Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances
-
摘要: 目前对华北克拉通北缘早二叠世基性-超基性岩成因有不同认识, 其中, 一种流行的观点是它们与"安第斯型大陆边缘"的活动有关.通过对冀东地区堆晶岩的研究对这一观点进行了讨论.华北克拉通北缘断续分布了受丰宁-隆化岩石圈断裂控制的早二叠世基性-超基性堆晶岩, 堆晶岩的SHRIMP锆石U-Pb年龄为280~300 Ma.通过岩相学的研究, 确认这是一套由纯橄岩、橄辉岩、辉石岩、角闪岩、辉长岩、闪长岩、斜长岩等不同岩性组成的堆晶岩, 进一步可分为层状堆晶岩和环状堆晶岩, 它们有着明显的堆晶结构.矿物学研究显示堆晶岩中角闪石、辉石、金云母等均具有高镁、高铬的幔源组分特征.不同组分堆晶岩的Sr/Ba比值不随熔融程度变化, 具有分离结晶的趋势.相近的稀土配分形式和过渡族元素组成显示了它们的同源性.从本区晚古生代和早中生代堆晶岩的对比中, 结果表明早二叠世这期堆晶岩具有初始裂谷岩浆的特征, 它传递了华北克拉通陆壳从稳定向活动转化的最早信息.从区域角度看, 这期活动有着更大范围的深部动力学背景.Abstract: Understanding about genesis of the Early Permian basic-ultrabasic rocks in the northern margin of North China craton are varied, with one of the influential viewpoints suggesting that they are related with activities of "Andes-type continental margin", which is discussed in this paper based on researches of the cumulates in east Hebei Province. Early Permian basic-ultrabasic cumulates controlled by Fengning-Longhua lithospheric faults are distributed discontinuously in the northern margin of North China craton. The SHRIMP Zircon U-Pb ages from cumulates are 280-300 Ma. Petrographic studies confirm that the complexes consist of a suite of cumulates including dunite, pyroxenite, amphibolite, gabbro, diorite, anorthosite, and so on, which in turn can be further divided into layered and circular ones, both with obvious cumulate texture. Mineralogical studies show that hornblende, pyroxene, and phlogolite in cumulates all are characterized by mantle sourced components of high Mg and high Cr. Sr/Ba ratio of cumulates with different components does not change with their melting degrees, showing that cumulates possess a fractional crystallization trend. Similar REE patterns and transition group elements reveal their consanguinity. Comparison of cumulates of the Late Paleozoic with those of the Early Mesozoic from the concerned area indicates that these Early Permian cumulates have characteristics of an initial-rift magma, which offers the earliest evidence of the transformation from the stable to the active one of continental crust of North China craton. Viewed from broader regions, activities of this period in this area are driven by deeper geodynamics.
-
图 2 研究区早二叠世堆晶岩分布的地质简图
a.高寺台环状杂岩体简图,引自Chen et al.(2009);b.区域构造格架;c.研究区;1.太古界;2.中晚元古界;3.不同时代花岗岩;4.中生界;5.超基性-基性杂岩;6.新太古代变质基底出露区;7.中、新元古代燕辽沉降带;8.古生代兴蒙造山带;9.黑色点线代表华北克拉通与兴蒙造山带分界线,黑或红色虚线或实线为断裂或推测断裂;10.左为研究区显生宙麻粒岩发现地点,右为本文研究区;A.丰宁-隆化-黑里河-北票断裂;B.赤城-承德-建平断裂带
Fig. 2. Geological sketch of distributing of Early Permian cumulates in research area
