Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei: Evidences from Petrology, Geochemistry and Zircon U-Pb Ages of Clastic Rocks
-
摘要: 为揭示鄂西南齐岳山地区晚三叠世须家河组物源与构造背景,以周家湾与颜家沟剖面为代表,对须家河组碎屑岩的颗粒组分、元素组成以及锆石年龄进行测试与统计.结果显示:砂岩碎屑颗粒石英含量高、岩屑与长石含量低,平均值分别为76.15%、8.90%与3.45%,具有锆石-板钛矿-磁铁矿-榍石-电气石重矿物组合,反映源岩以酸性岩或低级变质岩为主,Dickinson判别图解表明物源主要来自再旋回造山带;砂岩(TFe2O3+MgO)*与TiO2*含量低,Al2O3/SiO2比值低,K2O/Na2O比值高,最接近被动大陆边缘特征值;泥岩成分变异指数ICV分布于0.32~0.79之间,平均值为0.56,反映物源主要为再旋回沉积物;样品稀土元素配分模式、特征微量元素含量及比值指示晚三叠世沉积构造背景为被动与活动大陆边缘;碎屑锆石分为磨圆与自形两类,磨圆者具有2 480 Ma、1 880 Ma、832 Ma年龄峰值(n=133),年龄频数分特征与扬子陆块最接近;自形锆石具有435 Ma、217 Ma年龄峰值(n=42),年龄频数分布特征与秦岭造山带和雪峰造山带花岗岩年龄具有很好的对应关系.结合物源与构造背景判别图解,上述特征综合表明须家河组形成于被动大陆边缘(为主)与活动大陆边缘环境,其物源来自东南的雪峰造山带(为主)与北侧的秦岭造山带.Abstract: For revealing provenance and tectonic settings of Triassic Xujiahe Formation in Qiyueshan area, Southwest Hubei, detrital compositions, major, trace and rare earth elements, and zircon isotope ages of clastic rocks from Zhoujiawan and Yanjiagou sections were tested and analyzed. All sandstone samples are rich in quartz (Q), poor in lithic fragments (L) and feldspar (F), with an average of 76.15%, 8.90% and 3.45% respectively, Q/(Q+F+L) being averaged at 0.86, featuring with heavy mineral assemblage of zircon-brookite-magnetite-sphene-tourmaline, which suggests an acidic or low-grade metamorphic source. Dickinson discrimination diagrams show provenance mainly from recycled orogen. The sandstones are characterized by low (TFe2O3+MgO)* (1.3%, 1.5%, average for Zhoujiawan and Yanjiagou sections respectively), low TiO2* (0.37%, 0.39%), low Al2O3/SiO2 (0.10, 0.12) and high K2O/Na2O(4.89, 40.01), which are most similar to the characteristics of passive continental margin. The index of compositional variation (ICV: 0.32~0.79, average: 0.56) for mudstones implies the source materials are mainly recycled sediments. The REE patterns, contents and ratios of specific trace elements indicate passive and active continental margin settings during Late Triassic. Detrital zircons can be divided into rounded and euhedral categories. As recycled zircons mostly, rounded zircons (> 500 Ma, n=133) are characterized by "core-edge" or "core-mantle-edge" structure. Three prominent age peaks, i.e. 2 480 Ma, 1 880 Ma and 832 Ma are obtained, suggesting fingerprint of Yangtze craton. Having two prominent age peaks 435 Ma and 217 Ma, cylindrical euhedral zircons (< 500 Ma, n=42) with typical oscillatory zoning possess the characteristics of Xuefeng and Qinling orogens. Combined with provenance and tectonic discrimination diagrams, these characteristics all above suggest that Xujiahe Formation deposited in passive (main) and active continental margin, and its provenances were from Xuefeng orogenic belt (main source) and Qinling orogen.
-
Key words:
- provenance /
- tectonic setting /
- geochemistry /
- clastic composition /
- detrital zircon /
- Xujiahe Formation /
- Southwest Hubei
-
图 1 研究区及邻区晚三叠世瑞替期沉积盆地格局(a)与研究区地质简图(b)
1.构造块体主运动方向;2.瑞替期盆地超覆方向;3.古水流方向;4.早三叠世前形成的隆起区域;5.中三叠世前形成的隆起区域;6.诺利期形成的隆起区域;7.瑞替早期陆相盆地;8.瑞替晚期陆相盆地;9.瑞替早期陆相盆地边界;10.瑞替晚期陆相盆地边界;11.省界;12.奥陶系-石炭系;13.二叠系;14.三叠系;15.侏罗系;16.须家河组;17.地层界线;18.断层线;19.地名;20.剖面位置;图a据梅冥相(2010)和屈红军等(2009)
Fig. 1. The distribution pattern of sedimentary basin for the Late Triassic Rhaetian in the research area and its adjacent areas (a) and geological sketch and section location of study area (b)
图 2 周家湾剖面须家河组样品碎屑岩特征微量元素标准化蜘蛛网图
Fig. 2. Normalized diagram of trace elements for Xujiahe Formation clastic rocks at Zhoujiawan section
图 3 周家湾剖面须家河组砂岩(a)、泥岩(b)样品REE球粒陨石标准化配分模式
标准化值据Taylor and McLenna(1985);上地壳值据Rudnick and Gao(2003);PAAS据McLennan and Taylor(1991)
Fig. 3. Chondrite-normalized REE patterns for Xujiahe Formation clastic rocks at Zhoujiawan section
图 6 周家湾剖面须家河组碎屑锆石(a)、最年轻锆石(b) U-Pb谐和年龄频数直方图及与扬子、华北、华夏陆块及雪峰、秦岭造山带的对比(c)
