Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt: Constraints from Zircon U-Pb Age and Hf Isotope
-
摘要: 钦杭成矿带是华南地区重要的斑岩铜成矿带.前人研究表明区内斑岩铜矿床主要形成于中-晚侏罗世(180~155 Ma), 含矿斑岩为壳-幔相互作用的产物.对区内新近发现的钦杭带西南段大瑶山地区的宝山斑岩铜矿床进行研究, 结果表明其成岩成矿时代集中在晚白垩世.其中, 隐伏含矿花岗斑岩体的锆石LA-ICP-MS U-Pb年龄为91.1±0.6 Ma(1σ), 出露地表不含矿的两个花岗斑岩锆石U-Pb年龄分别为91.3±0.8 Ma(1σ)和90.1±1.0 Ma(1σ).含矿斑岩和不含矿斑岩的锆石Hf同位素组成相似, 初始εHf(91 Ma)为-8.74~-5.13, 两阶段Hf模式年龄TDM2集中在1 210~1 394 Ma.以上U-Pb-Hf同位素分析结果表明, 宝山铜矿床是一个晚白垩世早期(约91 Ma)形成的斑岩型铜矿床, 其含矿斑岩体的成因可能与中元古代地壳物质的部分熔融有关.结合前人的研究成果可知, 钦杭成矿带存在两期斑岩铜矿床成矿作用, 分别为中-晚侏罗世和晚白垩世, 其中晚白垩世成矿作用可能与华南板块边缘后碰撞伸展构造背景有关; 钦杭带西南侧大瑶山及邻区可能广泛发育有与燕山晚期岩浆活动(80~100 Ma)有关的钨-钼-铜(金)多金属矿床.Abstract: The Qinzhou Bay-Hangzhou Bay suture zone is an important porphyry copper metallogenic belt in southern China. Previous studies suggest that the ages of regional diagenesis and mineralization are mainly concentrated in the Late-Middle Jurassic (180-155 Ma), and the ore-bearing granite porphyry shows distinctly crust-mantle contamination. The Baoshan copper deposit is a porphyry-type Cu deposit newly discovered in the Dayaoshan region in the southwestern of the Qinhang metallogenic belt in recent years. The granite porphyry is dominated as small stock into Sheshan granodiorite, including two outcropped and one concealed magmatic emplacement. And the copper ore body is all hosted in the Baoshan concealed granite porphyry. In this paper, laser ablation (MC)-ICPMS U-Pb dating and Hf isotopic compositions of zircons from three granite porphyry samples in the Baoshan copper deposit are presented. Highly precise U-Pb results indicate that zircons from one concealed and two outcropped granite porphyries give weighted mean 206Pb/238U age of 91.1±0.6 Ma (1σ), 91.3±0.8 Ma (1σ) and 90.1±1.0 Ma (1σ), respectively. And the zircons crystallized in the late Yanshannian granites give εHf (91 Ma) values ranging from -8.74 to -5.13 and Hf model ages (TDM2) of 1 210-1 394 Ma. U-Pb and Hf isotopic data can be interpreted as the crystallization time of these granites and the mineralization age, indicating it was formed in the ~91 Ma and may be developed by reworking of Mesoproterozoic crust closely related to partial melting. Together with other published geochronological data, it is proposed that the late Yanshannian magmatite and related Cu (Au)-W-Mo deposit are widely developed in the Dayaoshan and its adjacent areas. Moreover, two epochs of porphyry copper mineralization are confirmed in this study, including the Middle-Late Jurassic and the Late Cretaceous, in the Qinhang metallogenic belt, and it is concluded that Late Cretaceous mineralization possibly resulted from the post-collisional crustal extension setting in the continental margin of the South China.
-
图 2 大瑶山社山地区宝山铜矿床区域地质简图
Fig. 2. Geological sketch of the Sheshan district, Dayaoshan, showing the location of the Baoshan porphyry Cu deposit
图 5 宝山斑岩铜矿床的矿物组成和结构特征
a.交错细脉状黄铜矿脉矿石;b.网脉状的石英-黄铁矿-黄铜矿脉矿石;c.稠密浸染状黄铜矿矿石;d.黄铜矿交代早期石英形成镶边结构;e.黄铜矿、黄铁矿呈脉状穿插;f.黄铜矿呈网脉状交代穿插早期形成的黄铁矿;g.黄铜矿与黄铁矿、闪锌矿密切共生;h.磁黄铁矿交代黄铜矿形成的交代残余结构,并与黄铁矿和闪锌矿共生;i.黝铜矿与黄铜矿、闪锌矿密切共生.Qz.石英;Ser.绢云母;Pl.斜长石;Py.黄铁矿;Ccp.黄铜矿;Sp.闪锌矿;Po.磁黄铁矿;Ttr.黝铜矿
Fig. 5. Photographs and micrographs showing mineralogy and texture of copper ores from the Baoshan porphyry Cu deposit
图 9 华南地区燕山晚期金属矿床时空分布特征
Fig. 9. Spatial-temporal distribution of late Yanshanian ore deposits in southern China
图 10 钦杭成矿带中-晚侏罗世和晚白垩世斑岩铜矿床的时空分布特征
Fig. 10. The spatial and temporal distribution of the Middle-Late Jurassic and the late Cretaceous porphyry copper deposits in the Qinhang metallogenic belt
表 1 社垌地区花岗斑岩LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb data for zircons from the granite porphyry in the Shedong area
测试点号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ BS1 BS1-1 337 613 0.55 0.071 6 0.005 7 0.140 3 0.011 3 0.014 4 0.000 4 975.9 161.1 133.4 10.1 92.3 2.5 BS1-2 493 995 0.50 0.061 1 0.003 6 0.116 7 0.006 2 0.014 3 0.000 2 642.6 129.6 112.1 5.6 91.8 1.3 BS1-3 558 1 099 0.51 0.058 9 0.003 3 0.112 6 0.006 0 0.014 2 0.000 2 564.9 124.1 108.4 5.5 90.7 1.3 BS1-4 583 1 071 0.54 0.059 3 0.004 9 0.111 2 0.007 5 0.014 1 0.000 2 588.9 177.8 107.0 6.9 90.5 1.4 BS1-5 766 946 0.81 0.086 4 0.007 3 0.165 2 0.012 3 0.014 4 0.000 4 1 346.3 164.0 155.3 10.7 92.3 2.5 BS1-6 481 618 0.78 0.078 5 0.006 9 0.157 6 0.013 6 0.014 7 0.000 4 1 159.0 175.2 148.6 12.0 93.8 2.2 BS1-7 806 1 529 0.53 0.048 7 0.002 5 0.093 6 0.004 4 0.014 3 0.000 2 131.6 123.1 90.8 4.1 91.7 1.3 BS1-8 1 003 1 460 0.69 0.055 7 0.003 3 0.105 5 0.006 1 0.013 9 0.000 2 442.6 133.3 101.8 5.6 88.9 1.4 BS1-9 322 644 0.50 0.085 4 0.006 5 0.159 0 0.010 3 0.014 4 0.000 3 1 324.1 147.7 149.8 9.0 92.0 2.2 BS1-10 792 1 322 0.60 0.068 5 0.006 3 0.129 8 0.011 1 0.014 2 0.000 3 883.3 190.0 123.9 9.9 90.7 1.6 BS1-11 349 622 0.56 0.064 3 0.005 1 0.123 8 0.009 4 0.014 4 0.000 3 753.7 166.7 118.5 8.5 91.9 2.0 BS1-12 650 894 0.73 0.070 4 0.006 