表 1 华北克拉通北缘堆晶岩同位素年龄
Table 1. The isotopic dating of zircon of cumulates in the northern margin of North China Craton
样品采集地 岩性及样号 方法 年龄(Ma) 出处 丰宁波罗诺 辉长-辉绿岩(R20) SHRIMP锆石U-Pb 284.5±2.5 本文 丰宁八郎沟 角闪辉石岩(R33) SHRIMP锆石U-Pb 280.8±2.4 本文 丰宁波罗诺 斜长岩(R26) SHRIMP锆石U-Pb 286.5±2.1 本文 滦平石人沟 闪长岩(R17) SHRIMP锆石U-Pb 286.1±2.7 本文 丰宁八郎沟 闪长岩(R30) SHRIMP锆石U-Pb 283.8±2.2 本文 丰宁波罗诺 闪长岩(R28) SHRIMP锆石U-Pb 298.3±2.4 本文 滦平北李营 石英斜长岩(R11) SHRIMP锆石U-Pb 300.7±2.6 本文 承德高寺台 辉长岩墙 SHRIMP锆石U-Pb 280 Chen et al., 2009 滦平北李营 球状闪长岩 单颗粒锆石SIMS 284 马芳等,2002 丰宁波罗诺 石英闪长岩 SHRIMP锆石U-Pb 296 马旭等,2012 丰宁镶黄旗 角闪辉长岩 全岩LA-ICP-MS 276 Zhang et al., 2009 北京怀柔喇叭沟门 辉长闪长岩 SHRIMP锆石U-Pb 288 王惠初等,2007 内蒙古固阳 辉长-闪长-花岗闪长岩 锆石U-Pb 286~279 Zhang et al., 2011 角闪石 40Ar/39Ar 275 内蒙乌拉特后旗额布图 辉石岩,橄辉岩 锆石SHRIMP 294 彭润民等,2012 表 2 角闪石的电子探针分析结果(%)
Table 2. The EMOA results of hornblendes (%)
RP8-1.1 RP8-2.1 RP8-3.4 RP8-4.1 RP8-4.3 RP1-1.1 RP1-1.2 RP1-1.5 RP1-2.3 RP1-2.5 RP6-1.4 RP6-2.2 RP6-2.3 Q131-6 Q112-4 Q112-6 RP10-1 所在岩石 斜长角闪岩 斜长角闪岩 斜长角闪岩 斜长角闪岩 斜长角闪岩 粗粒闪长岩 粗粒闪长岩 粗粒闪长岩 粗粒闪长岩 粗粒闪长岩 球状斜长岩 球状斜长岩 球状斜长岩 柱状角闪石 细粒角闪石 细粒角闪石 寄主岩角闪石 SiO2 46.19 42.87 43.69 42.17 43.74 46.35 44.44 44.26 43.68 44.71 43.99 43.50 44.18 44.74 43.25 43.93 43.32 TiO2 0.87 2.17 1.89 2.12 1.73 1.37 1.54 1.24 1.50 1.24 1.44 1.38 1.61 1.16 1.07 0.74 0.77 Al2O3 11.45 13.29 11.73 13.34 12.15 8.94 10.28 10.27 10.53 10.37 9.86 11.04 9.93 11.24 11.57 10.06 8.87 Cr2O3 0.02 0.02 0.02 0.07 0.10 0.01 0.00 0.01 0.50 0.05 0.00 0.04 0.06 0.00 0.01 0.00 0.07 FeO 10.16 10.12 10.12 9.54 9.58 12.40 12.94 13.38 12.80 13.33 14.54 13.49 14.69 14.04 17.58 15.11 15.21 MnO 0.20 0.19 0.171 0.16 0.17 0.33 0.35 0.27 0.38 0.37 0.39 0.23 0.33 0.33 0.40 0.39 0.46 MgO 14.67 13.50 14.14 14.31 14.93 13.56 13.07 12.22 12.56 12.61 11.80 12.32 11.72 12.80 10.84 12.18 13.76 CaO 11.76 12.10 11.60 11.99 11.92 11.72 11.49 11.97 11.34 11.68 12.53 12.64 12.35 11.88 11.91 12.08 12.49 Na2O 2.00 2.01 2.01 2.08 2.12 1.25 1.95 1.66 1.89 1.87 1.16 1.24 1.19 0.84 0.79 0.70 1.40 K2O 0.22 0.54 0.47 0.53 0.39 0.44 0.45 0.53 0.53 0.40 0.76 1.12 0.89 1.04 1.35 1.25 1.02 Total 98.69 98.28 96.96 97.41 97.91 97.82 97.96 97.31 97.13 98.69 98.13 98.54 98.62 98.07 98.76 96.44 97.13 Si 6.61 6.27 6.49 6.16 6.33 6.61 6.54 6.62 6.50 7.42 6.59 6.47 6.59 6.47 6.33 6.53 6.38 Ti 0.09 0.24 0.21 0.23 0.19 0.09 0.17 0.14 0.17 0.16 0.16 0.16 0.18 0.13 0.12 0.09 0.09 Al 1.93 2.29 2.03 2.30 2.07 1.93 1.78 1.81 1.85 0.27 1.74 1.74 1.75 1.92 1.99 1.76 1.54 Cr 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.06 