Magnetite Composition and Its Genetic Significance of the Songhu Iron Deposit in the Western Tianshan, Xinjiang, NW China
-
摘要: 松湖铁矿位于新疆阿吾拉勒成矿带中段, 其成矿作用经历了2期6个阶段: 硫化物-钾长石阶段、赤铁矿-方解石-绿泥石阶段、磁铁矿-绿泥石-钾长石阶段(称为早阶段铁矿化)、磁铁矿-硫化物阶段(称为晚阶段铁矿化)、方解石-黄铜矿阶段及表生期.为了分析其成分特征及其成因, 使用磁铁矿电子探针分析, 结果显示: 早阶段磁铁矿FeOT含量高, TiO2、Al2O3、MgO、MnO等含量均较低, 与接触交代矿床成分特征相似, 加之SiO2含量较高, 暗示其形成与酸性岩浆热液密切相关; 晚阶段为主成矿阶段, 广泛作用于早阶段矿石之上, 磁铁矿FeOT含量相对较低, TiO2、MnO、V2O3、MgO、Al2O3等含量高于早阶段磁铁矿, 显示为热液成因.综合矿床地质特征, 认为晚阶段磁铁矿形成于岩浆活动晚期或间歇期, 含矿热液中有海水的加入.Abstract: The Songhu iron deposit located in the middle Awulale Fe-Cu metallogenic belt of Western Tianshan. The minralization of Songhu iron deposit included two metallogenic periods which could be further subdivided into six metallogenic stages, i. e., sulfide-k-feldspar stage, hematite-calcite-chlorite stage, magnetite-chlorite-k-feldspar stage(early stage of magnetite), magnetite-sulfide stage(late stage of magnetite), calcite-chalcopyrite stage and supergene period. In order to analyze the characteristics and causes of its components, Electron microprobe analyses show that the magnetites formed in early stage were rich in FeOT and poor in TiO2, Al2O3, MgO, MnO, which are similar to those of contact-metasomatic deposits. High content of SiO2 suggests that the formation of early magnetite was associated with acidic magmatic hydrothermal system. Late magnetite stage was the main minralization stage which was widely superimposed on ores formed during the early stage. Magnetites have lower content of FeOT and higher content of TiO2, MnO, V2O3, MgO, Al2O3. Both ternary plot of TiO2-Al2O3-MgO and Ca+Al+Mn vs. Ti+V discriminant diagram suggest that late magnetites were the product of hydrothermal mineralization. Considering the geological features of ore deposit, we infer that late magnetites are formed in the late magmatic activity or period of inactivity with the participation of sea water.
-
Key words:
- magnetite /
- EMPA /
- composition /
- Songhuiron deposit /
- Awulale metallogenic belt /
- Western Tianshan
-
图 1 阿吾拉勒成矿带区域地质及矿产分布
1.中-新生界;2.二叠系;3.石炭系;4.泥盆系;5.志留系;6.奥陶系;7.寒武系;8.前寒武系;9.二叠纪花岗岩;10.石炭系花岗岩;11.泥盆纪花岗岩;12.志留纪花岗岩;13.铁镁-超铁镁岩;14.主要断裂;15.国界线;16.阿吾拉勒成矿带范围;17.主要铁矿床;18.松湖铁矿;①.式可布台;②.松湖;③.穹库尔;④.尼新塔格-阿克萨依;⑤.查岗诺尔;⑥.智博;⑦.敦德;⑧.备战;修改自李凤鸣等(2011)、张作衡等(2012)
Fig. 1. Geological map of Awulale metallogenic belt and iron deposits
图 9 松湖铁矿床磁铁矿TiO2-Al2O3-MgO三角图解
Ⅰ.花岗岩区;Ⅱ.玄武岩区;Ⅲ.辉长岩区;Ⅳ.橄榄岩区;Ⅴ1.角闪石岩区;Ⅴ2.闪长岩区;Ⅵ.金伯利岩区;Ⅶ.热液型及钙矽卡岩型(虚线以上主要为深成热液型,以下为热液型及钙矽卡岩型);Ⅷ.热液型及镁矽卡岩型(深成热液型,部分为热液交代型,镁矽卡岩型);Ⅸ.沉积变质,热液叠加型;Ⅹ.碳酸盐岩区(靠上部者与超基性岩有关,靠下部者与围岩交代有关);XI.过渡区;底图据王顺金等(1984)
Fig. 9. The triangular figure of TiO2-Al2O3-MgO of magnetite from the Songhu iron deposit
图 10 磁铁矿元素含量相关点阵
A.缓倾斜区;B.过渡区;C.陡倾斜区;底图据林师整(1982)
Fig. 10. The related dot matrix of elements in magnetite
表 1 松湖铁矿矿物生成顺序
Table 1. Genetic sequences of mineral assemblages in Songhu iron deposit
表 2 松湖铁矿电子探针测试样品描述
Table 2. The samples for electron microprobe analyses from Songhu iron deposit
样品号 采样位置 Mt化阶段 描述 SH1-11 2738m平台,靠近底板围岩 晚 黑色富磁铁矿石,块状构造 SH1-13 2738m平台,靠近底板围岩 早、晚 黑色富磁铁矿石,块状构造,主要由磁铁矿、黄铁矿组成 SH1-20 2738m平台,靠近底板围岩 早、晚 黑色磁铁矿,角砾状构造,胶结物为钾长石、绿泥石 SH1-21 2738m平台,靠近底板围岩 早 钢灰色磁铁矿,块状-蜂窝状构造 SH1-22 2738m平台,靠近底板围岩 早、晚 灰黑色磁铁矿,角砾状构造,磁铁矿周围发育赤铁矿化 SH1-31 2738m平台,靠近底板围岩 早 黑色磁铁矿,脉状构造,磁铁矿结晶颗粒粗大 SH1-32 2738m平台,磁铁矿脉 早 黑色磁铁矿,脉状构造,约5cm,磁铁矿结晶颗粒粗大 SH1-33 2738m平台,磁铁矿脉 早 黑色磁铁矿,脉状构造,约5cm,磁铁矿结晶颗粒粗大 SH1-38 2738m平台,矿体中部 早 灰黑色,磁铁矿呈不连续脉状,脉石矿物主要为钾长石及绿泥石 SH2-17 2749m平台,矿体中部 晚 黑色磁铁矿,块状构造,发育钾长石化脉 SH2-21 2749m平台,矿体中部 晚 黑色磁铁矿,块状构造,发育脉状钾长石及黄铁矿 SH2-31 2749m平台,靠近顶板围岩 早、晚 灰黑色磁铁矿,角砾状构造,,磁铁矿角砾中含黄铁矿 SH2-32 2749m平台,靠近顶板围岩 早、晚 灰黑色磁铁矿,块状构造,发育条带状黄铁矿 SH3-8 2765m平台,矿体中部 晚 锖色磁铁矿,块状构造,发育不连续蚀变热液脉 SH3-16 2765m平台,矿体中部 晚 黑色磁铁矿,脉状构造,含脉状黄铁矿 SH5-6 2813m平台,浅部矿体 晚 灰黑色磁铁矿,脉状构造 SH6-3 2729m平台,深部矿体 晚 灰黑色磁铁矿,块状构造,蚀变强烈 SH6-7 2729m平台,深部矿体 早 黑色磁铁矿,脉状构造,磁铁矿结晶颗粒粗大 SH7-3 矿体中部 晚 橘红色贫铁矿石,团块状构造,局部见钾长石脉 SH7-7 矿体中部 早 钢灰色磁铁矿,脉状构造,发育黄钾铁矾 SH8-1 矿体中部 早、晚 肉红色钾长石化磁铁矿,角砾状构造 SH9-1 矿体中部 晚 蚀变岩,钾长石化、绿泥石化强烈,磁铁矿呈角砾状分布 SH12-1 矿体中部 晚 褐红色磁铁矿,团块状-蜂窝状构造 SH13-1 2888m平台,浅部矿体 早 条带状构造,磁铁矿与钾长石条带相间分布 ZK217-12 217钻孔,矿体深部尖灭处 早 黑色磁铁矿,块状构造,含少量浸染状黄铁矿 ZK217-14 217钻孔,矿体深部尖灭处 晚 黑色磁铁矿,块状构造,含少量浸染状黄铁矿 I-7 矿体上部 早 钢灰色磁铁矿,条带状构造,局部发育褐铁矿化 I-13 矿体上部 早 条带状构造,磁铁矿与钾长石条带相间分布,接触线平直 1003-31 1003钻孔,矿体上部 早 灰绿色中细粒凝灰岩,见浸染状黄铁矿化及脉状磁铁矿 1003-32 1003钻孔,矿体上部 早 灰绿色中细粒凝灰岩,蚀变强烈,磁铁矿呈脉状 1003-33 1003钻孔,矿体上部 早 矿体顶板蚀变岩,磁铁矿呈脉状 1003-34 1003钻孔,矿体下部 早 灰紫色中细粒凝灰岩,磁铁矿呈粗脉状 1003-37 1003钻孔,矿体下部 早 灰绿色中细粒凝灰岩,磁铁矿呈条带状 1003-40 1003钻孔,矿体下部 早 钢灰色磁铁矿,脉状构造 1003-43 1003钻孔,矿体下部 早 灰绿色角砾凝灰岩,磁铁矿含量较低,呈条带状 VII-6 矿体上部 晚 黑色富磁铁矿石,块状构造,见脉状及纹层状黄铁矿 VII-10 矿体上部 晚 黑色富磁铁矿石,块状构造,见脉状及浸染状黄铁矿 表 3 磁铁矿电子探针测试分析结果(单位: %)