华北数据据Liu et al.(2008c);华夏陆块数据据于津海等(2006)和梁新权等(2013);雪峰数据据Zhang et al.(2013);秦岭造山带数据据杨文涛等(2012)
Fig. 6. Concordia age histogram of detrital zircons from Xujiahe Formation at Zhoujiawan section(a), and the youngest group zircons(b), and their comparisons with those of the Yangtze craton, North China block
图 7 须家河组碎屑岩F2-F1物源判别图解
Fig. 7. Discrimination function diagram (F2-F1) for illustrating sedimentary provenance of Xujiahe Formation clastic rocks
图 8 须家河组砂岩形成环境Q-F-L(a), Qm-P-K(b), Qm-F-Lt(c)判别
Fig. 8. Tectonic discrimination of Q-F-L (a), Qm-P-K (b) and Qm-F-Lt (c) for Triassic sandstones from Xujiahe Formation
图 9 须家河组碎屑岩K2O/Na2O-SiO2构造环境判别
PM.被动大陆边缘;ACM.活动大陆边缘;OIA.大洋岛弧;据Roser and Korsch(1986)
Fig. 9. Tectonic discrimination of the Xujiahe Formation clastic rocks base on K2O/Na2O-SiO2
表 1 须家河组砂岩碎屑颗粒含量统计(%)
Table 1. The detrital mineral compositions of sandstones in the Xujiahe Formation (%)
编号 Q Qm Qp F K P Ls Lt Q+F+L Qm/Q Q/(Q+F+L) K/F 填隙物 ZJW-21-1b 77 70 7 5 3 2 9 16 91 0.91 0.85 0.60 9 ZJW-22-1b 90 77 13 5 3 2 0 13 95 0.86 0.95 0.60 5 ZJW-27-1b 77 72 5 8 6 2 5 10 90 0.94 0.86 0.75 10 ZJW-27-2b 85 78 7 5 3 2 5 12 95 0.92 0.89 0.60 5 ZJW-30-1b 88 75 13 5 3 2 0 13 93 0.85 0.95 0.60 7 ZJW-31-1b 80 70 10 3 2 1 5 15 88 0.88 0.91 0.67 12 ZJW-35-1b 77 57 20 5 3 2 8 28 90 0.74 0.86 0.60 10 ZJW-40-1b 64 58 6 2 1 1 9 15 75 0.91 0.85 0.50 25 ZJW-44-1b 65 60 5 2 1 1 19 24 86 0.92 0.76 0.50 14 ZJW-48-1b 87 83 4 6 3 3 2 6 95 0.95 0.92 0.50 5 ZJW-48-2b 54 46 8 2 1 1 21 29 77 0.85 0.70 0.50 23 ZJW-53-1b 62 55 7 2 1 1 12 19 76 0.89 0.82 0.50 24 ZJW-54-1b 68 54 14 4 2 2 20 34 92 0.79 0.74 0.50 8 YJG-3-1b 78 68 10 8 4 4 6 16 92 0.87 0.85 0.50 8 YJG -4-1b 80 67 13 1 0 1 8 21 89 0.84 0.90 0.00 11 YJG -5-1b 73 70 3 1 1 0 14 17 88 0.96 0.83 1.00 12 YJG -7-1b 70 65 5 2 2 0 14 19 86 0.93 0.81 1.00 14 YJG -9-1b 83 70 13 0 0 0 10 23 93 0.84 0.89 — 7 YJG -10-2b 78 70 8 2 2 0 7 15 87 0.90 0.90 1.00 13 YJG -12-1b 87 62 25 1 1 0 4 29 92 0.71 0.95 1.00 8 样品平均值 76.15 66.35 9.80 3.45 2.10 1.35 8.90 18.70 88.50 0.87 0.86 0.63 11.50 ZJW平均值 74.92 65.77 9.15 4.15 2.46 1.69 8.85 18.00 87.92 0.88 0.85 0.57 12.08 YJG平均值 78.43 67.43 11.00 2.14 1.43 0.71 9.00 20.00 89.57 0.86 0.87 0.75 10.43 注:ZJW.周家湾剖面;YJG.颜家沟剖面;Q、Qm等代号的含义详见正文第2部分:"样品采集与分析". 表 2 周家湾剖面须家河组碎屑岩主量元素分析结果(10-2)
Table 2. Major elements contents of clastic rocks from Xujiahe Formation at Zhoujiawan section (10-2)
送样号岩性 16-lh泥岩 17-lh泥岩 20-lh泥岩 21-lh砂岩 22-lh砂岩 32-lh砂岩 37-lh泥岩 44-lh砂岩 44-2h砂岩 44-3h泥岩 53-lh砂岩 55-lh泥岩 周家湾剖面 颜家沟剖面 样品均值(n=12) 砂岩均值(n=6) 泥岩均值(n=6) 样品均值(n=14) 砂岩均值(n=ll) 泥岩均值(n=3) SiO2 59.38 55.5 59.99 88.88 88.09 90.23 72.85 81.11 80.91 64.12 81.87 71.82 74.56 85.18 63.94 80.4 84.14 66.68 Al2O3 22.01 20.73 20.47 6.75 7.67 6.15 14.5 12.31 12.31 20.79 9.71 16.16 14.13 9.15 19.11 11.74 9.69 19.24 TFe2O3 4.92 8.89 5.66 1.05 0.59 0.64 3.72 0.84 0.9 1.64 1.97 2.29 2.76 1 4.52 1.5 1.29 2.26 CaO 0.32 0.47 0.1 0.08 0.06 0.03 0.04 0.09 0.07 0.12 0.15 0.11 0.14 0.08 0.19 0.29 0.28 0.32 MgO 1.69 2.34 2.07 0.19 0.18 0.15 1.34 0.23 0.26 0.76 0.7 0.9 0.9 0.29 1.52 0.31 0.18 0.81 K2O 3.97 3.71 4.24 1.22 1.4 1.67 4.02 3.19 3.15 4.79 1.6 3.25 3.018 2.038 3.997 2.33 1.65 4.82 Na2O 0.17 0.15 0.14 1.01 1.1 0.19 0.23 0.46 0.33 0.17 1.01 0.26 0.435 0.683 0.187 0.09 0.08 0.14 TiO2 0.9 0.83 0.81 0.1 0.13 0.28 0.73 0.52 0.61 1.03 0.56 1.06 0.63 0.367 0.893 0.52 0.38 1.03 P2O5 0.06 0.27 0.13 0.02 0.01 0.01 0.03 0.02 0.01 0.04 0.08 0.05 0.061 0.025 0.097 0.03 0.02 0.04 MnO 0.07 0.05 0.02 0.01 0 0 0.02 0 0.01 0.01 0.01 0.03 0.019 0.005 0.033 0.01 0.01 0.01 灼失 5.96 6.63 5.91 1.07 1.22 1.05 2.93 1.67 1.84 6.09 1.94 4.47 3.4 1.47 5.33 2.72 2.24 4.5 总和 99.45 99.57 99.54 100.38 100.45 100.4 100.41 100.44 100.4 99.56 99.6 100.4 100.05 100.28 99.82 99.84 99.85 99.79 TiO2* 0.96 0.89 0.87 0.1 0.13 0.28 0.75 0.53 0.62 1.1 0.57 1.1 0.66 0.37 0.95 0.53 0.39 1.08 (TF2O3+MgO)* 7.07 12.08 