1 0.135 3 0.011 0 0.014 4 0.000 3 942.6 180.1 128.8 9.9 91.9 2.0 BS1-13 394 705 0.56 0.062 8 0.003 9 0.122 4 0.007 1 0.014 3 0.000 3 701.9 133.3 117.2 6.4 91.7 1.8 BS1-14 885 1 288 0.69 0.047 7 0.002 8 0.093 1 0.005 4 0.014 3 0.000 2 87.1 133.3 90.4 5.0 91.4 1.6 BS1-15 358 657 0.55 0.067 6 0.004 6 0.134 2 0.009 1 0.014 6 0.000 3 857.4 141.5 127.9 8.1 93.4 1.7 BS1-16 701 1 381 0.51 0.048 6 0.002 3 0.092 4 0.004 1 0.014 1 0.000 2 127.9 112.9 89.7 3.8 90.1 1.2 BS1-17 1 519 1 826 0.83 0.050 0 0.003 4 0.098 8 0.006 7 0.014 4 0.000 2 194.5 159.2 95.6 6.2 92.3 1.5 BS1-18 448 801 0.56 0.059 1 0.004 0 0.118 9 0.007 7 0.015 1 0.000 5 572.3 152.8 114.1 7.0 96.7 3.3 BS2 BS2-1 2 566 27 123 0.09 0.047 4 0.002 7 0.094 1 0.005 3 0.014 2 0.000 1 77.9 120.4 91.3 5.0 90.7 0.7 BS2-2 2 255 8 496 0.27 0.043 3 0.010 0 0.090 7 0.020 0 0.013 8 0.000 2 - - 88.2 18.6 88.2 1.3 BS2-3 882 1 913 0.46 0.012 0 0.010 8 0.068 0 0.030 3 0.014 6 0.000 3 - - 66.8 28.9 93.5 1.9 BS2-4 3 183 11 639 0.27 0.033 8 0.012 4 0.153 0 0.044 7 0.013 8 0.000 4 - - 144.6 39.3 88.3 2.7 BS2-5 1 894 2 894 0.65 0.052 6 0.013 0 0.111 3 0.025 6 0.013 9 0.000 3 322.3 468.5 107.2 23.4 88.7 2.0 BS2-6 1 135 1 688 0.67 0.012 6 0.017 6 0.023 1 0.028 9 0.013 1 0.000 6 - - 23.2 28.7 83.8 3.9 BS2-7 378 615 0.61 0.000 0 0.000 0 0.000 0 0.000 0 0.013 8 0.000 4 - - 0.0 0.0 88.3 2.4 BS2-8 2 651 4 314 0.61 0.063 2 0.004 2 0.130 5 0.007 9 0.014 4 0.000 3 716.7 141.5 124.5 7.1 91.9 1.6 BS2-9 465 2 481 0.19 0.158 5 0.003 1 10.232 9 0.233 2 0.465 5 0.007 3 2 439.8 32.7 2 456.1 21.1 2 463.6 31.9 BS2-10 1 967 10 925 0.18 0.059 5 0.012 7 0.140 6 0.023 3 0.014 1 0.000 3 587.1 474.0 133.6 20.8 90.0 1.8 BS2-11 342 604 0.57 0.045 9 0.007 9 0.177 4 0.030 2 0.026 7 0.001 0 - - 165.8 26.1 169.9 6.1 BS2-12 463 943 0.49 0.058 4 0.006 7 0.133 4 0.021 1 0.016 0 0.000 5 542.6 251.8 127.1 18.9 102.2 3.2 BS2-13 382 607 0.63 0.060 6 0.007 3 0.125 1 0.014 6 0.015 6 0.000 5 633.4 262.9 119.6 13.1 100.0 2.9 BS2-14 2 488 14 683 0.17 0.061 3 0.005 4 0.123 7 0.011 1 0.014 0 0.000 2 650.0 186.1 118.4 10.1 89.9 1.0 BS2-15 2 735 12 755 0.21 0.047 9 0.008 7 0.093 3 0.017 5 0.013 8 0.000 2 94.5 381.4 90.6 16.3 88.2 1.2 BS2-16 2 475 10 765 0.23 0.069 6 0.006 6 0.140 5 0.014 0 0.013 9 0.000 2 918.2 196.3 133.4 12.4 89.1 1.3 BS2-17 3 103 23 741 0.13 0.060 0 0.008 8 0.126 8 0.018 9 0.014 0 0.000 2 603.4 320.8 121.2 17.0 89.4 1.1 BS2-18 1 889 3 484 0.54 0.044 6 0.004 1 0.092 5 0.008 4 0.014 6 0.000 2 - - 89.8 7.8 93.4 1.3 BS3 BS3-1 590 1 044 0.57 0.057 9 0.001 9 0.559 4 0.018 2 0.070 3 0.001 1 527.8 71.1 451.1 11.9 437.7 6.4 BS3-2 1 246 3 368 0.37 0.048 1 0.001 9 0.094 2 0.003 4 0.014 2 0.000 2 105.6 90.7 91.4 3.1 91.1 1.0 BS3-3 1 205 3 952 0.30 0.048 9 0.001 5 0.095 5 0.002 8 0.014 2 0.000 1 142.7 67.6 92.6 2.6 90.8 0.9 BS3-4 961 1 435 0.67 0.048 4 0.003 0 0.093 1 0.005 6 0.014 1 0.000 2 120.5 137.0 90.4 5.2 90.2 1.1 BS3-5 1 595 1 955 0.82 0.049 3 0.002 6 0.097 6 0.005 3 0.014 3 0.000 3 161.2 124.1 94.6 4.9 91.4 1.9 BS3-6 742 1 019 0.73 0.061 4 0.004 4 0.123 5 0.009 3 0.014 4 0.000 3 653.7 149.1 118.2 8.4 92.3 1.6 BS3-7 138 416 0.33 0.068 2 0.002 1 1.234 7 0.038 4 0.132 1 0.001 9 875.9 64.8 816.5 17.5 800.1 10.8 BS3-8 551 2 072 0.27 0.049 0 0.002 0 0.097 9 0.004 1 0.014 4 0.000 2 150.1 93.5 94.8 3.8 92.1 1.0 BS3-9 467 889 0.53 0.055 7 0.003 1 0.105 2 0.005 4 0.014 2 0.000 2 438.9 122.2 101.6 5.0 90.9 1.5 BS3-10 782 3 053 0.26 0.052 2 0.001 9 0.103 5 0.003 8 0.014 4 0.000 2 294.5 89.8 100.0 3.5 92.0 1.2 BS3-11 602 2 071 0.29 0.050 5 0.002 4 0.098 6 0.004 7 0.014 2 0.000 2 216.7 111.1 95.5 4.3 90.8 1.3 BS3-12 1 442 7 470 0.19 0.048 8 0.001 5 0.095 6 0.003 0 0.014 1 0.000 2 139.0 74.1 92.7 2.7 90.3 1.2 BS3-13 1 089 3 337 0.33 0.045 3 0.001 6 0.087 8 0.003 1 0.014 0 0.000 2 - - 85.5 2.9 89.4 1.2 BS3-14 204 381 0.53 0.094 6 0.006 7 0.173 1 0.010 8 0.014 2 0.000 3 1 520.7 134.4 162.1 9.4 90.8 2.0 BS3-15 876 1 522 0.58 0.080 0 0.001 7 1.261 8 0.031 7 0.113 2 0.001 7 1 198.2 42.6 828.7 14.2 691.4 10.0 BS3-16 941 1 412 0.67 0.048 2 0.003 0 0.093 9 0.005 8 0.014 2 0.000 2 109.4 144.4 91.1 5.4 91.2 1.2 BS3-17 356 604 0.59 0.059 1 0.003 6 0.112 6 0.006 5 0.014 4 0.000 3 568.6 131.5 108.4 5.9 92.2 1.9 BS3-18 2 027 2 789 0.73 0.048 4 0.002 2 0.095 7 0.004 3 0.014 3 0.000 2 116.8 83.3 92.8 4.0 91.8 1.1 表 2 社垌地区花岗斑岩中锆石LA-MC-ICP-MS Hf同位素分析结果
Table 2. Hf isotope analyses of zircons from the granite porphyry in the Shedong area