Table 3. Electron microprobe analyses of magnetites from the Songhu iron deposit(%)
样号 SiO2 Al2O3 MnO MgO TiO2 V2O3 Cr2O3 NiO CaO K2O Na2O P2O5 Fe2O3 FeO Total Fe3+/Fe2+ SH1-11-1 0.56 0.16 0.04 0.05 0.05 0.00 0.00 0.03 0.00 0.00 0.07 0.01 68.92 32.05 101.94 1.94 SH1-11-2 3.84 1.40 0.07 0.22 0.01 0.02 0.04 0.03 0.99 0.08 0.18 0.01 59.00 33.68 99.56 1.58 SH1-11-3 1.25 0.19 0.07 0.00 0.03 0.04 0.01 0.04 0.05 0.01 0.04 0.00 67.16 33.03 101.92 1.83 SH1-11-4 3.44 0.92 0.12 0.16 0.29 0.01 0.02 0.00 0.67 0.04 0.17 0.00 60.88 34.43 101.16 1.59 SH1-11-5 2.39 0.55 0.07 0.14 0.13 0.04 0.00 0.03 0.37 0.04 0.07 0.00 63.51 33.53 100.85 1.70 SH1-11-6 2.40 0.72 0.06 0.11 0.16 0.09 0.00 0.00 0.49 0.03 0.10 0.00 62.64 33.22 100.03 1.70 SH1-11-7 1.60 0.26 0.01 0.05 0.14 0.03 0.05 0.01 0.30 0.01 0.07 0.04 65.52 32.99 101.07 1.79 SH1-11-8 2.90 0.92 0.01 0.14 0.49 0.07 0.13 0.07 0.80 0.08 0.16 0.00 60.73 33.30 99.80 1.64 SH1-11-9 0.52 0.16 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.05 0.00 68.60 31.87 101.23 1.94 SH1-11-10 1.61 0.43 0.01 0.17 0.13 0.04 0.05 0.01 0.22 0.11 0.12 0.03 65.52 32.27 100.73 1.83 SH1-11-11 0.64 0.11 0.04 0.10 0.05 0.03 0.02 0.03 0.00 0.00 0.00 0.03 67.75 32.02 100.81 1.90 SH1-11-12 1.49 0.27 0.02 0.12 0.11 0.05 0.00 0.01 0.16 0.02 0.04 0.02 65.64 32.85 100.81 1.80 SH1-11-13 2.30 0.58 0.14 0.16 0.02 0.02 0.00 0.01 0.35 0.01 0.12 0.00 63.73 33.01 100.45 1.74 SH1-11-14 5.06 1.80 0.08 0.19 0.06 0.00 0.04 0.02 1.41 0.15 0.25 0.02 56.14 34.57 99.79 1.46 SH1-11-15 0.89 0.09 0.01 0.04 0.01 0.04 0.00 0.00 0.05 0.00 0.01 0.00 67.58 32.42 101.13 1.88 SH1-11-16 3.49 1.05 0.09 0.19 0.23 0.07 0.03 0.01 0.71 0.06 0.18 0.00 60.29 34.08 100.49 1.59 SH1-11-17 2.38 0.60 0.02 0.12 0.14 0.07 0.02 0.00 0.41 0.03 0.12 0.00 63.40 33.39 100.69 1.71 SH1-11-18 1.83 0.34 0.07 0.07 0.12 0.06 0.05 0.02 0.24 0.00 0.04 0.00 64.56 33.21 100.59 1.75 SH1-11-19 3.04 0.87 0.13 0.14 0.37 0.06 0.00 0.00 0.90 0.07 0.14 0.04 61.32 33.73 100.81 1.64 SH1-13-1 0.25 0.03 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.02 0.00 0.05 68.60 31.67 100.67 1.95 SH1-13-2 5.47 0.43 0.00 1.06 0.15 0.02 0.00 0.00 1.92 0.05 0.15 0.01 55.75 33.37 98.39 1.50 SH1-13-7 4.68 0.63 0.00 0.71 0.36 0.00 0.00 0.00 1.70 0.03 0.17 0.05 57.47 33.77 99.56 1.53 SH1-13-9 0.09 0.13 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.04 0.00 66.85 30.23 97.39 1.99 SH1-13-10 4.75 0.27 0.00 0.57 0.00 0.00 0.01 0.02 1.24 0.02 0.12 0.00 58.02 34.29 99.31 1.52 SH1-13-14 0.04 0.04 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 69.95 31.55 101.63 1.99 SH1-13-15 0.16 0.06 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.01 68.50 30.81 99.67 2.00 SH1-13-17 1.04 0.17 0.03 0.03 0.07 0.00 0.00 0.02 0.09 0.01 0.11 0.00 66.23 31.66 99.45 1.88 SH1-20-1 7.45 0.58 0.05 0.68 0.11 0.01 0.05 0.00 1.45 0.24 0.18 0.00 52.00 36.78 99.58 1.27 SH1-20-3 12.14 0.46 0.01 0.63 0.11 0.01 0.00 0.00 1.49 0.15 0.14 0.00 41.82 43.95 100.92 0.86 SH1-20-5 5.58 0.46 0.01 0.79 0.09 0.00 0.02 0.00 1.73 0.15 0.15 0.00 56.85 34.34 100.18 1.49 SH1-20-6 4.72 0.35 0.00 0.59 0.07 0.00 0.00 0.00 1.55 0.03 0.10 0.01 58.37 34.23 100.01 1.53 SH1-20-7 0.10 0.10 0.02 0.00 0.09 0.05 0.00 0.04 0.15 0.00 0.02 0.00 67.23 30.34 98.13 1.99 SH1-20-9 1.23 0.15 0.00 0.01 0.22 0.03 0.04 0.00 0.06 0.02 0.07 0.00 66.29 32.75 100.85 1.82 SH1-21-1 1.41 0.14 0.00 0.02 0.04 0.00 0.02 0.00 0.12 0.02 0.00 0.03 65.48 32.82 100.10 1.80 SH1-22-2 5.73 0.31 0.00 0.88 0.05 0.04 0.04 0.01 1.87 0.10 0.16 0.00 56.34 34.12 99.66 1.49 SH1-22-3 0.12 0.05 0.01 0.00 0.04 0.07 0.00 0.00 0.12 0.00 0.06 0.00 69.57 31.24 101.27 2.00 SH1-22-4 0.50 0.17 0.00 0.02 0.11 0.04 0.01 0.00 0.00 0.00 0.00 0.02 68.16 32.21 101.22 1.90 SH1-31-2 0.01 0.06 0.07 0.00 0.11 0.02 0.04 0.00 0.00 0.00 0.05 0.01 69.63 31.32 101.32 2.00 SH1-31-4 1.29 0.38 0.03 0.06 0.48 0.09 0.05 0.07 0.16 0.07 0.05 0.00 65.43 32.73 100.89 1.80 SH1-32-1 1.61 0.53 0.00 0.03 0.06 0.05 0.00 0.00 0.12 0.07 0.07 0.02 65.29 32.88 