8.26 1.25 0.78 0.8 5.19 1.08 1.18 2.57 2.73 3.33 3.86 1.3 6.42 1.87 1.5 3.23 AI2O3/SiO2 0.37 0.37 0.34 0.08 0.09 0.07 0.2 0.15 0.15 0.32 0.12 0.23 0.21 0.11 0.31 0.15 0.12 0.29 K2O/Na2O 23.35 24.73 30.29 1.21 1.27 8.79 17.48 6.93 9.55 28.18 1.58 12.5 13.82 4.89 22.75 38.6 40.01 33.41 nK2/nNa2O 15.37 16.27 19.93 0.79 0.84 5.78 11.5 4.56 6.28 18.54 1.04 8.22 9.09 3.22 14.97 25.39 26.32 21.98 K20/(Ca0+Na20) 8.1 5.98 17.67 1.12 1.21 7.59 14.89 5.8 7.88 16.52 1.38 8.78 8.08 4.16 11.99 5.92 4.73 10.32 ICV 0.55 0.79 0.64 0.54 0.45 0.48 0.7 0.43 0.43 0.41 0.62 0.49 0.54 0.49 0.6 0.45 0.43 0.5 FI -0.70 1.09 -1.96 -5.59 -5.60 -7.52 -5.54 -5.86 -6.05 -3.89 -5.09 -4.55 -4.27 -5.95 -2.59 -4.84 -4.97 -4.34 F2 -2.03 -4.22 -2.55 -3.56 -2.97 -3.96 -1.89 -0.97 -1.24 0.91 -3.39 -1.79 -2.31 -2.68 -1.93 -2.96 -3.95 0.68 表 3 周家湾剖面须家河组碎屑岩微量及稀土元素分析结果(10-6)
Table 3. Trace elements contents of clastic rocks from Xujiahe Formation at Zhoujiawan section (10-6)
送样号岩性 16-lh泥岩 17-lh泥岩 20-lh泥岩 21-lh砂岩 22-lh砂岩 32-lh砂岩 37-lh泥岩 44-lh砂岩 44-2h砂岩 44-3h泥岩 53-lh砂岩 55-lh泥岩 周家湾剖面 颜家沟剖面 样品均值(n=12) 砂岩均值(n=6) 泥岩均值(n=6) 样品均值(n=14) 砂岩均值(n=ll) 泥岩均值(n=3) Pb 37.20 17.16 8.19 1.83 1.48 3.89 49.38 4.12 16.38 107.19 10.25 22.10 23.26 6.32 40.20 18.52 16.13 27.30 Zn 53.55 68.14 64.74 8.08 6.36 6.39 161.56 51.08 55.12 165.03 29.69 62.90 61.05 26.12 95.99 20.29 16.05 35.83 Cr 109.29 97.42 102.37 232.03 193.78 211.92 176.89 201.08 148.92 125.51 203.04 130.51 161.06 198.46 123.66 36.80 24.64 81.40 V 155.47 135.56 135.87 30.71 27.10 30.44 123.82 58.81 68.81 127.08 76.80 137.74 92.35 48.78 135.92 54.55 34.52 128.00 Co 58.66 21.37 10.15 1.47 1.61 1.11 27.43 3.27 9.34 21.50 7.51 11.35 14.56 4.05 25.08 2.77 2.68 3.09 Rb 221.74 172.33 195.90 33.67 38.10 46.86 155.82 90.91 91.45 191.85 52.08 158.33 120.75 58.84 182.66 89.20 53.80 219.00 Sr 71.14 83.24 71.61 24.82 25.86 20.62 48.70 28.64 23.56 59.22 48.02 84.66 49.17 28.59 69.76 28.83 19.49 63.07 Sc 19.17 21.49 19.09 2.41 2.43 2.96 14.06 8.33 8.81 19.68 6.99 15.35 11.73 5.32 18.14 10.71 6.61 25.73 U 5.69 4.27 3.83 0.65 0.68 1.08 2.96 2.06 2.45 4.38 1.62 4.16 2.82 1.42 4.22 2.57 1.44 6.72 Th 21.71 18.73 19.22 3.42 3.58 6.58 13.30 10.20 10.29 19.77 7.56 14.62 12.42 6.94 17.89 9.49 7.79 15.73 Zr 205.55 148.36 151.67 56.08 73.93 169.95 224.68 273.52 410.95 270.47 115.11 286.31 198.88 183.26 214.51 — — — Hf 5.69 4.33 4.57 1.63 2.12 5.12 5.87 7.46 10.70 7.37 3.26 7.60 5.48 5.05 5.91 — — — La 40.28 49.05 54.35 14.64 18.90 20.77 57.63 45.37 22.91 78.74 36.36 45.65 40.39 26.49 54.28 46.64 41.12 66.87 Ce 101.41 96.68 100.19 25.79 33.74 37.70 107.88 79.54 43.25 171.14 72.16 86.33 79.65 48.70 110.60 75.16 65.01 112.40 Pr 9.45 11.01 11.47 2.85 3.74 3.96 11.52 9.53 4.86 17.90 8.27 9.52 8.67 5.54 11.81 9.35 8.41 12.78 Nd 34.50 42.18 41.57 10.14 13.53 13.83 42.52 35.68 17.73 66.77 30.67 36.00 32.09 20.26 43.92 31.16 28.73 40.10 Sm 7.30 9.81 6.05 1.54 2.26 2.29 7.44 6.20 3.36 11.78 5.22 6.84 5.84 3.48 8.20 4.98 4.76 5.77 Eu 1.36 2.07 1.19 0.38 0.57 0.40 1.62 1.18 0.72 2.32 1.12 1.54 1.21 0.73 1.68 0.91 0.87 1.07 Gd 6.58 8.65 4.75 1.26 1.88 1.68 6.20 4.90 2.91 10.39 4.21 6.38 4.98 2.81 7.16 4.09 3.80 5.18 Tb 1.18 1.42 0.79 0.19 0.27 0.29 1.01 0.77 0.48 1.75 0.64 1.11 0.82 0.44 1.21 0.58 0.52 0.79 Dy 6.68 7.53 4.67 0.99 1.38 1.78 5.49 4.27 2.56 9.76 3.30 6.29 4.56 2.38 6.74 3.15 2.69 4.85 Ho 1.25 1.38 0.96 0.20 0.26 0.35 1.14 0.83 0.51 2.04 0.61 1.26 0.90 0.46 1.34 0.61 0.50 1.01 Er 3.54 3.76 2.94 0.62 0.74 1.16 3.60 2.54 1.53 6.00 1.82 3.72 2.67 1.40 3.93 1.75 1.41 3.01 Tm 0.58 0.56 0.48 0.10 0.11 0.18 0.61 0.41 0.26 0.95 0.28 0.60 0.43 0.22 0.63 0.32 0.25 0.56 Yb 3.49 3.57 2.93 0.63 0.74 1.13 3.74 2.35 1.68 5.49 1.62 3.46 2.57 1.36 3.78 2.14 1.68 3.84 Lu 0.54 0.59 0.48 0.10 0.11 0.17 0.64 0.39 0.29 0.90 0.27 0.57 0.42 0.22 0.62 0.31 0.24 0.56 Rb/Sr 3.12 2.07 2.74 1.36 1.47 2.27 3.20 