测试点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ 年龄(Ma) εHf(0) εHf(t) ±2s TDM1(Ma) ±2s fLu/Hf TDM2(Ma) ±2s U-Pb分析点 BS1 BS1-1 0.029 585 206 0.000 681 074 0.282 511 663 0.000 010 91.8 -9.2 -7.2 0.3 1 039 27 -0.98 1 319 44 2 BS1-2 0.018 353 393 0.000 439 082 0.282 503 085 0.000 010 90.7 -9.5 -7.6 0.3 1 045 27 -0.99 1 334 43 3 BS1-3 0.026 595 537 0.000 613 363 0.282 502 159 0.000 009 90.5 -9.5 -7.6 0.3 1 051 26 -0.98 1 336 42 4 BS1-4 0.030 467 614 0.000 698 217 0.282 499 691 0.000 010 92.3 -9.6 -7.7 0.3 1 057 27 -0.98 1 340 43 5 BS1-5 0.046 862 822 0.001 048 963 0.282 543 741 0.000 008 91.7 -8.1 -6.1 0.3 1 004 24 -0.97 1 262 38 7 BS1-6 0.052 766 262 0.001 174 678 0.282 540 928 0.000 009 92.0 -8.2 -6.2 0.3 1 012 25 -0.96 1 267 39 9 BS1-7 0.029 535 598 0.000 685 796 0.282 499 960 0.000 009 90.7 -9.6 -7.7 0.3 1 056 26 -0.98 1 340 42 10 BS1-8 0.030 360 205 0.000 710 995 0.282 526 147 0.000 009 91.9 -8.7 -6.7 0.3 1 020 25 -0.98 1 293 41 11 BS1-9 0.026 972 516 0.000 625 810 0.282 472 657 0.000 009 91.9 -10.6 -8.6 0.3 1 092 25 -0.98 1 389 41 12 BS1-10 0.043 962 504 0.001 021 778 0.282 480 508 0.000 009 91.4 -10.3 -8.4 0.3 1 093 25 -0.97 1 376 40 14 BS1-11 0.056 051 719 0.001 249 261 0.282 542 123 0.000 010 90.1 -8.1 -6.2 0.4 1 012 28 -0.96 1 266 44 16 BS1-12 0.044 915 100 0.001 002 886 0.282 529 647 0.000 008 92.3 -8.6 -6.6 0.3 1 023 23 -0.97 1 287 37 17 BS2 BS2-1 0.029 504 654 0.000 674 539 0.282 511 666 0.000 009 90.7 -9.2 -7.3 0.3 1 039 25 -0.98 1 319 39 1 BS2-2 0.167 285 140 0.003 589 543 0.282 498 292 0.000 008 88.2 -9.7 -8.0 0.3 1 146 24 -0.89 1 352 36 2 BS2-3 0.138 222 098 0.002 863 177 0.282 500 751 0.000 007 93.5 -9.6 -7.7 0.3 1 119 22 -0.91 1 344 33 3 BS2-4 0.037 655 113 0.000 902 188 0.282 470 560 0.000 005 88.3 -10.7 -8.8 0.2 1 103 15 -0.97 1 395 23 4 BS2-5 0.027 330 229 0.000 663 376 0.282 494 248 0.000 006 88.7 -9.8 -7.9 0.2 1 063 18 -0.98 1 351 29 5 BS2-6 0.025 658 337 0.000 629 880 0.282 497 614 0.000 007 83.8 -9.7 -7.9 0.2 1 058 19 -0.98 1 346 31 6 BS2-7 0.048 157 929 0.001 088 349 0.282 484 063 0.000 006 88.3 -10.2 -8.3 0.2 1 090 18 -0.97 1 371 29 7 BS2-8 0.027 024 475 0.000 662 325 0.282 477 141 0.000 006 91.9 -10.4 -8.5 0.2 1 087 18 -0.98 1 381 28 8 BS2-9 0.069 965 101 0.001 519 036 0.280 971 270 0.000 006 2 463.6 -63.7 -11.1 0.2 3 215 16 -0.95 3 415 26 9 BS2-10 0.137 161 931 0.002 965 278 0.282 497 768 0.000 006 89.9 -9.7 -7.9 0.2 1 126 19 -0.91 1 351 28 14 BS2-11 0.080 257 895 0.001 584 024 0.282 495 144 0.000 008 88.2 -9.8 -8.0 0.3 1 088 22 -0.95 1 352 34 15 BS2-12 0.157 061 829 0.003 447 804 0.282 514 917 0.000 007 89.4 -9.1 -7.3 0.3 1 116 22 -0.90 1 321 32 17 BS2-13 0.083 185 298 0.001 713 157 0.282 477 905 0.000 006 93.4 -10.4 -8.5 0.2 1 117 17 -0.95 1 382 26 18 BS3 BS3-1 0.038 334 603 0.000 874 628 0.282 422 136 0.000 008 437.7 -12.4 -3.0 0.3 1 170 21 -0.97 1 381 34 1 BS3-2 0.095 609 284 0.002 248 220 0.282 569 603 0.000 008 91.1 -7.2 -5.3 0.3 1 000 24 -0.93 1 219 37 2 BS3-3 0.095 243 013 0.002 262 837 0.282 560 071 0.000 008 90.8 -7.5 -5.6 0.3 1 014 24 -0.93 1 236 37 3 BS3-4 0.040 223 513 0.000 949 194 0.282 500 233 0.000 008 90.2 -9.6 -7.7 0.3 1 063 21 -0.97 1 341 34 4 BS3-5 0.032 618 561 0.000 782 086 0.282 516 584 0.000 007 91.4 -9.0 -7.1 0.2 1 035 19 -0.98 1 310 31 5 BS3-6 0.080 545 969 0.001 922 978 0.282 533 529 0.000 009 92.3 -8.4 -6.5 0.3 1 043 25 -0.94 1 283 39 6 BS3-7 0.042 903 161 0.001 025 361 0.282 521 673 0.000 008 92.1 -8.9 -6.9 0.3 1 035 22 -0.97 1 302 35 8 BS3-8 0.037 522 736 0.000 876 529 0.282 514 342 0.000 009 90.9 -9.1 -7.2 0.3 1 041 24 -0.97 1 315 38 9 BS3-9 0.029 839 358 0.000 710 579 0.282 512 016 0.000 009 92.0 -9.2 -7.2 0.3 1 040 24 -0.98 1 318 38 10 BS3-10 0.043 303 571 0.000 974 822 0.282 488 628 0.000 010 90.8 -10.0 -8.1 0.3 1 080 27 -0.97 1 362 44 11 BS3-11 0.027 287 773 0.000 635 586 0.282 493 117 0.000 008 90.3 -9.9 -7.9 0.3 1 064 23 -0.98 1 353 37 12 BS3-12 0.031 453 080 0.000 743 271 0.282 488 159 0.000 008 89.4 -10.0 -8.1 0.3 1 074 23 -0.98 1 362 37 13 BS3-13 0.071 859 173 0.001 627 517 0.282 573 233 0.000 009 90.8 -7.0 -5.1 0.3 978 26 -0.95 1 211 41 14 BS3-14 0.044 186 948 0.001 033 210 0.282 497 419 0.000 010 91.2 -9.7 -7.8 0.4 1 069 29 -0.97 1 346 46 16 BS3-15 0.041 845 850 0.000 971 087 0.282 515 080 0.000 009 92.2 -9.1 -7.1 0.3 1 043 26 -0.97 1 313 41 17 BS3-16 0.039 798 846 0.000 905 322 0.282 497 919 0.000 010 91.8 -9.7 -7.7 0.4 1 065 28 -0.97 1 344 45 18 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. doi: 10.1038/20426 [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [3] Cai, M.H., He, L.Q., Liu, G.Q., et al., 2006. SHRIMP Zircon U-Pb Dating of the Intrusive Rocks in the Dachang Tin-Polymetallic Ore Field, Guangxi and Their Geological Significance. Geological Review, 52(3): 409-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200603020.htm [4] Cai, M.H., Meng, X.J., Liu, G.Q., 2002. Studies of Minerogenetic Epoch of Gold Mineralization Belt in Dayaoshan Area. Mineral Deposits, 21(Suppl. ): 945-948 (in Chinese). [5] Chen, F.W., Li, H.Q., Mei, Y.P., 2008, Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield, Gui County, Guangxi. Acta Geologica Sinica, 82(7): 921-926 (in Chinese with English abstract). http://www.researchgate.net/publication/285631496_Zircon_SHRIMP_U-Pb_chronology_of_diagenetic_mineralization_of_the_Longtoushan_porphyry_gold_orefield_Gui_County_Guangxi [6] Chen, F.W., Li, H.Q., Wang, D.H., et al., 2012, Geological Characteristics and Diagenetic-Metallogenic Chorological Study of the Yuanzhuding Porphyry Cu-Mo Deposit, Western Guangdong Province. Acta Geologica Sinica, 86(8): 1298-1305 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/20128/43758849.html [7] Chen, M.H., Mo, C.S., Huang, Z.Z., et al., 2011. Zircon LA-ICP-MS U-Pb Ages of Granitoid Rocks and Molybdentie Re-Os Age of Shedong W-Mo Deposit in Cangwu County of Guangxi and Its Geological Significance. Mineral Deposits, 30(6): 963-978 (in Chinese with English abstract). [8] Cheng, Y.B., Mao, J.W., Chang, Z.S., et al., 2013. The Origin of the World Class Tin-Polymetallic Deposits in the Gejiu District, SW China: Constraints from Metal Zoning Characteristics and 40Ar-39Ar Geochronology. Ore Geology Reviews, 53(1): 50-62. doi: 10.1016/j.oregeorev.2012.12.008 [9] Cheng, Y.B., Mao, J.W., Xie, G.Q., et al., 2008. Petrogenesis of the Laochang-Kafang Granite in the Gejiu Area, Yunnan Province: Constraints from Geochemistry and Zircon U-Pb Dating. Acta Geologica Sinica, 82(11): 1478-1493 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252708900.html [10] Cheng, Y.B., Mao, J.W., Xie, G.Q., et al., 2009. Zircon U-Pb Dating of Granites in Gejiu Superlarge Tin Polymetallic Orefield and Its Significance. Mineral Deposits, 28(3): 297-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200903007.htm [11] Chu, K.L., Mao, J.W., Chen, M.H., et al., 2013. Source of Metallogenic Materials and Ore-Forming Fluids, and Metallogenic Mechanism of the Yuanzhuding Porphyry Cu-Mo Deposit, Western Guangdong Province, South China. Earth Science Frontiers, 20(5): 115-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201305009.htm [12] Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801 [13] Cui, B., Zhai, Y.S., Meng, Y.F., et al., 2000, Au-Ag Ore-Forming System in Dayaoshan-Xidamingshan, Guangxi, China. Earth Science—Journal of China University of Geosciences, 25(4): 352-355, 396 (in Chinese with English abstract). http://www.researchgate.net/publication/309661174_Au-Ag_ore-forming_system_in_Dayaoshan-Xidamingshan_Guangxi_China [14] Deng, J., 2012. Mineralization Regularity of the Copper-Gold Polymetallic Deposits in Dayaoshan, Guangxi, China. Geology and Resources, 21(3): 302-307 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201203008.htm [15] Ding, X., Jiang, S.Y., Ni, P., et al., 2005. Zircon SIMS U-Pb Geochronology of Host Granitoids in Wushan and Yongping Copper Deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383-389 (in Chinese with English abstract). http://www.researchgate.net/publication/292738727_Zircon_SIMS_U-Pb_geochronology_of_host_granitoids_in_Wushan_and_Yongping_copper_deposits_Jiangxi_Province [16] Duan, R.C., Ling, W.L., Li, Q., et al., 2011. Correlations of the Late Tectonomagmatic Events with Metallogenesis in South China: Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Area, Guangxi Province. Acta Geologica Sinica, 85(10): 1644-1658 (in Chinese with English abstract). http://www.researchgate.net/publication/281379420_Correlations_of_the_Late_Yanshanian_Tectonomagmatic_Events_with_Metallogenesis_in_South_China_Geochemical_Constraints_from_the_Longtoushan_Gold_Ore_Deposit_of_the_Dayaoshan_Area_Guangxi_Province [17] Glider, S.A., Coe, R.S., Zhao, X., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research, 101(B7): 16137-16154. doi: 10.1029/96JB00662 [18] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011 [19] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9 [20] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8 [21] Hou, Z.Q., 2004. Porphry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401014.htm [22] Hou, Z.Q., Pan, X.F., Li, Q.Y., et al., 2013. The Giant Dexing Porphyry Cu-Mo-Au Deposit in East China: Product of Melting of Juvenile Lower Crust in an Intracontinental Setting. Mineralium Deposita, 48(8): 1019-1045. doi: 10.1007/s00126-013-0472-5 [23] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012. Metallogenesis of Continental Collision Setting: Part Ⅰ. Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet. Mineral Deposits, 31(4): 647-670 (in Chinese with English abstract). http://www.researchgate.net/publication/284610053_Metallogenesis_of_continental_collision_setting_Part_I_Gangdese_Cenozoic_porphy_Cu-Mo_systems_in_Tibet [24] Hu, S.Q., Zhou, G.F., Peng, S.B., et al., 2012. Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance. Acta Geoscientica Sinica, 33(1): 23-37 (in Chinese with English abstract). http://www.oalib.com/paper/1560786 [25] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. doi: 10.1039/B804760J [26] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta, 78(1): 50-57. doi: 10.1016/j.sab.2012.09.007 [27] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012b. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. doi: 10.1039/C2JA30078H [28] Huang, H.M., He, Z.J., Cui, B., 2003. Metallogenic Series of Granite in Dayaoshan of Guangxi. Geology and Prospecting, 39(4): 12-16 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026141102 [29] Lang, J.R., Gregory, M.J., Rebagliati, C.M., et al., 2013. Geology and Magmatic-Hydrothermal Evolution of the Giant Pebble Porphyry Copper-Gold-Molybdenum Deposit, Southwest Alaska. Economic Geology, 108(3): 437-462. doi: 10.2113/econgeo.108.3.437 [30] Li, Q., Duan, R.C., Ling, W.L., et al., 2009. Detrital Zircon U-Pb Geochronology of the Early Paleozoic Strata in Eastern Guangxi and Its Constraint on the Caledonian Tectonic Nature of the Cathaysian Continental Block. Earth Science—Journal of China University of Geosciences, 34(1): 189-202 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.017 [31] Li, S.R., Wang, D.H., Liang, T., et al., 2008. Metallogenic Epochs of the Damingshan Tungsten Deposit in Guangxi and Its Prospecting Potential. Acta Geologica Sinica, 82(7): 873-879 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200807003.htm [32] Li, W., Bi, S.J., Yang, Z., et al., 2015. Zircon U-Pb Age and Hf Isotope Characterization of the Sheshan Granodiorite in the Southern Edge of the Dayaoshan, Guidong: Constraints on the Caledonian Diagenesis and Mineralization. Earth Science—Journal of China University of Geosciences, 40(1): 17-33 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.002 [33] Li, X.F., Watanabe Y., Hua, R.M., et al., 2008. Mesozoic Cu-Mo-W-Sn Mineralization and Ridge/Triple Subduction in South China. Acta Geologica Sinica, 82(5): 625-640 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173354 [34] Li, X.H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. doi: 10.1016/S1367-9120(99)00060-7 [35] Liang, J., Zhou, Y.Z., Li, H.Z., et al., 2012. Geological Characteristics and Genesis of Porphyry Copper Deposits in Qinzhou-Hangzhou Suture Zone, South China. Acta Petrologica Sinica, 28(10): 3361-3372 (in Chinese with English abstract). http://www.oalib.com/paper/1475513 [36] Lin, Z.Y., Wang, D.H., Li, S.R., 2008. Re-Os Isotopic Age of Molybdenite from the Wangshe Copper-Tungsten Deposit in Guangxi Province and Their Implications. Acta Geologica Sinica, 82(11): 1565-1571 (in Chinese with English abstract). [37] Liu, G.Q., Cai, M.H., 2004, Ore-Forming Condition and Genetic Analysis on the Gold Deposit in Dayaoshan Region, Eastern Guangxi. Geological Science and Technology Information, 23(2): 37-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200402009.htm [38] Liu, X., Fan, H.R., Santosh, M., et al., 2012. Remelting of Neoproterozoic Relict Volcanic Arcs in the Middle Jurassic: Implication for the Formation of the Dexing Porphyry Copper Deposit, Southeastern China. Lithos, 150(Suppl. ): 85-100. doi: 10.1016/j.lithos.2012.05.018 [39] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [40] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [41] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [42] Liu, Z.L., Tang, Z.X., Dong, X.Y., et al., 2013. Geological Characteristics and Prospecting Direction of Porphyry Deposits in Baoshan Mining Area. Mineral Resources and Geology, 27(3): 204-210 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201303005.htm [43] Lu, H.Z., Liu, Y.M., Wang, C.L., et al., 2003. Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China. Economic Geology, 98(5): 955-974. doi: 10.2113/gsecongeo.98.5.955 [44] Lu, Y.F., Ma, L.Y., Qu, W.J., et al., 2006. U-Pb and Re-Os Isotope Geochronology of Baoshan Cu-Mo Polymetallic Ore Deposit in Hunan Province. Acta Petrologica Sinica, 22(10): 2483-2492 (in Chinese with English abstract). http://www.oalib.com/paper/1471411 [45] Ludwig, K.R., 2003. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4(1): 1-71. [46] Luo, J.H., Che, Z.C., Guo, A.L., et al., 2009. Late Cretaceous Lithospheric Extension in the Nandan-Hechi Tectonic Zone of Northern Guangxi Province and Its Influence on Hydrocarbon Accumulation Conditions. Oil & Gas Geology, 30(5): 619-625 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200905012.htm [47] Mao, J.W., Chen, M.H., Yuan, S.D., et al., 2011. Geological Characteristics of the Qinhang (or shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract). http://www.researchgate.net/publication/284699346_Geological_characteristics_of_the_qinhang_or_shihang_metallogenic_belt_in_South_China_and_spatial-temporal_distribution_regularity_of_mineral_deposits [48] Mao, J.W., Cheng, Y.B., Chen, M.H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z [49] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173682 [50] Mao, J.W., Zhang, J.D., Pirajno, F., et al., 2011. Porphyry Cu-Au-Mo-Epithermal Ag-Pb-Zn-Distal Hydrothermal Au Deposits in the Dexing Area, Jiangxi Province, East China—A Linked Ore System. Ore Geology Reviews, 