100.74 1.79 SH1-32-3 0.65 0.03 0.06 0.04 0.14 0.04 0.00 0.00 0.00 0.00 0.03 0.00 68.03 32.15 101.16 1.90 SH1-33-1 0.35 0.10 0.00 0.05 0.07 0.04 0.05 0.03 0.03 0.00 0.02 0.00 67.55 31.18 99.48 1.95 SH1-33-2 1.09 0.10 0.05 0.04 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.06 66.33 32.60 100.30 1.83 SH1-33-3 0.98 0.33 0.00 0.03 0.05 0.04 0.00 0.00 0.09 0.02 0.01 0.01 66.26 32.20 100.01 1.85 SH1-38-1 0.78 0.07 0.01 0.10 0.05 0.00 0.00 0.00 0.05 0.02 0.06 0.02 66.75 31.41 99.31 1.91 SH2-17-2 3.25 0.39 0.10 0.51 0.07 0.00 0.03 0.00 0.80 0.28 0.08 0.02 62.86 32.95 101.34 1.72 SH2-21-1 3.00 0.18 0.03 0.65 0.05 0.00 0.00 0.00 0.84 0.15 0.14 0.00 62.80 32.05 99.88 1.76 SH2-21-2 3.13 0.72 0.03 0.92 0.13 0.02 0.00 0.04 0.60 0.05 0.03 0.00 61.48 33.06 100.21 1.67 SH2-21-3 4.72 0.49 0.07 0.87 0.07 0.04 0.00 0.00 1.19 0.20 0.09 0.03 57.30 33.27 98.33 1.55 SH2-21-4 2.89 0.19 0.06 0.69 0.04 0.07 0.00 0.03 0.97 0.01 0.08 0.00 62.23 32.09 99.35 1.74 SH2-31-1 0.23 0.18 0.00 0.12 0.11 0.12 0.00 0.01 0.00 0.00 0.01 0.00 65.88 30.28 96.95 1.96 SH2-31-2 4.96 0.28 0.00 0.87 0.18 0.00 0.01 0.00 1.49 0.03 0.15 0.00 57.91 34.02 99.88 1.53 SH2-32-1 0.24 0.10 0.00 0.00 0.07 0.04 0.02 0.00 0.00 0.00 0.00 0.00 68.72 31.72 100.91 1.95 SH2-32-3 0.44 0.24 0.01 0.00 0.06 0.00 0.01 0.00 0.00 0.02 0.07 0.00 68.57 31.71 101.13 1.95 SH2-32-5 3.68 0.10 0.00 0.25 0.01 0.01 0.01 0.00 0.71 0.01 0.08 0.04 61.66 34.93 101.49 1.59 SH2-32-6 4.90 0.25 0.01 0.68 0.03 0.00 0.00 0.00 1.49 0.02 0.05 0.03 58.45 34.84 100.75 1.51 SH3-8-1 4.99 0.79 0.05 0.98 0.12 0.16 0.06 0.00 1.01 0.25 0.06 0.03 57.26 34.27 100.03 1.50 SH3-8-5 5.10 0.89 0.04 0.70 0.75 0.05 0.04 0.01 0.72 0.45 0.03 0.00 55.58 35.14 99.48 1.42 SH3-16-1 1.12 0.13 0.01 0.15 0.15 0.02 0.05 0.04 0.08 0.02 0.01 0.00 65.89 32.15 99.81 1.84 SH5-6-1 4.19 0.19 0.00 0.85 0.09 0.05 0.00 0.04 1.02 0.02 0.07 0.03 60.26 34.23 101.01 1.58 SH5-6-3 5.54 0.51 0.06 0.66 0.14 0.02 0.00 0.00 0.98 0.22 0.06 0.04 55.16 35.15 98.53 1.41 SH6-3-2 1.77 0.17 0.05 0.11 0.02 0.00 0.00 0.00 0.19 0.00 0.02 0.01 65.25 33.16 100.74 1.77 SH6-3-6 1.99 0.18 0.00 0.13 0.02 0.00 0.01 0.00 0.13 0.00 0.01 0.05 63.67 33.33 99.50 1.72 SH6-3-8 1.86 0.13 0.01 0.06 0.00 0.03 0.03 0.00 0.04 0.00 0.02 0.01 64.43 33.32 99.93 1.74 SH6-7-1 1.86 0.11 0.00 0.01 0.09 0.05 0.00 0.00 0.00 0.00 0.05 0.04 64.65 33.64 100.51 1.73 ZK217-12-1 0.39 0.10 0.00 0.01 0.00 0.07 0.00 0.11 0.00 0.00 0.04 0.01 68.99 31.78 101.49 1.95 ZK217-14-2 1.92 0.60 0.02 0.08 0.08 0.03 0.00 0.00 0.23 0.03 0.09 0.00 64.81 33.22 101.12 1.76 SH7-3-2 0.80 0.05 0.00 0.03 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 67.62 32.35 100.89 1.88 SH7-3-5 0.18 0.01 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.03 68.44 31.39 100.13 1.96 SH7-7-1 1.91 0.49 0.05 0.16 0.12 0.00 0.04 0.00 0.35 0.04 0.03 0.02 65.07 33.39 101.67 1.75 SH8-1-3 0.10 0.03 0.05 0.00 0.20 0.00 0.07 0.00 0.00 0.01 0.00 0.00 69.15 31.68 101.29 1.96 SH8-1-4 3.14 0.58 0.00 0.00 0.65 0.00 0.06 0.01 0.32 0.00 0.02 0.05 59.15 35.37 99.34 1.50 SH8-1-5 0.42 0.26 0.06 0.01 0.57 0.01 0.02 0.00 0.00 0.01 0.00 0.00 67.76 32.60 101.72 1.87 SH9-1-1 0.00 0.10 0.05 0.01 0.61 0.29 0.03 0.05 0.00 0.00 0.01 0.00 65.60 30.66 97.41 1.93 SH9-1-2 0.35 0.21 0.00 0.02 0.60 0.33 0.08 0.00 0.00 0.00 0.00 0.00 64.47 31.23 97.30 1.86 SH9-1-4 0.00 0.01 0.01 0.00 0.15 0.06 0.03 0.02 0.00 0.00 0.00 0.01 66.70 30.33 97.32 1.98 SH12-1-4 0.04 0.06 0.02 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.00 70.03 31.52 101.74 2.00 SH12-1-5 0.00 0.00 0.02 0.00 0.05 0.00 0.03 0.00 0.00 0.07 0.03 0.00 70.57 31.40 102.17 2.02 SH13-2-2 1.02 0.25 0.00 0.02 0.19 0.00 0.02 0.00 0.47 0.05 0.01 0.00 66.39 31.95 100.37 1.87 I-7-1 2.89 0.25 0.02 0.40 0.05 0.00 0.01 0.02 0.62 0.17 0.04 0.00 61.15 32.27 97.89 1.71 I-13-1 4.35 0.49 0.13 0.81 0.39 0.08 0.01 0.00 1.03 0.07 0.16 0.01 58.42 33.72 99.67 1.56 1003-31-3 0.13 0.00 0.00 0.01 0.16 0.09 0.00 0.00 0.00 0.00 0.00 0.00 66.19 30.40 96.98 1.96 1003-31-4 0.36 0.18 0.04 0.00 0.38 0.03 0.06 0.00 0.00 0.00 0.02 0.03 63.90 30.42 95.42 1.89 1003-31-5 0.02 0.06 0.00 0.03 1.47 0.00 0.04 0.06 0.00 0.01 0.00 0.00 64.96 31.83 98.49 1.84 1003-32-1 0.00 0.04 0.09 0.00 0.12 0.00 0.01 0.04 0.00 0.00 0.04 0.00 70.08 31.42 101.84 2.01 1003-32-3 1.02 0.40 