Control Effect of Evolution Process of the Yellow River Terrace in Lanzhou on Landslide Activity
-
摘要: 为探索特殊地质环境-河流阶地孕育滑坡的相关性, 更深入地认识这类河流岸坡的变形破坏过程, 在广泛分析区域工程地质资料的基础上, 从第四系地貌学与工程地质学相结合的角度, 研究了兰州市黄河河谷演化发育的阶段性特征和黄河阶地演化对滑坡的控制效应及其诱发模式.研究表明: (1)黄河河谷的演化对兰州地区滑坡发育的控制作用具有时间上的阶段性和空间上的分带性, 在河谷演化不同阶段滑坡有着不同的发育模式和形成机理; (2)阶地型滑坡主要诱发因素为新构造运动的强烈抬升、黄河强烈下切以及阶地形成期相对湿润的古气候.第三系泥岩地层间形成的软弱夹层可诱发大型黄土泥岩滑坡, 而黄土层内多发中小型崩滑.河谷演化期间, 滑坡的发生可能导致部分阶地的缺失.Abstract: In order to explore the relationship between the geological settings and the development of the slides, and mechanisms of landslides induced by evolution of the Yellow River terrace in Lanzhou, the development phase characters of the Yellow River valley evolution in Lanzhou, control effect of the valley evolution to landslides and landslide formation model are studied in this paper based on extensive analysis of regional engineering geology data, combined with Quaternary geomorphology and engineering geology. It is found that: (1) the control effect of landslides in Lanzhou induced by the Yellow River valley evolution shows phase in time and zonation in space. The landslides have different development modes and formation mechanisms in different phases of river valley evolution. (2) The major inducing factors of terrace landslides are intense neotectonics uplifting, strong incision of the Yellow River and relative moisture paleoclimate during the terraces formed. The weak intercalated layers formed in Tertiary mudstone stratum may induce large scale loess-mudstone landslides while it may develop small-middle scale landslides and collapses in the loess layer. The landslides may lead to the deficiency of partial terraces during the river valley evolution.
-
图 1 兰州地区地质构造
据袁道阳等(2004).1.走滑断层;2.逆断层;3.正断层;4.Q3-4断层;5.Q1-2断层;6.隐伏断层;7.隆起带;8.地震震中;9.水库;10.山区;11.新近纪-第四纪盆地;12.挤压区;13.拉张区;14.运动方向向外;15.运动方向向内
Fig. 1. Tectonic geological sketch in Lanzhou area
表 1 兰州市区黄河阶地形成时代及特征
Table 1. The Yellow River terrace formation age and characteristic in Lanzhou area
阶地 阶地类型 形成时代(Ma BP) 下切速率(mm/a) 青藏高原隆升阶段 基座高度(m) 砾石层厚度(m) 黄土厚度(m) 古土壤单元 T1 堆积 0.01 1.00 共和运动 8 6 3 S0 T2 基座 0.05 0.30 共和运动 20 5 20 Sm T3 基座 0.14 0.56 共和运动 60 5 40 S1 T4 基座 0.86 0.17 昆仑-黄河运动 140 5 100 S8 T5 基座 0.96 0.09 昆仑-黄河运动 210 5 200 S9 T6 基座 1.00 0.10 昆仑-黄河运动 230 3 310 S10 T7 基座 1.20 1.00 昆仑-黄河运动 330 10 110 S14 T8 基座 1.40 1.20 青藏运动C幕 410 4 90 S18 注:据Li(1991)、彭建兵等(2004)和潘保田等(2006). 表 2 可能诱发的滑坡模式分类
Table 2. Probable induced landslide types
斜坡结构类型 破坏情况 破坏模式 黄土+阶地+顺层泥岩(图 12a) 阶地前缘黄土、阶地砾石层以及泥岩发生滑塌 顺层拉裂滑塌 黄土+阶地+切层泥岩(图 12b) 阶地前缘黄土、阶地砾石层以及泥岩发生坍塌、倾倒 切层拉裂崩滑 黄土+阶地+古滑坡堆积体+顺层泥岩(图 12c) 阶地上覆黄土、阶地砾石层连同前期老滑坡堆积体再次发生滑坡 顺层剪切滑移 黄土+阶地+古滑坡堆积体+切层泥岩(图 12d) 阶地上覆黄土、阶地砾石层连同前期老滑坡堆积体再次发生滑坡 切层拉裂蠕滑 黄土+多级阶地+覆盖层+切层泥岩(图 12e) 阶地上覆黄土及砾石层发生泥岩切层滑坡 切层滑移拉裂 黄土+多级阶地+覆盖层+顺层泥岩(图 12f) 阶地上覆黄土及砾石层发生泥岩顺层滑坡 顺层剪切-蠕滑 黄土+阶地+覆盖层+近水平层泥岩(图 12g) 阶地上覆黄土及古老滑坡体发生多级多次滑动 错落式、多级旋转 黄土层(图 12h) 阶地上黄土层内黄土滑坡 剪切滑动、倾倒拉裂 -
