensional Tectonics and Sedimentation, Eastern Gulf of Suez, Egypt. In: Purser, B., Bosence, D.W., eds., Sedimentation and Tectonics of the Gulf of Aden-Red Sea Rift System. Chapman and Hall, London, 223-238. doi: 10.1007/978-94-011-4930-3-14 [43] Morley, C.K., 1999. Patterns of Displacement along Large Normal Faults: Implications for Basin Evolution and Fault Propagation, Based on Examples from East Africa. AAPG Bulletin, 83(4): 613-634. http://ci.nii.ac.jp/naid/80011049175 [44] Morley, C.K., Nelson, R.A., Patton T.L., et al., 1990. Transfer Zones in East African Rift System and Their Relevance to Hydrocarbon Exploration in Rifts. AAPG Bulletin, 74(8): 1234-1253. http://www.researchgate.net/publication/248149866_Transfer_zones_in_the_East_African_rift_system_and_their_relevance_to_hydrocarbon_exploration_in_rif [45] Muraoka, H. Kamata, H., 1983. Displacement Distribution along Minor Fault Traces. Journal of Structural Geology, 5(5): 483-495. doi: 10.1016/0191-8141(83)90054-8 [46] Patterson, M.B., 1983. Structure and Acoustic Stratigraphy of the Lake Tanganyika Rift Valley: A Single-Channel Seismic Survey of the Lake, North of Kalemie, Zaire(Dissertation). Duke University, Durham, North Carolina, 89. http://www.researchgate.net/publication/35121363_Structure_and_acoustic_stratigraphy_of_the_Lake_Tanganyika_rift_valley_a_single_channel_seismic_survey_of_the_lake_north_of_Kalemie_Zaire [47] Peacock, D.C.P., 2002. Propagation, Interaction and Linkage in Normal Fault Systems. Earth-Science Reviews, 58(1-2): 121-142. doi: 10.1016/S0012-8252(01)00085-X [48] Peacock, D.C.P., Sanderson, D.J., 1991. Displacements, Segment Linkage and Relay Ramps in Normal Fault Zones. Journal of Structural Geology, 13(6): 721-733. doi: 10.1016/0191-8141(91)90033-F [49] Peacock, D.C.P., Sanderson, D.J., 1994. Geometry and Development of Relay Ramps in Normal Fault Systems. AAPG Bulletin, 78(2): 147-165. http://ci.nii.ac.jp/naid/30002458733 [50] Rosendahl, B.R., 1987. Architecture of Continental Rifts with Special Reference to East Africa. Annual Review of Earth and Planetary Sciences, 15: 31-43. doi: 10.1146/annurev.ea.15.050187.002305 [51] Schliche, R.W., Young, S.S., Ackemann, R.V., et al., 1996. Geometry and Scaling Relationships of a Population of very Small Rift-Related Normal Faults. Geology, 24(8): 683-686. doi: 10.1130/0091-7613(1996)024<0683:GASROA>2.3.CO;2 [52] Schlische, R.W., Anders, M.H., 1996. Stratigraphic Effects and Tectonics Implications of the Growth of Normal Faults and Extensional Basins. In: Beraton, K.K., ed., Reconstructing the History of Basin and Range Extension Using Sedimentology and Stratigraphy. Geological Society of America Special Paper, 303: 183-203. http://www.researchgate.net/publication/255494688_Stratigraphic_effects_and_tectonic_implications_of_the_growth_of_normal_faults_and_extensional_basins [53] Schwartz, D.P., Coppersmith, K.J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research, 89(NB7): 5681-5698. doi: 10.1029/JB089iB07p05681 [54] Scott, D.L., Rosendahl, B.R., 1989. North Viking Graben: An East African Prospective. AAPG Bulletin, 73(2): 155-165. http://www.researchgate.net/publication/279553994_North_Viking_Graben_An_East_African_perspective [55] Shelton, J.W., 1984. Listric Normal Faults: An Illustrated Summary. AAPG Bulletin, 68(7): 801-815. http://www.researchgate.net/publication/238259609_Listric_normal_faults_An_illustrated_summary_Am [56] Simony, P.S., Carr, S.D., 1997. Large Lateral Ramps in the Eocene Valkyr Shear Zone: Extensional Ductile Faulting Controlled by Plutonism in Southern British Columbia. Journal of Structural Geology, 19(6): 769-784. doi: 10.1016/S0191-8141(97)00011-4 [57] Sun, Z., Zhou, D., Zhong, Z., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science in China (Series. D), 49(10): 1053-1069. doi: 