43(1): 203-216. doi: 10.1016/j.oregeorev.2011.08.005 [51] Martin, H., Bonin, B., Capdevila, R., et al., 1994. The Kuiqi Peralkaline Granitic Complex (SE China)—Petrology and Geochemistry. Journal of Petrology, 35(4): 983-1015. doi: 10.1093/petrology/35.4.983 [52] Qiu, J.S., Wang, D.Z., McInnes, B.I.A., 1999. Geochemistry and Petrogenesis of the I- and A-Type Composite Granite Masses in the Coastal Area of Zhejiang and Fujian Province. Acta Petrologica Sinica, 15(2): 237-246 (in Chinese with English abstract). http://www.oalib.com/paper/1471246 [53] Qiu, J.S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468-2484 (in Chinese with English abstract). http://www.researchgate.net/publication/263693089_Petrogenesis_of_highly_fractionated_I-type_granites_in_the_coastal_area_of_northeastern_Fujian_Province_Constraints_from_zircon_U-Pb_geochronology_geochemistry_and_Nd-Hf_isotopes [54] Scherer, E., Muenker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. doi: 10.1126/science.1061372 [55] Segal, I., Halicz, L., Platzner, I.T., 2003. Accurate Isotope Ratio Measurements of Ytterbium by Multiple Collection Inductively Coupled Plasma Mass Spectrometry Applying Erbium and Hafnium in an Improved Double External Normalization Procedure. Journal of Analytical Atomic Spectrometry, 18(10): 1217-1223. doi: 10.1039/B307016F [56] Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi. Earth Science—Journal of China University of Geosciences, 33(6): 743-754 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.090 [57] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010. Late Mesozoic Tectonic Extension in SE China: Evidence from the Basic Dike Swarms in Hainan Island, China. Acta Petrologica Sinica, 26(4): 1204-1216 (in Chinese with English abstract). http://www.oalib.com/paper/1475368 [58] Vervoort, J.D., Patchett, P.J., Albarede, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1-2): 115-129. doi: 10.1016/S0012-821X(00)00170-9 [59] Wang, D.H., Chen, Y.C., Chen, W., et al., 2004. Dating the Dachang Giant Tin-Polymetallic Deposit in Nandan, Guangxi. Acta Geologica Sinica, 78(1): 132-139 (in Chinese with English abstract). http://www.researchgate.net/publication/280687911_Dating_the_Dachang_giant_tin-polymetallic_deposit_in_Nandan_Guangxi [60] Wang, D.H., Chen, Z.H., Chen, Y.C., et al., 2010. New Data of the Rock-Forming and Ore-Forming Chronology for China's Important Mineral Resources Areas. Acta Geologica Sinica, 84(7): 1030-1040 (in Chinese with English abstract). http://www.researchgate.net/publication/284594588_New_data_of_the_rock-forming_and_ore-forming_chronology_for_China's_important_mineral_resources_areas [61] Wang, D.Z., Shen, W.Z., 2003. Genesis of Granitoids and Crustal Evolution in Southeast China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026606561 [62] Wang, L.Q., 2013. Study on Bangpu-Type Molybdenum Polymetallic Deposit, Tibet and the Metallogenic Regularity of Molybdenum Polymetallic Deposits in the East Section of the Gangdese Metllogenic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [63] Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070 [64] Wang, Q., Zhao, Z.H., Jian, P., et al., 2004. SHRIMP Zircon Geochronology and Nd-Sr Isotopic Geochemistry of the Dexing Granodiorite Porphyries. Acta Petrologica Sinica, 20(2): 315-324 (in Chinese with English abstract). http://www.oalib.com/paper/1471932 [65] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constaints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21(3): 795-808 (in Chinese with English abstract). http://www.oalib.com/paper/1472202 [66] Wang, X.Y., Liu, M.C., Zhou, G.F., et al., 2013. A Correlation Study of Au-Polymetallic Mineralization and Granite-Porphyry Magmatism in the Xinping Mining Area of the Dayaoshan Metallogenic Belt, Eastern Guangxi Province. Geoscience, 27(3): 585-592 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303009.htm [67] Wang, Y.J., Fan, W.M., Guo, F., et al., 2001. Zircon U-Pb Age and Its Petrogenesis Implication of Mesozoic Granodiorites in Southeastern Hunan Province, South China. Science in China (Series D), 31(9): 745-751 (in Chinese). [68] Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x [69] Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1-2): 121-135. doi: 10.1016/j.chemgeo.2004.04.026 [70] Xiao, E., Qiu, J.S., Xu, X.S., et al., 2007. Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province; Petrogenetic and Tectonic Implications. Acta Petrologica Sinica, 23(6): 1431-1440 (in Chinese with English abstract). http://www.oalib.com/paper/1482048 [71] Xie, Y.C., Lu, J.J., Ma, D.S., et al., 2013. Origin of Granodiorite Porphyry and Mafic Microgranular Enclave in the Baoshan Pb-Zn Polymetallic Deposit, Southern Hunan Province: Zircon U-Pb Chronological, Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 29(12): 4186-4214 (in Chinese with English abstract). http://www.researchgate.net/publication/266416042_Origin_of_granodiorite_porphyry_and_mafic_microgranular_enclave_in_the_Baoshan_Pb-Zn_polymetallic_deposit_southern_Hunan_Province_Zircon_U-Pb_chronological_geochemical_and_Sr-Nd-Hf_isotopic_constraint [72] Yang, M.G., Huang, S.B., Lou, F.S., et al., 2009. Lithospheric Structure and Large-Scale Metallogenic Process in Southeast China Continental Area. Geology in China, 36(3): 528-543 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dizi200903006.htm [73] Yang, M.G., Mei, Y.W., 1997. Characteristics of Geology and Metallization in the Qinzhou-Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, (3): 52-59 (in Chinese with English abstract). http://www.researchgate.net/publication/284701970_Characteristics_of_geology_and_melatllizationin_the_Qinzhou-Hangzhou_paleoplate_juncture [74] Yang, Z., Liu, R., Wang, X.Y., et al., 2014. Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China: Evidence from Zircon U-Pb Ages and Hf Isotopes. Earth Science—Journal of China University of Geosciences, 39(9): 1258-1276 (in Chinese with English abstract). http://www.researchgate.net/publication/287467991_Petrogenesis_and_tectonic_significance_of_Late_Yanshanian_granites_in_Yunkai_Area_Southeast_China_Evidence_from_zircon_U-Pb_ages_and_Hf_isotopes [75] Yang, Z.X., Mao, J.W., Chen, M.H., et al., 2008. Re-Os Dating of Molybdenite from the Kafang Skarn Copper (Tin) Deposit in the Gejiu Tin Polymetallic Ore District and Its Geological Significance. Acta Petrologica Sinica, 24(8): 1937-1944 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200808024.htm [76] Yu, P.P., Liang, J., Chen, X.Y., et al., 2011. The Researching Progress and Significance of Porphyry Copper Deposits. Journal of the Graduates, Sun Yat-Sen University (Natural Sciences. Medicine), 32(4): 30-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YJSK201104006.htm [77] Zhong, L.F., Liu, L.W., Xia, B., et al., 2010. Re-Os Geochronology of Molybdenite from Yuanzhuding Porphyry Cu-Mo Deposit in South China. Resource Geology, 60(4): 389-396. doi: 10.1111/j.1751-3928.2010.00143.x [78] Zhou, Q., Jiang, Y.H., Zhao, P., et al., 2012a. Origin of the Dexing Cu-Bearing Porphyries, SE China: Elemental and Sr-Nd-Pb-Hf Isotopic Constraints. International Geology Review, 54(5): 572-592. doi: 10.1080/00206814.2010.548119 [79] Zhou, Q., Jiang, Y.H., Zhao, P., et al., 2012b. SHRIMP U-Pb Dating on Hydrothermal Zircons: Evidence for an Early Cretaceous Epithermal Event in the Middle Jurassic Dexing Porphyry Copper Deposit, Southeast China. Economic Geology, 107(7): 1507-1514. doi: 10.2113/econgeo.107.7.1507 [80] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Eposodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004 [81] Zhou, Y.Z., Zeng, C.Y., Li, H.Z., et al., 2012. Geological Evolution and Ore-Prospecting Targets in Southern Segment of Qinzhou Bay-Hangzhou Bay Juncture Orogenic Belt, Southern China. Geological Bulletin of China, 31(2/3): 486-491 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz201202035 [82] Zhu, G.T., Zhu, W.F., 2006. On Gold Mineralization in Gulinao and Longtoushan Gold Deposit Related to Postmagmatic Faulting and Its Significance in Searching for Gold Deposit in Dayaoshan, Guangxi. Mineral Resources and Geology, 20(3): 214-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200603002.htm [83] 蔡明海, 何龙清, 刘国庆, 等, 2006. 广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义. 地质论评, 52(3): 409-414. doi: 10.3321/j.issn:0371-5736.2006.03.023 [84] 蔡明海, 孟祥金, 刘国庆, 2002. 大瑶山金成矿带成矿时代研究. 矿床地质, 21(增刊1): 945-948. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1251.htm [85] 陈富文, 李华芹, 梅玉萍, 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究. 地质学报, 82(7): 921-926. doi: 10.3321/j.issn:0001-5717.2008.07.009 [86] 陈富文, 李华芹, 王登红, 等, 2012. 粤西圆珠顶斑岩型铜钼矿床成矿地质特征及成岩成矿作用年代学研究. 地质学报, 86(8): 1298-1305. doi: 10.3969/j.issn.0001-5717.2012.08.012 [87] 陈懋弘, 莫次生, 黄智忠, 等, 2011. 广西苍梧县社洞钨钼矿床花岗岩类锆石LA-ICP-MS和辉钼矿Re-Os年龄及其地质意义. 矿床地质, 30(6): 963-978. doi: 10.3969/j.issn.0258-7106.2011.06.001 [88] 程彦博, 毛景文, 谢桂青, 等, 2008. 云南个旧老厂-卡房花岗岩体成因: 锆石U-Pb年代学和岩石地球化学约束. 地质学报, 82(11): 1478-1493. doi: 10.3321/j.issn:0001-5717.2008.11.003 [89] 程彦博, 毛景文, 谢桂青, 等, 2009. 与云南个旧超大型锡矿床有关的花岗岩锆石U-Pb定年及意义. 矿床地质, 28(3): 297-312. doi: 10.3969/j.issn.0258-7106.2009.03.006 [90] 楚克磊, 毛景文, 陈懋弘, 等, 2013. 广东圆珠顶斑岩型铜钼矿床成矿物质、成矿流体来源和成矿机理研究. 地学前缘, 20(5): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305009.htm [91] 崔彬, 翟裕生, 蒙义峰, 等, 2000. 广西大瑶山-西大明山金银成矿系统研究. 地球科学——中国地质大学学报, 25(4): 352-355, 396. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004003.htm [92] 邓军, 2012. 广西大瑶山地区铜金多金属矿床成矿规律研究. 地质与资源, 21(3): 302-307. doi: 10.3969/j.issn.1671-1947.2012.03.009 [93] 丁昕, 蒋少涌, 倪培, 等, 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383-389. doi: 10.3969/j.issn.1006-7493.2005.03.009 [94] 段瑞春, 凌文黎, 李青, 等, 2011. 