[1] Chen, G.J., Li, C.A., Chen, S., et al., 2013. Landslide Development and Geological Process of Watercourse Evolution in the Three Gorges Reservoir Area. Earth Science—Journel of China University of Geosciences, 38(2): 411-416 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.040 [2] Derbyshire, E., 2001. Geological Hazards in Loess Terrain, with Particular Reference to the Loess Regions of China. Earth-Science Reviews, 54(1-3): 231-260. doi: 10.1016/s0012-8252(01)00050-2 [3] Ding, Z.Q., Li, Z.H., 2009. Geological Disasters and Their Prevention in Lanzhou. Gansu Science and Technology Press, Lanzhou (in Chinese). [4] He, L., Wen, B.P., Li, H., 2010. Effects of Pore Water in Shear Strength of Weathered Red Mudstone in Lanzhou Area, China. Hydrogeology & Engineering Geology, 37(3): 48-52 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SWDG201003015.htm [5] Li, B., 2009. Research on Formation Evolution Mechanism of Multiple Rotational Loess Landslides (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [6] Li, B.X., Miao, T.D., 2003. Strength Controlling Forecast Method of Critical Landslide along Red-Soft-Mudstone Layer. Chinese Journal of Rock Mechanics and Engineering, 22(Suppl. 2): 2703-2706 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX2003S2034.htm [7] Li, J.J., 1991. The Environmental Effects of the Uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews, 10(6): 479-483. doi: 10.1016/0277-3791(91)90041-R [8] Li, J.J., Fang, X.M., Ma, H.Z., et al., 1996. Geomorphological and Environmental Evolution in the Upper Reaches of the Yellow River during the Late Cenozoic. Science in China (Series D), 26(4): 316-322 (in Chinese). http://www.cnki.com.cn/Article/CJFD1996-JDXG199604004.htm [9] Li, S., Wang, Y., Chen, H.Z., et al., 1993. Neotectonics of the Yellow River Valley in Lanzhou. Geological Review, 39(3): 259-267 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199303008.htm [10] Pan, B.T., Li, J.J., Cao, J.X., 1994. The Landforms in the Middle Reaches of the Yellow River and Problem of Physiographic Stage. Journal of Lanzhou University (Natural Sciences), 30(1): 115-123 (in Chinese with English abstract). http://www.cqvip.com/qk/95222X/199401/1420328.html [11] Pan, B.T., Su, H., Hu, C.S., et al., 2006. Discovery of 1.0 Ma Yellow River Terrace and 0.8 Ma Epoch redetermination of Terrace Tormation in Lanzhou Area. Progress in Natural Science, 16(11): 1411-1418 (in Chinese). http://www.researchgate.net/publication/301736678_Discovery_of_10_Ma_Yellow_River_Terrace_and_08_Ma_Epoch_redetermination_of_Terrace_Tormation_in_Lanzhou_Area [12] Peng, J.B., Ma, R.Y., Lu, Q.Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200403017.htm [13] Trauth, M.H., Strecher M.R., 1999. Formation of Landslide-Dammed Lakes during a Wet Period between 40 000 and 25 000 yr B.P. in North-Western Argentina. Palaeogeography, Paleoclimatology, Palaeoecology, 153(1-4): 277-287. doi: 10.1016/s0031-0182(99)00078-4 [14] Wang, P., Jiang, H.C., Yuan, D.Y., et al., 2008. Stratigraphic Structures and Ages of the Second and Third Fluvial Terraces along the Bank of Huanghe River in Lanzhou Basin, Western China, and Their Environmental Implications. Quaternary Sciences, 28(4): 553-563 (in Chinese with English abstract). http://www.researchgate.net/publication/285875512_Stratigraphic_structures_and_ages_of_the_second_and_third_fluvial_terraces_along_the_bank_of_Huanghe_River_in_Lanzhou_basin_western_China_and_their_environmental_implications [15] Wu, W.J., Wang, N.Q., 2005. Gansu Landslide Disasters. Lanzhou University Press, Lanzhou (in Chinese). [16] Yin, K.L., Han, Z.S., Li, Z.Z., 2000. International Research Progress of Landslides. Hydrogeology and Engineering Geology, 27(5): 1-4 (in Chinese with English abstract). [17] Yin, Z.Q., Cheng, G.M., Hu, G.S., et al., 2010. Preliminary Study on Characteristic and Mechanism of Super-Large Landslides in Upper Yellow River since Later Pleistocene. Journal of Engineering Geology, 18(1): 41-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201001007.htm [18] Yin, Z.Q., Wei, G., Qi, X.B., et al., 2013. Spatial and Temporal Characteristics of Landslides and Their Response to Climatic Change from Sigou to Lagan Gorges in Upper Reaches of Yellow River. Journal of Engineering Geology, 21(1): 129-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201301023.htm [19] Yuan, D.Y., Liu, X.F., Zheng, W.J., et al., 2004. Active Tectonic Framework and Deformation Features in Lanzhou Area. Acta Geologica Sinica, 78(5): 626-632 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200405005.htm [20] Zhou, B., 2010. Research on Development Characteristic and Mass Mechanism of Superlarge Landslide in the Upper Yellow River (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [21] 陈国金, 李长安, 陈松, 等, 2013. 长江三峡库区滑坡发育与河道演变的地质过程分析. 地球科学——中国地质大学学报, 38(2): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302024.htm [22] 丁祖全, 黎志恒, 2009. 兰州市地质灾害与防治. 兰州: 甘肃科学技术出版社. [23] 何蕾, 文宝萍, 李慧, 2010. 水在兰州地区红层风化泥岩抗剪强度中的综合效应. 水文地质工程地质, 37(3): 48-52. doi: 10.3969/j.issn.1000-3665.2010.03.011 [24] 李滨, 2009. 多级旋转型黄土滑坡形成演化机理研究(博士学位论文). 西安: 长安大学. [25] 李保雄, 苗天德, 2003. 红层软岩顺层滑坡临滑预报的强度控制方法. 岩石力学与工程学报, 22(增刊2): 2703-2706. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2034.htm [26] 李吉均, 方小敏, 马海洲, 等, 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑), 26(4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005 [27] 李森, 王跃, 陈惠忠, 等, 1993. 黄河兰州谷地新构造运动的初步研究. 地质论评, 39(3): 259-267. doi: 10.3321/j.issn:0371-5736.1993.03.009 [28] 潘保田, 李吉均, 曹继秀, 1994. 黄河中游的地貌与地文期问题. 兰州大学学报(自然科学版), 30(1): 115-123. doi: 10.3321/j.issn:0455-2059.1994.01.025 [29] 潘保田, 苏怀, 胡春生, 等, 2006. 兰州地区1.0 Ma黄河阶地的发现和0.8 Ma阶地形成时代的重新厘定. 自然科学进展, 16(11): 1411-1418. doi: 10.3321/j.issn:1002-008X.2006.11.007 [30] 彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466. doi: 10.3321/j.issn:1001-8166.2004.03.018 [31] 王萍, 蒋汉朝, 袁道阳, 等, 2008. 兰州黄河Ⅱ和Ⅲ级阶地的地层结构、年龄及环境意义. 第四纪研究, 28(4): 553-563. doi: 10.3321/j.issn:1001-7410.2008.04.006 [32] 吴玮江, 王念秦, 2005. 甘肃滑坡灾害. 兰州: 兰州大学出版社. [33] 殷坤龙, 韩再生, 李志中, 2000. 国际滑坡研究的新进展. 水文地质工程地质, 27(5): 1-4. doi: 10.3969/j.issn.1000-3665.2000.05.001 [34] 殷志强, 程国明, 胡贵寿, 等, 2010. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究. 工程地质学报, 18(1): 41-52. doi: 10.3969/j.issn.1004-9665.2010.01.006 [35] 殷志强, 魏刚, 祁小博, 等, 2013. 黄河上游寺沟峡—拉干峡段滑坡时空特征及对气候变化的响应研究. 工程地质学报, 21(1): 129-137. doi: 10.3969/j.issn.1004-9665.2013.01.017 [36] 袁道阳, 刘小凤, 郑文俊, 等, 2004. 兰州地区活动构造格架与变形特征. 地质学报, 2178(15): 626-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200405005.htm [37] 周保, 2010. 黄河上游(拉干峡-寺沟峡段)特大型滑坡发育特征与群发机理研究(博士学位论文). 西安: 长安大学.