3.17 3.88 3.24 1.08 1.87 2.46 2.21 2.71 2.91 2.76 3.45 Sc/Cr 0.175 0.221 0.187 0.010 0.013 0.014 0.080 0.041 0.059 0.157 0.034 0.118 0.092 0.029 0.156 0.310 0.300 0.350 La/Sc 2.10 2.28 2.85 6.08 7.79 7.01 4.10 5.45 2.60 4.00 5.20 2.97 4.37 5.69 3.05 5.54 6.34 2.63 Th/U 3.82 4.39 5.01 5.28 5.30 6.12 4.49 4.94 4.20 4.51 4.68 3.51 4.69 5.09 4.29 5.38 5.90 3.47 ΣREE 218.15 238.26 232.82 59.45 78.23 85.70 251.05 193.98 103.05 385.95 166.56 209.26 185.20 114.49 255.91 181.16 159.98 258.80 ΣL/ΣH 8.15 7.68 11.93 13.49 13.23 11.71 10.19 10.78 9.08 9.35 12.06 7.95 10.47 11.73 9.21 13.51 13.79 12.49 Ce/Ce* 1.19 0.94 0.90 0.89 0.89 0.92 0.93 0.86 0.92 1.04 0.95 0.93 0.95 0.91 0.99 0.79 0.77 0.83 Eu/Eu* 0.59 0.67 0.66 0.81 0.83 0.60 0.71 0.63 0.69 0.63 0.71 0.70 0.69 0.71 0.66 0.61 0.61 0.60 La/Yb 11.54 13.73 18.52 23.20 25.45 18.44 15.43 19.28 13.66 14.34 22.48 13.18 17.44 20.42 14.46 23.69 25.57 16.81 (La/Yb)N 7.80 9.28 12.51 15.68 17.20 12.46 10.43 13.03 9.23 9.69 15.19 8.90 11.78 13.80 9.77 16.01 17.28 11.36 (La/Yb)ucc 0.73 0.87 1.17 1.47 1.61 1.17 0.98 1.22 0.86 0.91 1.42 0.83 1.10 1.29 0.91 1.50 1.62 1.06 注:ΣL/ΣH为轻重稀土比值,下标N表示元素相对于球粒陨石标准化; 下标UCC表示元素相对于上陆壳标准化; Eu/Eu* =2XEuN/(SmN+GdN); Ce/Ce*=2XCeN/aaN+NdN); 上地壳值据Rudnick and Gao(2003); 球粒陨石值据Taylor and McLennan(1985); 颜家沟剖面数据据田洋等(2015). 表 4 须家河组砂岩与不同构造环境杂砂岩主量元素、微量元素和稀土元素特征参数的对比
Table 4. Comparison major, trace and rare earth elements characteristics of Xujiahe Formation sandstones with graywackes in different tectonic settings
构造环境 大洋岛弧 大陆岛弧 活动大陆边缘 被动大陆边缘 周家湾剖面 颜家沟剖面* (TFe2O3+MgO)* 8.00~14.00 5.00~8.00 2.00~5.00 富SiO2、贫Na2O、CaO、TiO2 1.30 1.50 TiO2* 0.80~1.40 0.50~0.70 0.25~0.45 0.37 0.39 Al2O3/SiO2 0.24~0.33 0.15~0.22 — 0.11 0.12 K2O/Na2O 0.20~0.40 0.40~0.80 ≈1.00 4.89 40.01 Zn 89.00±18.60 74.00±9.80 52.00±8.60 26.00±12.00 26.12 16.05 Co 18.00±6.30 12.00±2.70 10.00±1.70 5.00±2.40 4.05 2.68 Sc 19.50±5.20 14.80±1.70 8.00±1.10 6.00±1.40 5.32 6.61 Nb 2.00±0.40 8.50±0.80 0.70±1.40 7.90±1.90 7.68 — V 131.00±40.00 89.00±13.70 48.00±5.90 31.00±9.90 48.78 34.52 Zr 96.00±20.00 229.00±27.00 179.00±33.00 298.00±80.00 183.26 — Hf 2.10±0.60 6.30±2.00 6.80 10.10 5.05 — Nd 11.36±2.90 20.80±1.60 25.40±3.40 29.00±5.03 20.26 28.73 La/Sc 0.55±0.22 1.82±0.30 4.55±0.80 6.25±1.35 5.69 6.34 Rb/Sr 0.05±0.05 0.65±0.33 0.89±0.24 1.19±0.40 2.21 2.76 Sc/Cr 0.57±0.16 0.32±0.06 0.30±0.02 0.16±0.02 0.029 0.30 Th/U 2.10±0.78 4.6±0.45 4.80±0.38 5.60±0.70 5.09 5.90 注:主量元素含量的单位为10-2,据Bhatia(1983);微量、稀土元素含量的单位为10-6,据Bhatia and Crook(1986);颜家沟剖面*数据据田洋等(2015). 表 5 须家河组砂岩与不同构造环境杂砂岩稀土元素特征参数的对比(据Bhatia, 1985)
Table 5. Comparison REE characteristics of Xujiahe Formation sandstones with graywackes in different tectonic settings
构造环境物源类型 大洋岛弧未切割的岩浆弧 大陆岛弧切割岩浆弧 活动大陆边缘隆升的基底 被动大陆边缘克拉通内部构造高地 砂岩平均值 周家湾剖面 颜家沟剖面* La 8.0±1.7 27.0±4.5 37 39 26.49 41.12 Ce 19.0±3.7 59.0±8.2 78 85 48.70 65.01 Eu/Eu* 1.04±0.11 0.79±0.13 0.60 0.56 0.71 0.61 ∑REE 58±10 146±20 186 210 114.49 159.98 ∑LREE/∑HREE 3.8±0.9 7.7±1.7 9.1 8.5 11.73 13.79 La/Yb 4.2±1.3 11.0±3.6 12.5 15.9 20.42 25.57 (La/Yb)N 2.8±0.9 7.5±2.5 8.5 10.8 13.80 17.28 注:稀土元素含量的单位为10-6;颜家沟剖面数据*据田洋等(2015). -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al., 2004. Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research, 74(2): 285-297. doi: 10.1306/082803740285 [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 [4] Bhatia, M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. doi: 10.1086/628815 [5] Bhatia, M.R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1-2): 97-113. doi: 10.1016/0037-0738(85)90025-9 [6] Bhatia, M.R., Crook, K.A.W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. doi: 10.1007/BF00375292 [7] Carter, A., Moss, S.J., 1999. Combined Detrital-Zircon Fission-Track and U-Pb Dating: A New Approach to Understanding Hinterland Evolution. Geology, 27(3): 235. doi: 10.1130/0091-7613(1999)027<0235:CDZFTA>2.3.CO;2 [8] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007. Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China. Science in China (Series D), 50(11): 1606-1627. doi: 10.1007/s11430-007-0073-1 [9] Chu, Y., Lin, W., Faure, M., et al., 2012. Phanerozoic Tectonothermal Events of the Xuefengshan Belt, Central South China: Implications from U-Pb Age and Lu-Hf Determinations of Granites. Lithos, 150: 243-255. doi: 10.1016/j.lithos.2012.04.005 [10] Cox, R., Lowe, D.R., Cullers, R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9 [11] Cullers, R.L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. doi: 10.1016/S0024-4937(99)00063-8 [12] Dan, Y., Lin, L.B., Zhong, Y.J., et al., 2013. The Conglomerate Composition of the Fourth Member of Xujiahe Formation, Upper Triassic, in the Front of Micang-Daba Mountains, Sichuan, China: Implication for Provenance Analysis. Geological Review, 59(1): 15-23(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZLP201301004.htm [13] Dickinson, W.R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. Provenance of Arenites, 333-361. doi: 10.1007%2F978-94-017-2809-6_15 [14] Dickinson, W.R., Suczek, C.A., 1979. Plate Tectonics and Sandstone Compositions. The American Association of Petroleum Geologists Bulletin, 63(12): 2164-2182. http://aapgbull.geoscienceworld.org/content/63/12/2164 [15] Dickinson, W.R., Beard, L.S., Brakenridge, G.R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94: 222-235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 [16] Ding, X., Chen, P.R., Chen, W.F., et al., 2006. Single Zircon LA-ICPMS U-Pb Dating of Weishan Granite (Hunan, South China) and Its Petrogenetic Significance. Science in China (Series D), 49(8): 816-827. doi: 10.1007/s11430-006-0816-4 [17] Fedo, C.M., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. doi: 10.2113/0530277 [18] Hallsworth, C.R., Morton, A.C., Claoué-Long, J., et al., 2000. Carboniferous Sand Provenance in the Pennine Basin, UK: Constraints from Heavy Mineral and Detrital Zircon Age Data. Sedimentary Geology, 137(3-4): 147-185. doi: 10.1016/S0037-0738(00)00153-6 [19] Kong, W.L., Wang, S., Du, Y.L., et al., 2011. Composition and Geochemistry of Permian Clastic Rocks in the Northern Margin of the Middle and Upper Yangtze Region. Geochimica, 40(5): 473-486(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqhx201105008 [20] Li, R.B., Pei, X.Z., Liu, Z.Q., et al., 2010. Basin-Mountain Coupling Relationship of Foreland Basins between Dabashan and Northeastern Sichuan—The Evidence from LA-ICP-MS U-Pb Dating of the Detrital Zircons. Acta Geologica Sinica, 84(8): 1118-1134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201008006.htm [21] Li, R.W., Wan, Y.S., Cheng, Z.Y., et al., 2005. The Dabie Orogen as the Early Jurassic Sedimentary Provenance: Constraints from the Detrital Zircon SHRIMP U-Pb Dating. Science in China (Series D), 48(2): 145. doi: 10.1360/03yd0216 [22] Li, S.Y., Li, R.W., Meng, Q.R., et al., 2005. Geochemistry of the Mesozoic and Cenozoic Detrital Rocks and Its Constraints on Provenance in the Southeast Foot of Dabie Mountains. Acta Petrologica Sinica, 21(4): 1157-1166(in Chinese with English abstract). http://www.oalib.com/paper/1470630 [23] Li, S.Y., Li, R.W., Yue, S.C., et al., 2004. Geochemistry of Rare Earth Elements of Mesozoic-Cenozoic Sandstones in North Margin of Dabie Mountains and Adjacent Areas: Constraints to Source Rocks. Jouranl of Rare Earths, 22(4): 558-562. http://www.cqvip.com/QK/84120X/20044/11038173.html [24] Li, S.Y., Yang, D.D., Wang, S., et al., 2014. Characteristics of Petrology, Geochemistry, Heavy Minerals and Isotope Chronology of Upper Carboniferous Detrital Rocks in the Middle Segment of South Tianshan and Constraints to the Provenance and Tectonic Evolution. Acta Geologica Sinica, 