0.03 0.14 0.11 0.29 0.22 0.02 0.00 0.00 0.01 0.00 65.83 32.42 100.49 1.83 1003-32-2 0.01 0.01 0.01 0.00 0.55 0.67 0.05 0.00 0.00 0.00 0.00 0.00 67.82 31.87 100.99 1.91 1003-33-4 0.03 0.08 0.00 0.00 0.17 0.32 0.06 0.00 0.00 0.00 0.01 0.00 68.66 31.45 100.78 1.96 1003-33-6 0.83 0.17 0.08 0.07 0.04 0.41 0.05 0.00 0.01 0.16 0.00 0.00 67.16 31.79 100.77 1.90 1003-34-2 0.00 0.06 0.05 0.01 0.31 0.00 0.03 0.00 0.00 0.00 0.00 0.00 70.24 32.15 102.84 1.97 1003-37-3 0.63 0.03 0.01 0.00 0.26 0.20 0.00 0.00 0.00 0.01 0.03 0.00 68.13 32.52 101.82 1.88 1003-40-2 2.19 0.26 0.01 0.49 0.75 0.13 0.02 0.00 0.46 0.09 0.01 0.00 62.86 33.25 100.52 1.70 1003-43-3 0.43 0.27 0.00 0.01 0.08 0.25 0.03 0.00 0.03 0.03 0.01 0.00 68.48 32.08 101.70 1.92 VII-6-1 2.53 0.07 0.00 0.24 0.00 0.03 0.02 0.01 0.60 0.00 0.00 0.00 63.04 33.28 99.81 1.70 VII-6-2 2.92 0.08 0.00 0.20 0.00 0.01 0.02 0.00 0.41 0.00 0.00 0.02 62.00 34.14 99.80 1.63 VII-6-3 2.05 0.04 0.04 0.13 0.05 0.02 0.00 0.00 0.35 0.01 0.00 0.00 64.00 33.06 99.75 1.74 VII-10-1 1.29 0.20 0.02 0.19 0.03 0.00 0.00 0.03 0.10 0.03 0.00 0.00 66.59 32.61 101.09 1.84 VII-10-2 4.42 0.35 0.10 0.72 0.06 0.00 0.01 0.00 0.81 0.21 0.03 0.00 59.42 34.26 100.39 1.56 VII-10-3 4.04 0.32 0.02 0.91 0.00 0.01 0.01 0.00 1.18 0.00 0.03 0.00 60.63 33.85 101.00 1.61 VII-10-4 4.11 0.86 0.10 0.64 0.05 0.03 0.04 0.04 1.12 0.19 0.03 0.00 59.70 33.80 100.71 1.59 VII-10-5 5.42 1.49 0.09 0.76 0.13 0.00 0.01 0.00 1.08 0.27 0.15 0.01 56.29 34.88 100.58 1.45 VII-10-6 0.00 0.09 0.12 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.02 0.01 69.64 31.21 101.13 2.01 VII-10-7 4.85 0.31 0.05 1.14 0.09 0.00 0.04 0.00 1.46 0.11 0.11 0.01 58.76 33.46 100.38 1.58 注:1.样品SH1-11-1~ZK217-14-2的测试工作完成于长安大学电子探针实验室,样品SH7-3-2~VII-10-7的测试工作完成于中国地质科学院矿产资源研究所电子探针实验室;2.Fe2O3、FeO含量为依据阴、阳离子电价平衡原理计算所得. -
[1] Céline, D., Georges B., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Miner Deposita, (46): 319-335. doi: 10.1007/s00126-011-0334-y [2] Che Z.C., Liu L., Liu H.F., et al., 1996. Review on the Ancient YiLi Rift, XinJiang, China. Acta Petrologica Sinica, 12(3): 478-490 (in Chinese with English abstract). http://www.researchgate.net/publication/294485499_Review_on_the_ancient_Yili_rift_Xingjiang_China [3] Chen G.Y., Li M.H., Wang X.F., et al., 1984. Genetic Mineralogy Album of Gongchangling Iron Deposit. Joural of Mineralogy and Petrology, (2): 14-41 (in Chinese). http://www.researchgate.net/publication/312535903_Characteristics_of_genetic_mineralogy_of_magnetite_in_the_II_mining_area_of_the_Gongchangling_iron_deposit_and_its_signification [4] Duan C., Li Y.H., Yuan S.D., et al., 2012. Geochemical Characteristics of Magnetite from Washan Iron Deposit in Ningwu Ore District and Its Constraints on Ore-forming. Acta Petrologica Sinica, 28(1): 243-257 (in Chinese with English abstract). http://www.researchgate.net/publication/279569750_Geochemical_characteristics_of_magnetite_from_Washan_iron_deposit_in_Ningwu_ore_district_and_its_constraints_on_ore-forming [5] Grant F.S., 1985. Aeromagnetics, Geology and Ore Environments I. Magnetite in Igneous, Sedimentary and Metamorphic Rocks: An Overview. Geoexploration, 23(3): 303-333. http://www.sciencedirect.com/science/article/pii/001671428590002X [6] Guo G.Y., Hou Z.L. , 1993. The Metallogenic Model of Hot Spring Au Deposit and Estimation of Metallogenic Prospect. Tianjin Science and Technology Press, Tianjin (in Chinese). [7] Hong W., Zhang Z.H., Li H.Q., et al., 2012. Metallogenic Epoch of Chagangnuoer Iron Deposit in Western Tianshan Mountains, Xinjiang: Information from garnet Sm-Nd isochron age. Mineral Deposits, 31(5): 1067-1074 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201205010.htm [8] Hou L., Ding J., Deng J., et al., 2013. Geochemical Characteristics of Magnetites from the Yinachang Fe-Cu-Au-REE Deposit of Wuding Area, Central Yunnan Province, and Their Metallogenic Significance. Acta Petrologica et Mineralogica, 32(2): 154-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201302002.htm [9] Jiang S.Y. , 2000. Boron Isotope and Its Geological Applications. Geological Journal of China Universities, 6(1): 1-16 (in Chinese with English abstract). [10] Huayong C., Alan H.C., T. Kurtis K., et al., 2010. Evolution of the