华南燕山晚期构造-岩浆事件与成矿作用——来自广西大瑶山龙头山金矿床的地球化学约束. 地质学报, 85(10): 1644-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110009.htm [95] 侯增谦, 2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘, 11(1): 131-144. doi: 10.3321/j.issn:1005-2321.2004.01.010 [96] 侯增谦, 郑远川, 杨志明, 等, 2012. 大陆碰撞成矿作用Ⅰ: 冈底斯新生代斑岩成矿系统. 矿床地质, 31(4): 647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002 [97] 胡升奇, 周国发, 彭松柏, 等, 2012. 广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义. 地球学报, 33(1): 23-37. doi: 10.3975/cagsb.2012.01.04 [98] 黄惠民, 和志军, 崔彬, 2003. 广西大瑶山地区花岗岩成矿系列. 地质与勘探, 39(4): 12-16. doi: 10.3969/j.issn.0495-5331.2003.04.003 [99] 李青, 段瑞春, 凌文黎, 等, 2009. 桂东早古生代地层碎屑锆石U-Pb同位素年代学及其对华夏陆块加里东期构造事件性质的约束. 地球科学——中国地质大学学报, 34(1): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901019.htm [100] 李水如, 王登红, 梁婷, 等, 2008. 广西大明山钨矿区成矿时代及其找矿前景分析. 地质学报, 82(7): 873-879. doi: 10.3321/j.issn:0001-5717.2008.07.002 [101] 李巍, 毕诗健, 杨振, 等, 2015. 桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征: 对区内加里东期成岩成矿作用的制约. 地球科学——中国地质大学学报, 40(1): 17-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201501002.htm [102] 李晓峰, Watanabe, Y., 华仁民, 等, 2008. 华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲. 地质学报, 82(5): 625-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200805007.htm [103] 梁锦, 周永章, 李红中, 等, 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361-3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210024.htm [104] 蔺志永, 王登红, 李水如. 2008. 广西王社铜钨矿床的Re-Os同位素年龄及其地质意义. 地质学报, 82(11): 1565-1571. doi: 10.3321/j.issn:0001-5717.2008.11.012 [105] 刘国庆, 蔡明海, 2004. 桂东大瑶山地区金矿成矿条件及成因分析. 地质科技情报, 23(2): 37-44. doi: 10.3969/j.issn.1000-7849.2004.02.006 [106] 刘仲林, 唐朝霞, 董秀英, 等, 2013. 宝山矿区斑岩型矿床地质特征与找矿思路. 矿产与地质, 27(3): 204-210. doi: 10.3969/j.issn.1001-5663.2013.03.005 [107] 路远发, 马丽艳, 屈文俊, 等, 2006. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究. 岩石学报, 22(10): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610008.htm [108] 罗金海, 车自成, 郭安林, 等, 2009. 桂北南丹-河池构造带晚白垩世岩石圈伸展作用及其对油气成藏条件的影响. 石油与天然气地质, 30(5): 619-625. doi: 10.3321/j.issn:0253-9985.2009.05.012 [109] 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm [110] 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005 [111] 邱检生, 王德滋, McInnes, B.I.A., 1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因. 岩石学报, 15(2): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.009.htm [112] 邱检生, 肖娥, 胡建, 等, 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24(11): 2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [113] 谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学——中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm [114] 唐立梅, 陈汉林, 董传万, 等, 2010. 中国东南部晚中生代构造伸展作用—来自海南岛基性岩墙群的证据. 岩石学报, 26(4): 1204-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004019.htm [115] 王德滋, 沈渭洲, 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209-220. doi: 10.3321/j.issn:1005-2321.2003.03.020 [116] 王登红, 陈毓川, 陈文, 等, 2004. 广西南丹大厂超大型锡多金属矿床的成矿时代. 地质学报, 78(1): 132-138. doi: 10.3321/j.issn:0001-5717.2004.01.015 [117] 王登红, 陈郑辉, 陈毓川, 等, 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007009.htm [118] 王立强. 2013. 西藏邦铺式钼多金属矿床—兼论冈底斯成矿带东段钼多金属矿床成矿规律(博士学位论文). 北京: 中国地质科学院. [119] 王强, 赵振华, 简平, 等, 2004. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学. 岩石学报, 20(2): 315-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402011.htm [120] 王强, 赵振华, 简平, 等, 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm [121] 王新宇, 刘名朝, 周国发, 等, 2013. 桂东大瑶山成矿带新坪矿区花岗斑岩与金多金属成矿作用关系. 现代地质, 27(3): 585-592. doi: 10.3969/j.issn.1000-8527.2013.03.009 [122] 王岳军, 范蔚茗, 郭锋, 等, 2001. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示. 中国科学(D辑), 31(9): 745-751. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109005.htm [123] 肖娥, 邱检生, 徐夕生, 等, 2007. 浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义. 岩石学报, 23(6): 1431-1440. doi: 10.3969/j.issn.1000-0569.2007.06.019 [124] 谢银财, 陆建军, 马东升, 等, 2013. 湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约. 岩石学报, 29(12): 4186-4214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312010.htm [125] 杨明桂, 黄水保, 楼法生, 等, 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004 [126] 杨明桂, 梅勇文, 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, (3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm [127] 杨振, 刘锐, 王新宇, 等, 2014. 云开地区燕山晚期花岗岩的岩石成因及构造意义: 锆石U-Pb年龄及Hf同位素证据. 地球科学——中国地质大学学报, 39(9): 1258-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409002.htm [128] 杨宗喜, 毛景文, 陈懋弘, 等, 2008. 云南个旧卡房矽卡岩型铜(锡)矿Re-Os年龄及其地质意义. 岩石学报, 24(8): 1937-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808024.htm [129] 虞鹏鹏, 梁锦, 陈宣谕, 等, 2011. 斑岩型铜矿床的研究进展及意义. 中山大学研究生学刊(自然科学、医学版), 32(4): 30-42. [130] 周永章, 曾长育, 李红中, 等, 2012. 钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向. 地质通报, 31(2-3): 486-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1034.htm [131] 朱桂田, 朱文风. 2006. 广西大瑶山古里脑和龙头山金矿岩浆期后断裂成矿作用及找矿意义. 矿产与地质, 20(3): 214-218. doi: 10.3969/j.issn.1001-5663.2006.03.003