88(2): 167-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201402002.htm [25] Liang, X.Q., Zhou, Y., Jiang, Y., et al., 2013. Difference of Sedimentary Response to Dongwu Movement: Study on LA-ICPMS U-Pb Ages of Detrital Zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 29(10): 3592-3606 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201310022.htm [26] Lin, L.B., Chen, H.D., Zhai, C.B., et al., 2006. Sandstone Compositions and Paleogeographic Evolution of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin, China. Petroleum Geology & Experiment, 28(6): 511-517 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200606001.htm [27] Liu, B.J., Xu, X.S., 1994. Atlas of the Palaeogeography of South China (Sinian-Triassic). Science Press, Beijing, 162-167. [28] Liu, S.F., Zhang, G.W., 2008. Evolution and Geodynamics of Basin/Mountain Systems in East Qinling-Dabieshan and Its Adjacent Regions, China. Geological Bulletin of China, 27(12): 1943-1960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200812003.htm [29] Liu, X.M., Gao, S., Diwu, C.R., et al., 2008a. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. doi: 10.2475/04.2008.02 [30] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008c. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [31] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016 [32] Ludwig, K.R., 2001. Isoplot/Ex (Rev. 2.49), a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 1a. University of California, Berkeley, 55. [33] McLennan, S.M., Hemming, S.R., Taylor, S.R., et al., 1995. Early Proterozoic Crustal Evolution: Geochemical and Nd-Pb Isotopic Evidence from Metasedimentary Rocks, Southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177. doi: 10.1016/0016-7037(95)00032-U [34] McLennan, S.M., Taylor, S.R., 1991. Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. The Journal of Geology, 99(1): 1-21. doi: 10.1086/629470 [35] Mei, M.X., 2010. Stratigraphic Impact of the Indo-China Movement and Its Related Evolution of Sedimentary-Basin Pattern of the Late Triassic in the Middle-Upper Yangtze Region, South China. Earth Science Frontiers, 17(4): 99-111 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201004012.htm [36] Ping, X.Q., Zheng, J.P., Zhao, J.H., et al., 2013. Heterogeneous Sources of the Triassic Granitoid Plutons in the Southern Qinling Orogen: An E-W Tectonic Division in Central China. Tectonics, 32(3): 396-416. doi: 10.1002/tect.20034 [37] Qu, H.J., Ma, Q., Dong, Y.P., et al., 2009. Migration of the Late Triassic-Jurassic Depocenter and Paleocurrent Direction in the Dabashan Foreland Basin. Oil & Gas Geology, 30(5): 584-588 (in Chinese with English abstract). http://www.researchgate.net/publication/303125918_Migration_of_the_Late_Triassic-Jurassic_depocenter_and_paleocurrent_direction_in_the_Dabashan_foreland_basin [38] Rashid, S.A., 2005. The Geochemistry of Mesoproterozoic Clastic Sedimentary Rocks from the Rautgara Formation, Kumaun Lesser Himalaya: Implications for Provenance, Mineralogical Control and Weathering. Current Science, 88(11): 1832-1836. [39] Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. doi: 10.1086/629071 [40] Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1 [41] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3(12): 1-64. http://www.sciencedirect.com/science/article/pii/B9780080959757003016 [42] Shi, Z.S., Yang, W., Xie, Z.Y., et al., 2010. Upper Triassic Clastic Composition in Sichuan Basin, Southwest China: Implication for Provenance Analysis and the Indosinian Orogeny. Acta Geologica Sinica, 84(3): 387-397(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201003008.htm [43] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [44] Tian, Y., Zhao, X.M., Wang, L.Z., et al., 2015. Geochemistry of Clastic Rocks from the Triassic Xujiahe