Giant Marcona-Mina Justa Iron Oxide-Copper-Gold District, South-Central Peru. Economic Geology, 105: 155-185. doi: 10.2113/gsecongeo.105.1.155 [11] Jiang Z.S., Zhang Z.H., Wang Z.H., et al., 2012a. Alteration Mineralogy, Mineral Chemistry and Genesis of Zhibo Iron Deposit in Western Tianshan Mountains, Xinjiang. Mineral Deposits, 35(5): 1051-1066 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201205009.htm [12] Jiang Z.S., Zhang Z.H., Hou K.J., et al., 2012b. Geochemistry and Zircon U-Pb Age of Volcanic Rocks from the Chagangnuoer and Zhibo Iron Deposits, Western Tianshan, and Their Geological Significance. Acta Petrologica Sinica, 28(7): 2074-2088 (in Chinese with English abstract). [13] Jing D.L., Ren Y., Wang B.Y., et al., 2012. Geological Characteristics and Metallogenic Periods of Songhu Iron Deposit in Xinjiang. Journal of Subtropical Resources and Environment, 7(4): 10-15 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-FJDL201204004.htm [14] Leng C.B., Zhang X.C., Wang S.X., et al., 2009. Advances of Researches on the Evolution of Ore-forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems. Geological Review, 55(1): 100-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901016.htm [15] Li D.P. , 2012. Superimposition Mineralization of the Awulale Iron Deposit Belt in Western Tianshan, Xinjiang(Dissertation). China University of Geosciences, Beijing, 26-126 (in Chinese with English abstract). [16] Li X.Y., Xu X.Y., Sun J.M., et al., 2012. Geochemistry and Dating of the Hypabyssal Granite Body in Nilka County of Western Tianshan Mountains. Geological Bulletin of China, 31(12): 1939-1948 (in Chinese with English abstract). http://www.researchgate.net/publication/285875717_Geochemistry_and_dating_of_the_hypabyssal_granite_body_in_Nilka_County_of_Western_Tianshan_Mountains [17] Li F.M., Peng X.P., Shi F.P., et al., 2011. Analysis on Fe-Mn Mineralization Regularity in Carboniferous Volcanic-Sedimentary Basin of West Tianshan. Xinjiang Geology, 29(1): 55-60 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XJDI201101013.htm [18] Li Y.J., Yang G.X., Guo W.J., et al., 2007. The Disintergration and Geological Significance of the Kuoerku Granite Batholith in Awulale, Western Tianshan. Xinjiang Geology, 25(3): 233-236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200703002.htm [19] Li Y.J., Gao Y.L., Tong L.L., et al., 2009. Tempestite of Akeshake Formation in Awulale Area, Western Tianshan and Its Significance. Earth Science Frontiers, 16(3): 341-348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200903037.htm [20] Li Y.J., Jin C., Hu K.L., et al., 2010a. Discovery of Fan Delta-Facies Sediment in Lower Carboniferous Akeshake Formation in the Yuzan Area, Western Tianshan Mountains and Its Significance. Acta Geologica Sinica, 84(10): 1470-1478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201010008.htm [21] Li Y.J., Hu K.L., Zhou J.B., et al., 2010b. Early Carboniferous Volcano-Magmatism and Related Mineralization in Yishijilike Mountain, Western Tianshan. Earth Science—Journal of China University of Geosciences, 35(2): 235-244 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.023 [22] Li Z.C., Li Y.J., Li J.H., et al., 2006. Geochemical Characteristics of the Dahalajunshan Formation Volcanic Rocks and Their Implications on the Tectonic Setting in Awulale Area. Xinjiang Geology, 22(2): 120-124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200602005.htm [23] Lin S.Z. , 1982. A Contribution to the Chemistry, Origin and Evolution of Magnetite. Acta Mineralogica Sinica, 22(2): 120-124 (in Chinese with English abstract). http://www.researchgate.net/publication/285714869_A_contribution_to_the_chemistry_origin_and_evolution_of_magnetite [24] Long L.L., Gao J., Qian Q., et al., 2008. Geochemical Characteristics and Tectonic Settings of Carboniferous Volcanic Rocks from Yili Region, Western Tianshan. Acta Petrologica Sinica, 24(4): 699-710 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804010.htm [25] Lu Z.L., Mo J.P. , 2006. Geological Characters and Ore Genesis of Awulale Iron-Rich Deposit in Xinjiang. Geology and Prospecting, 42(5): 8-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200605001.htm [26] Luo Y., Niu