10.1007/s11430-006-1053-6 [58] Sun, S.M., Peng, S.M., Wang, X.W., 2003. Segmentation Characteristics of Lanliao Fault in Dongpu Depression. Acta Petrolei Sinica, 24(4): 26-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200304007.htm [59] Taylor, B., Hayes, D.E., 1980. The Tectonic Evolution of the South China Basin. In: Hays, D.E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 1. Geophys. Monoqr. Amer. Geophys. Union, Washington D.C. , 23: 89-104. http://ci.nii.ac.jp/naid/10007428136 [60] Trudgill, B., Cartwright, J., 1994. Relay-Ramp Forms and Normal-Fault Linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9): 1143-1157. doi: 10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2 [61] Wang, H.X., Fu, X.F., Fu, G., et al., 2014. Three Zhaoqing Sag Fault Vertical Section is Determined Growth and Fuyang Oil Source Fault. Earth Science—Journal of China University of Geosciences, 39(11): 1639-1646(in Chinese with English abstract). [62] Walsh, J.J., Watterson, J., 1988. Analysis of the Relationship between Displacement and Dimensions of Faults. Journal of Structural Geology, 10(3): 239-247. doi: 10.1016/0191-8141(88)90057-0 [63] Walsh, J.J., Watterson, J., 1991. Geometric and Kinematic Coherence and Scale Effects in Normal Fault Systems. Geological Society of London Special Publication, 56(1): 193-206. doi: 10.1144/GSL.SP.1991.056.01.13 [64] Walsh, J.J., Watterson, J., 1987. Distributions of Cumulative Displacement and Seismic Slip on a Single Normal Fault Surface. Journal of Structural Geology, 9(8): 1039-1046. doi: 10.1016/0191-8141(87)90012-5 [65] Watterson, J., 1986. Fault Dimensions, Displacements and Growth. Pure & Appl. Geophys. , 124(1-2): 365-363. doi: 10.1007/BF00875732 [66] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province; Nappe Tectonics in an Extending Orogeny. Nature, 291(5817): 645-648. doi: 10.1038/291645a0 [67] Younes, A.I., McClay, K., 2002. Development of Accommodation Zones in the Gulf of Suez-Red Sea Rift, Egypt. AAPG Bulletin, 86(6): 1003-1026. [68] Young, M.J., Gawthorpe, R.L., Sharp, I.R., 2000. Sedimentology and Sequence Stratigraphy of a Transfer Zone Coarse-Grained Delta, Miocene Suez Rift, Egypt. Sedimentology, 47(6): 1081-1104. doi: 10.1046/j.1365-3091.2000.00342.x [69] Yu, Y.X., Zhou, X.H., Tang, L.J., et al., 2009. Linkages of Normal Faults and Transfer Zones in the Liaodongwan Depression, Offshore Bohai Bay Basin. Geological Review, 55(1): 79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901012.htm [70] Zhang, Y.H., Tang, L.J., Qiu, H.J., et al., 2013. Linkages of the Boundary Faults and Deformation Features in the West of Bachu Uplift, Tarim Basin. Earth Science—Journal of China University of Geosciences, 38(3): 573-580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303016.htm [71] Zhu, W.L., Zhang, G.C., Yang, S.K., et al., 2007. The Natural Gas Geology of Continental Margin Basins in Northern South China Sea. Petroleum Industry Press, Beijing (in Chinese). [72] 陈发景, 贾庆素, 张洪年, 2004. 传递带及其在砂体发育中的作用. 石油与天然气地质, 25(2): 144-148. doi: 10.3321/j.issn:0253-9985.2004.02.005 [73] 陈昭年, 陈发景, 王琦, 2005. 正断层软联接及其传递带类型. 现代地质, 19(4): 495-499. doi: 10.3969/j.issn.1000-8527.2005.04.003 [74] 孙思敏, 彭仕宓, 汪新文, 2003. 东濮凹陷兰聊断层的分段特征及其石油地质意义. 石油学报, 24(4): 26-30. doi: 10.3321/j.issn:0253-2697.2003.04.006 [75] 王海学, 付晓飞, 付广, 等, 2014. 三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定. 地球科学——中国地质大学学报, 39(11): 1639-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201411008.htm [76] 余一欣, 周心怀, 汤良杰, 等, 2009. 渤海海域辽东湾坳陷正断层联接及其转换带特征. 地质评论, 55(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901012.htm [77] 张宇航, 汤良杰, 邱海峻, 等, 2013. 塔里木盆地巴楚隆起西段边界断层联接及变形特征. 地球科学——中国地质大学学报, 38(3): 573-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303016.htm [78] 朱伟林, 张功成, 杨少坤, 等, 2007. 南海北部大陆边缘盆地天然气地质. 北京: 石油工业出版社.