Formation, Lichuan Area, Southwestern Hubei: Implications for Weathering, Provenance and Tectonic Setting. Acta Petrologica Sinica, 31(1): 261-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201501019.htm [45] Wang, K.X., Chen, P.R., Chen, W.F., et al., 2012. Magma Mingling and Chemical Diffusion in the Taojiang Granitoids in the Hunan Province, China: Evidences from Petrography, Geochronology and Geochemistry. Mineralogy and Petrology, 106(3-4): 243-264. doi: 10.1007/s00710-012-0239-1 [46] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. http://www.sciencedirect.com/science/article/pii/S1342937X12000810 [47] Wang, Y.L., Fan, W.M., Liang, X.Q., et al., 2005a. SHRIMP Zircon U-Pb Geochronology of Indosinian Granites in Hunan Province and Its Petrogenetic Implications. Chinese Science Bulletin, 50(13): 1395-1403. doi: 10.1360/982004-603 [48] Wang, Y.J., Zhang, Y.H., Fan, W.M., et al., 2005b. Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block. Journal of Structural Geology, 27(6): 985-998. doi: 10.1016/j.jsg.2005.04.004 [49] Xu, Z.Q., Yang, J.S., Li, H.Q., et al., 2012. Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, (6): 1697-1709(in Chinese with English abstract). http://www.oalib.com/paper/1474609 [50] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254. doi: 10.1016/S0040-1951(02)00646-7 [51] Yan, Q.R., Gao, S.L., Wang, Z.Q., et al., 2002. Geochemical Constraints of Sediments on the Provenance, Depositional Environment and Tectonic Setting of the Songliao Prototype Basin. Acta Geologica Sinica-English Edition, 76(4): 455-462. doi: 10.1111/j.1755-6724.2002.tb00099.x [52] Yang, D.D., Li, S.Y., Zhao, D.Q., et al., 2012. Geochemistry and Detrial Zircon Geochronology of Carboniferous Detrital Rocks in the Northern Margin of Dabie Mountains, Central China and Constraints to Distinguishing the Provenance Tectonic Attribute. Acta Petrologica Sinica, 28(8): 2619-2628(in Chinese with English abstract). http://www.oalib.com/paper/1475835 [53] Yang, J.H., Du, Y.S., Cawood, P.A., et al., 2012. Modal and Geochemical Compositions of the Lower Silurian Clastic Rocks in North Qilian, NW China: Implications for Provenance, Chemical Weathering, and Tectonic Setting. Journal of Sedimentary Research, 82(2): 92-103. doi: 10.2110/jsr.2012.6 [54] Yang, K., Liu, S.W., Li, Q.G., et al., 2009. LA-ICP-MS Zircon U-Pb Geochronology and Geological Significance of Zhashui Granitoids and Dongjiangkou Granitoids from Qinling, Central China. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 841-847(in Chinese with English abstract). http://www.researchgate.net/publication/279762783_A-ICP-MS_zircon_U-Pb_geochronology_and_geological_significance_of_Xiba_granitoids_from_Qinling_central_China [55] Yang, W.T., Yang, J.H., Wang, X.F., et al., 2012. Geochronology from Middle Triassic to Middle Jurassic Detrital Zircons in Jiyuan Basin and Its Implications for the Qinling Orogen. Earth Science—Journal of China University of Geosciences, 37(3): 489-500(in Chinese with English abstract). http://www.researchgate.net/publication/285636776_Geochronology_from_middle_triassic_to_middle_jurassic_detrital_zircons_in_Jiyuan_basin_and_its_implications_for_the_Qinling_orogen [56] Yu, J.H., Wei, Z.Y., Wang, L.J., et al., 2006. Cathaysia Block: A Young Continent Composed of Ancient Materials. Geological Journal of China Universities, 12(4): 440-447(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200604004.htm [57] Zhang, F., Liu, S.W., Li, Q.G., et al., 2009. LA-ICP-MS Zircon U-Pb Geochronology and Geological Significance of Xiba Granitoids from Qinling, Central China. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 833-840(in Chinese with English abstract). http://www.researchgate.net/publication/279762783_A-ICP-MS_zircon_U-Pb_geochronology_and_geological_significance_of_Xiba_granitoids_from_Qinling_central_China [58] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1 [59] Zhang, J.L., Zhang, X., 2007. Element Geochemistry of Sandstones in the Silurian of Central Tarim Basin and the Significance in Provenance Discrimination. Acta Petrologica Sinica, 23(11): 2990-3002(in Chinese with English abstract). [60] Zhang, Y.L., Wang, Z.Q., Yan, Z., et al., 2011. Tectonic Setting of Neoproterozoic Beiyixi Formation in Quruqtagh Area, Xinjiang: Evidence from Geochemistry of Clastic Rocks. Acta Petrologica Sinica, 27(6): 1785-1796(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201106018 [61] Zheng, R.C., Dai, Z.C., Zhu, R.K., et al., 2012. Sequence-Based Lithofacies and Paleogeographic Characteristics of Upper Triassic Xujiahe Formation in Sichuan Basin. Geological Review, 55(4): 484-495(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200904003.htm [62] 淡永, 林良彪, 钟怡江, 等, 2013. 米仓山-大巴山前缘上三叠统须家河组四段砾岩特征及其对物源的指示. 地质论评, 59(1): 15-23. doi: 10.3969/j.issn.0371-5736.2013.01.003 [63] 孔为伦, 王松, 杜叶龙, 等, 2011. 中上扬子北缘二叠纪碎屑岩组分和地球化学特征. 地球化学, 40(5): 473-486. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105008.htm [64] 李瑞保, 裴先治, 刘战庆, 等, 2010. 大巴山及川东北前陆盆地盆山物质耦合——来自LA-ICP-MS碎屑锆石U-Pb年代学证据. 地质学报, 84(8): 1118-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008006.htm [65] 李双应, 李任伟, 孟庆任, 等, 2005. 大别山东南麓中新生代碎屑岩地球化学特征及其对物源的制约. 岩石学报, 21(4): 1157-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504013.htm [66] 李双应, 杨栋栋, 王松, 等, 2014. 南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束. 地质学报, (2): 167-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402002.htm [67] 梁新权, 周云, 蒋英, 等, 2013. 二叠纪东吴运动的沉积响应差异: 来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICP-MS U-Pb年龄研究. 岩石学报, 29(10): 3592-3606. [68] 林良彪, 陈洪德, 翟常博, 等, 2006. 四川盆地西部须家河组砂岩组分及其古地理探讨. 石油实验地质, 28(6): 511-517. doi: 10.3969/j.issn.1001-6112.2006.06.002 [69] 刘宝珺, 许效松. 1994. 中国南方岩相古地理图集(震旦纪—三叠纪). 北京: 科学出版社, 162-167. [70] 刘少峰, 张国伟, 2008. 东秦岭-大别山及邻区盆-山系统演化与动力学. 地质通报, 27(12): 1943-1960. doi: 10.3969/j.issn.1671-2552.2008.12.001 [71] 梅冥相. 2010. 中上扬子印支运动的地层学效应及晚三叠世沉积盆地格局. 地学前缘(中国地质大学(北京); 北京大学), 17(4): 99- 111. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201004012.htm [72] 屈红军, 马强, 董云鹏, 等. 2009. 大巴山前陆盆地晚三叠世—侏罗纪沉积中心的迁移及古流向. 石油与天然气地质, 30 (5), 584-588. doi: 10.3321/j.issn:0253-9985.2009.05.008 [73] 施振生, 杨威, 谢增业, 等, 2010. 四川盆地晚三叠世碎屑组分对源区分析及印支运动的指示. 地质学报, 84(3): 387-397. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201003008.htm [74] 田洋, 赵小明, 王令占, 等, 2015. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报, 31(1): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501019.htm [75] 许志琴, 杨经绥, 李化启, 等, 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, (6): 1697-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm [76] 杨栋栋, 李双应, 赵大千, 等, 2012. 大别山北缘石炭系碎屑岩地球化学及碎屑锆石年代学分析及其对物源区大地构造属性判别的制约. 岩石学报, 28(8): 2619-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208027.htm [77] 杨恺, 刘树文, 李秋根, 等, 2009. 秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义. 北京大学学报: 自然科学版, 45(5): 841-847. doi: 10.3321/j.issn:0479-8023.2009.05.017 [78] 杨文涛, 杨江海, 汪校锋, 等, 2012. 豫西济源盆地中三叠世-中侏罗世碎屑锆石年代学及其对秦岭造山带造山过程的启示. 地球科学——中国地质大学学报, 37(3): 489-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203012.htm [79] 于津海, 魏震洋, 王丽娟, 等, 2006. 华夏地块: 一个由古老物质组成的年轻陆块. 高校地质学报, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004 [80] 张帆, 刘树文, 李秋根, 等, 2009. 秦岭西坝花岗岩LA-ICP-MS锆石U-Pb年代学及其地质意义. 北京大学学报: 自然科学版, 45(5): 833-840. doi: 10.3321/j.issn:0479-8023.2009.05.016 [81] 张金亮, 张鑫, 2007. 塔中地区志留系砂岩元素地球化学特征与物源判别意义. 岩石学报, 23(11): 2990-3002. doi: 10.3969/j.issn.1000-0569.2007.11.029 [82] 张英利, 王宗起, 闫臻, 等, 2011. 库鲁克塔格地区新元古代贝义西组的构造环境: 来自碎屑岩地球化学的证据. 岩石学报, 27(6): 1785-1796. [83] 郑荣才, 戴朝成, 朱如凯, 等, 2012. 四川类前陆盆地须家河组层序-岩相古地理特征. 地质论评, 55(4): 484-495. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200904003.htm