H.C., Shan Q., et al., 2011. Zircon U-Pb Age and Its Geological Significance of Trachyandesites from the Songhu Iron Deposit in Awulale Mountain. Mineral Geochemistry Bulletin, 30(suppl): 80 (in Chinese). [27] Nadoll P. , 2009. Geochemistry of Magnetite from Hydrothermal Ored Eposits and Host Rocks: Case Studies from the Proterozoic Belt Supergroup, Cu-Mo-Porphyry+Skarn and Climax-Mo Deposits in the Western United States(Dissertation Submitted for Ph. D). New Zealand: University of Auckland. [28] Nadoll P., Angerer T., Mauk J.L., et al. 2014. The Chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, (2014): 1-32. doi: 10.1016/j.oregeorev.2013.12.013 [29] Pan M.C., Yu H.F., Liang Y.W., et al., 2011. Geochemistry of Volcanic Rocks of the Lower Permian Wulang Formation in Wulasitai Area, Xinjiang. Geology and Resources, 20(6): 452-457 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201106009.htm [30] Shan Q., Zhang B., Luo Y., et al., 2009. Characteristics and Trace Element Geochemistry of Pyrite from the Songhu Iron Deposit, Nilek County, Xinjiang, China. Acta Petrologica Sinica, 25(6): 1456-1464 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200906016.htm [31] Shui Z.F. , 1981. Magnetite and Zircon Typomorphic Characteristics of Shike-type Iron Deposit in Guangxi and the Application of the Genetic Mineralogy in Iron Deposits. Journal of Guizhou University of Technology: 104-112 (in Chinese). [32] Sun L., Wang Y., Fan W., et al., 2008. Post-collisional Potassic Magmatism in the Southern Awulale Mountain, Western Tianshan Orogen: Petrogenetic and Tectonic Implications. Gondwana Research, 14: 383-394. doi: 10.1016/j.gr.2008.04.002 [33] Wang B.Y., Jiang C.Y. , 2011. Petrogensis and Geochemical Characteristics of Carboniferous Volcanic Rocks of Chagannur Iron Deposit Area in Western Tianshan, Xinjiang. Geological Science and Technology Information, 30(6): 18-27 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201106003.htm [34] Wang C.L., Wang Y.T., Dong L.H., et al., 2012a. Geochemical Characteristics of Rare Earth and Trace Elements Compositions of Songhu Iron Deposit in Western Tianshan of Xinjiang and Their Significance. Mineral Deposits, 31(5): 1038-1050 (in Chinese with English abstract). [35] Wang C.L. , 2012b. A Study on Geology, Geochemisity Feature and Genesis of Songhu Iron Deposit in Western Tianshan, Xinjiang(Dissertation). Chinese Academy of Geological Sciences, Beijing, 25-83 (in Chinese with English abstract). [36] Wang J.N., Bai X.L., Li Y.L., et al., 2009. Geological Characteristics of Songhu Iron Deposit in Nilka County, Xinjiang. Resources Environment & Engineering, 23(2): 104-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK200902005.htm [37] Wang S.J. , 1984. Genetic Mineralogy Applications. Wuhan College of Geology, Wuhan (in Chinese). [38] Wang Z.H., Zhang Z.H., Jiang Z.S., et al., 2012. Magnetite Composition of Zhibo Iron Deposit in Western Tianshan Mountains and Its Genetic Significance. Mineral Deposits, 31(5): 983-998 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kcdz201205003 [39] Wang Z.H. , 2013. Geological Characteristics and Ore Genesis of the Zhibo Iron Deposit in Western Tianshan Mountain, Xinjiang(Dissertation Submitted for Master Degree). China University of Geosciences, Beijing, 14-63 (in Chinese with English abstract). [40] Wang Z.L., Mao J.W., Zhang Z.H., et al. ,2004. Types, Characteristics and Metallogenic Geodynamic Evolution of the Paleozoic Polymetallic Copper-Gold Deposits in the Western Tianshan Mountains. Acta Geologica Sinica, 78(6): 836-847 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252711929.html [41] Xia L.Q., Xia Z.C., Xu X.Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Geological Bulletin of China, 23(9-10): 903-910 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2011.htm [42] Xiao R.G., Liu J.D., 2008. Geochemistry on Rock and Mineral Deposit, Seismological Press, Beijing (in Chinese). [43] Xiao R.G., Zhang Z.H., Chen H.Q., et al., 2001. Types of Geological Fluids and Pre-Forming Fluid. Earth Science Frontiers(China University of Geosciences, Beijing), 8(4): 245-251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200104002.htm [44] Xu G.F., Shao J.L. , 1979. Typomorphic Characteristics of Magnetite and the Practical Significance. Geology and Exploration, 3: 30-37 (in Chinese). [45] Ye Q.T., 1982. Typomorphic Characteristics and Genesis Significance of Magnetite from some Iron Ore Deposits in Eastern Guangdong. Acta Petrologica Mineralogica et Analytica, 1(1): 44-51 (in Chinese with English abstract). [46] Zhao Z.H., Xiong X.L., Wang Q., et al., 2008. Underplating-related Adakites in Xinjiang Tianshan, China. Lithos, (102): 374-391. http://www.sciencedirect.com/science/article/pii/S0024493707001193 [47] Zhao Y.M., 2013. Main Genetic Types and Geological Characteristics of Iron-rich Ore Deposits in China. Mineral Deposits, 32(4): 685-704 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201304006.htm [48] Zhang Z.H., Hong W., Jiang Z.S., et al., 2012. Geological Characteristics and Zircon U-Pb Dating of Volcanic Rocks from the Beizhan Iron Deposit in Western Tianshan Mountains, Xinjiang, NW China. Acta Geologica Sinica, 86(3): 737-747. doi: 10.1111/j.1755-6724.2012.00699.x [49] Zhang Z.H., Hong W., Jiang Z.S., et al., 2012. Geological Features, Mineralization Types and Metallogenic Setting of Late Paleozoic iron Deposits in Western Tianshan Mountains of Xinjiang. Mineral Deposits, 31(5): 941-964 (in Chinese with English abstract). http://www.cqvip.com/QK/93610X/201205/43694043.html [50] Zhang J.S., Li Z.C. , 2006. Tectonic Setting of the Dahalajunshan Formation Volcanic Rocks in Awulale of West Tianshan. Gansu Geology, 15(2): 10-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ200602002.htm [51] Zhang X.K., Li Z.C. , 2008. Geochemical Characteristics and Tectonic Significance of Dahalajunshan Formation Volcanic Rocks in the West Tianshan. Gansu Science and Technology, 24(3): 32-35 (in Chinese). [52] Zuo G.C., Zhang Z.H., Wang Z.L., et al., 2008. Tectonic Division, Stratigraphical Stystem and the Evolution of Western Tianshan Mountains, Xinjiang. Geological Review, 54(6): 748-767 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200806007.htm [53] Zhu Z.X., Dong L.H., Liu S.C., et al., 2012. Volcanic Rock Geological Characteristics and Tectonic Significance of the Late Paleozoic Yili Block in the Western Tianshan, Xinjiang. Xinjiang Geology, 30(3): 258-263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201203002.htm [54] Zhu Y.F., Zhang L.F., Gu L.B., et al., 2005. Study on Trace Elements Geochemistry and SHRIMP Chronology of Carboniferous Volcanic Rocks in West Tianshan. Chinese Science Bulletin, 50(18): 2004-2014 (in Chinese). doi: 10.1360/csb2005-50-18-2004 [55] Zhu Y.F., Zhou J., Song B., et al., 2006. Age of the "Dahalajunshan" Formation in Xinjiang and Its Disintegration. Geology in China, 33(3): 2004-2014 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603004.htm [56] Zhu W.N. , 2014. Metallogenic Source and Ore Genesis of Typical Iron Deposits in the Central Segment of Awulale Metallogenic Belt, Xinjiang(Dissertation). China University of Geosciences, Beijing, 97-102 (in Chinese with English abstract). [57] 车自成, 刘良, 刘洪福, 等. 1996. 论伊犁古裂谷. 岩石学报, 12(3): 478-490. doi: 10.3321/j.issn:1000-0569.1996.03.014 [58] 陈光远, 黎美华, 汪雪芳, 等. 1984. 弓长岭铁矿成因矿物学专辑前言. 矿物岩石, 4(2): 3-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198402004.htm [59] 段超, 李延河, 袁顺达, 等. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201020.htm [60] 郭光裕, 侯宗林. 1993. 热泉型金矿床成矿模式及成矿远景评价. 天津: 天津科学技术出版社. [61] 洪为, 张作衡, 李华芹, 等. 2012. 新疆西天山查岗诺尔铁矿床成矿时代——来自石榴子石Sm-Nd等时线年龄的信息. 矿床地质, 31(5): 1067-1074. doi: 10.3969/j.issn.0258-7106.2012.05.009 [62] 侯林, 丁俊, 邓军, 等. 2013. 滇中武定迤纳厂铁铜矿床磁铁矿元素地球化学特征及其成矿意义. 岩石矿物学杂志, 32(2): 154-166. doi: 10.3969/j.issn.1000-6524.2013.02.002 [63] 蒋少涌. 2000. 硼同位素及其地质应用研究. 高校地质学报, 6(1): 1-16. doi: 10.3969/j.issn.1006-7493.2000.01.001 [64] 蒋宗胜, 张作衡, 王志华, 等. 2012a. 新疆西天山智博铁矿床蚀变矿物学、矿物化学特征及矿床成因探讨. 矿床地质, 31(5): 1051-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201205009.htm [65] 蒋宗胜, 张作衡, 侯可军, 等. 2012b. 西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义. 岩石学报, 28(7): 2074-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207011.htm [66] 荆德龙, 任毅, 汪帮耀, 等. 2012. 新疆松湖铁矿地质特征与成矿期次划分. 亚热带资源与环境学报, 7(4): 10-15. doi: 10.3969/j.issn.1673-7105.2012.04.003 [67] 冷成彪, 张兴春, 王守旭, 等. 2009. 岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展. 地质论评, 55(1): 100-112. doi: 10.3321/j.issn:0371-5736.2009.01.012 [68] 李大鹏. 2012. 新疆西天山阿吾拉勒铁矿带叠加成矿作用(博士学位论文). 北京: 中国地质大学(北京), 26-126. [69] 李晓英, 徐学义, 孙吉明, 等. 2012. 西天山尼勒克地区浅成花岗质侵入体的地球化学特征及形成时代. 地质通报, 31(12): 1939-1948. doi: 10.3969/j.issn.1671-2552.2012.12.003 [70] 李凤鸣, 彭湘萍, 石福品, 等. 2011. 西天山石炭纪火山-沉积盆地铁锰矿成矿规律浅析. 新疆地质, 29(1): 55-60. doi: 10.3969/j.issn.1000-8845.2011.01.012 [71] 李永军, 杨高学, 郭文杰, 等. 2007. 西天山阿吾拉勒阔尔库岩基的解体及地质意义. 新疆地质, 25(3): 233-236. doi: 10.3969/j.issn.1000-8845.2007.03.001 [72] 李永军, 高永利, 佟丽莉, 等. 2009. 西天山阿吾拉勒一带石炭系阿克沙克组风暴岩及其意义. 地学前缘, 16(3): 341-348. doi: 10.3321/j.issn:1005-2321.2009.03.028 [73] 李永军, 金朝, 胡克亮, 等. 2010a. 西天山尼勒克北于赞一带下石炭统阿克沙克组扇三角洲相沉积的发现及意义. 地质学报, 84(10): 1470-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201010008.htm [74] 李永军, 胡克亮, 周继兵, 等. 2010b. 西天山伊什基里克山早石炭世火山岩浆作用及其成矿. 地球科学——中国地质大学学报, 35(2): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002006.htm [75] 李注苍, 李永军, 李景宏, 等. 2006. 西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析. 新疆地质, 24(2): 120-124. doi: 10.3969/j.issn.1000-8845.2006.02.005 [76] 林师整. 1982. 磁铁矿矿物化学、成因及演化的探讨. 矿物学报, 2(3): 166-174. doi: 10.3321/j.issn:1000-4734.1982.03.002 [77] 龙灵利, 高俊, 钱青, 等. 2008. 西天山伊犁地区石炭纪火山岩地球化学特征及构造环境. 岩石学报, 24(4): 699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804010.htm [78] 卢宗柳, 莫江平. 2006. 新疆阿吾拉勒富铁矿地质特征和矿床成因. 地质与勘探, 42(5): 8-11. doi: 10.3969/j.issn.0495-5331.2006.05.002 [79] 罗勇, 牛贺才, 单强, 等. 2011. 阿吾拉勒山松湖铁矿床粗安岩锆石U-Pb年龄及其地质意义. 矿物岩石地球化学通报, 30(增): 80. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001073.htm [80] 潘明臣, 于海峰, 梁有为, 等. 2011. 新疆吾拉斯台一带下二叠统乌郎组火山岩地球化学特征. 地质与资源, 20(6): 452-457. doi: 10.3969/j.issn.1671-1947.2011.06.008 [81] 单强, 张兵, 罗勇, 等. 2009. 新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学. 岩石学报, 25(6): 1456-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906016.htm [82] 税哲夫. 1981. 广西石科类型铁矿磁铁矿、锆石标型特征及成因矿物学在铁矿中的应用. 贵州工学院学报, (3): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX198103009.htm [83] 汪帮耀, 姜常义. 2011. 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因. 地质科技情报, 30(6): 18-27. doi: 10.3969/j.issn.1000-7849.2011.06.003 [84] 王春龙. 2012. 新疆西天山松湖铁矿床地质地球化学特征与成因研究(硕士学位论文). 北京: 中国地质科学院, 25-83. [85] 王春龙, 王义天, 董连慧, 等. 2012. 新疆西天山松湖铁矿床稀土和微量元素地球化学特征及其意义. 矿床地质, 31(5): 1038-1050. doi: 10.3969/j.issn.0258-7106.2012.05.007 [86] 王军年, 白新兰, 李岩龙, 等. 2009. 新疆尼勒克县松湖铁矿地质特征. 资源环境与工程, 23(2): 104-107. doi: 10.3969/j.issn.1671-1211.2009.02.004 [87] 王顺金. 1984. 成因矿物学应用. 武汉: 武汉地质学院出版社. [88] 王志华. 2013. 新疆西天山智博铁矿床地质特征及成因研究(硕士毕业论文). 北京: 中国地质大学(北京), 14-63. [89] 王志华, 张作衡, 蒋宗胜, 等. 2012. 西天山智博铁矿床磁铁矿成分特征及其矿床成因意义. 矿床地质, 31(5): 983-998. doi: 10.3969/j.issn.0258-7106.2012.05.003 [90] 王志良, 毛景文, 张作衡, 等. 2004. 西天山古生代铜金多金属矿床类型、特征及其成矿地球动力学演化. 地质学报, 78(6): 836-847. doi: 10.3321/j.issn:0001-5717.2004.06.015 [91] 夏林圻, 夏祖春, 徐学义, 等. 2004. 天山石炭纪大火成岩省与地幔柱. 地质通报, 23(9): 903-910. doi: 10.3969/j.issn.1671-2552.2004.09.012 [92] 肖荣阁, 刘敬党. 2008. 岩石矿床地球化学. 北京: 地震出版社. [93] 肖荣阁, 张宗恒, 陈卉泉, 等. 2001. 地质流体自然类型与成矿流体类型. 地学前缘, 8(4): 245-251. doi: 10.3321/j.issn:1005-2321.2001.04.002 [94] 徐国风, 邵洁涟. 1979. 磁铁矿的标型特征及其实际意义. 地质与勘探, 15(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197903005.htm [95] 叶庆同. 1982. 粤东一些铁矿床中磁铁矿的标型特征及其成因意义. 岩矿测试, 1(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198201007.htm [96] 赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685-704. doi: 10.3969/j.issn.0258-7106.2013.04.004 [97] 张作衡, 洪为, 蒋宗胜, 等. 2012. 新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境. 矿床地质, 31(5): 941-964. doi: 10.3969/j.issn.0258-7106.2012.05.001 [98] 张学奎, 李注苍. 2008. 西天山大哈拉军山组火山岩地球化学特征及地质意义. 甘肃科技, 24(3): 32-35. doi: 10.3969/j.issn.1000-0952.2008.03.014 [99] 左国朝, 张作衡, 王志良, 等. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54(6): 748-767. doi: 10.3321/j.issn:0371-5736.2008.06.004 [100] 朱志新, 董连慧, 刘淑聪, 等. 2012. 新疆西天山伊犁地块晚古生代火山岩地质特征及构造意义. 新疆地质, 30(3): 258-263. doi: 10.3969/j.issn.1000-8845.2012.03.003 [101] 朱永峰, 张立飞, 古丽冰, 等. 2005. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究. 科学通报, 50(18): 2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014 [102] 朱永峰, 周晶, 宋彪, 等. 2006. 新疆"大哈拉军山组"火山岩的形成时代问题及其解体方案. 中国地质, 33(3): 487-497. doi: 10.3969/j.issn.1000-3657.2006.03.005 [103] 朱维娜. 2014. 新疆阿吾拉勒成矿带中段典型铁矿床成矿物质来源与矿床成因研究(硕士毕业论文). 北京: 中国地质大学(北京), 97-102.