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 Fe3+ 0.47 0.24 0.45 0.47 0.52 0.47 0.53 0.26 0.50 0.00 0.25 0.25 0.25 0.80 0.91 0.73 0.94 Fe2+ 0.75 1.00 0.79 0.70 0.64 0.75 1.07 1.42 1.10 1.85 1.57 1.57 1.58 0.90 1.24 1.15 0.94 Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.06 Mg 3.13 2.94 3.09 3.12 3.22 3.13 2.87 2.72 2.79 3.12 2.64 2.64 2.61 2.76 2.37 2.70 3.03 Ca 1.80 1.90 1.82 1.88 1.85 1.80 1.81 1.92 1.81 2.08 2.01 2.01 1.97 1.84 1.87 1.92 1.98 Na 0.56 0.57 0.57 0.59 0.60 0.56 0.56 0.48 0.55 0.60 0.34 0.34 0.35 0.24 0.22 0.20 0.40 K 0.04 0.10 0.07 0.10 0.07 0.04 0.08 0.10 0.10 0.09 0.15 0.15 0.17 0.19 0.25 0.24 0.19 Total 15.40 15.57 15.47 15.57 15.51 15.40 15.45 15.50 15.45 15.63 15.49 15.50 15.49 15.27 15.34 15.36 15.57 Mg# 0.81 0.75 0.79 0.82 0.83 0.74 0.73 0.66 0.72 0.63 0.63 0.65 0.62 0.75 0.66 0.70 0.73 Si 6.61 6.27 6.41 6.16 6.33 6.61 6.54 6.62 6.50 7.42 6.59 6.47 6.59 6.47 6.33 6.53 6.40 命名 镁角闪 韭闪石 镁钙闪 镁绿钙 镁绿钙 镁角闪 镁角闪 镁角闪 镁角闪 浅闪石 镁角闪 镁钙闪 镁角闪 镁钙闪 镁钙闪 镁角闪 镁绿钙 注:探针分析由北京大学造山带与地壳演化教育部重点实验室,操作者李小犁,仪器型号:JXA-8100;分析条件:加速电压15 kV;束流1×10-8 A;束斑2 μm;修正方法PRZ;标准样品美国SPI公司53种矿物.以下探针同此.RP10-1和Q的分析数据马芳等(2004). 表 3 单斜辉石的探针分析结果(%)
Table 3. The EMOA results of clinopyroxenes (%)
样号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total Wo En Fs RP4.1 52.58 0.11 3.57 11.92 0.25 16.51 11.65 0.70 0.16 0.39 0.05 97.89 25.36 51.99 21.66 RP4.2 52.21 0.21 3.74 12.35 0.22 16.48 12.09 0.61 0.27 0.32 0.07 98.56 26.94 51.10 21.95 RP4.2+ 52.18 0.16 3.52 11.90 0.27 16.49 11.81 0.74 0.24 0.34 0.14 97.79 25.67 51.81 21.54 RP4.3 52.58 0.08 3.76 12.07 0.24 16.68 11.98 0.82 0.16 0.37 0.04 98.79 25.72 51.77 21.50 RP4.4 51.71 0.13 4.20 12.40 0.24 16.15 11.61 0.84 0.21 0.69 0.01 98.20 26.39 51.09 22.50 RP4.5 51.21 0.16 4.35 12.42 0.35 16.35 11.69 0.94 0.23 0.58 0.05 98.32 26.33 51.24 22.43 RP4.6 52.17 0.23 3.84 12.13 0.30 16.59 11.87 0.74 0.16 0.37 0.00 98.40 26.56 51.65 21.79 表 4 长石的探针分析结果(%)
Table 4. The EMOA results of feldspars (%)
样号 RP1-2.2 RP1-2.4 RP8-1.4 RP8-1.5 RP8-2.3 RP6-1.1 RP6-1.2 RP6-1.3 RP6-1.3+ RP6-2.1 RP6-1.5 RP6-2.5 SiO2 57.69 56.65 64.67 65.75 46.37 58.23 68.03 46.18 46.07 55.16 54.28 59.19 Al2O3 26.41 27.31 22.82 21.98 31.95 25.96 20.19 35.04 36.09 28.32 28.62 25.04 FeO 0.06 0.10 0.07 0.03 2.96 0.12 0.05 2.38 1.86 0.11 0.15 0.20 CaO 8.26 9.06 3.82 2.96 0.03 7.53 0.59 0.02 0.06 10.30 11.00 7.56 Na2O 7.47 6.98 9.66 10.14 0.31 7.13 11.79 0.17 0.23 6.25 5.69 7.79 K2O 0.08 0.08 0.03 0.05 10.86 0.18 0.09 10.09 10.57 0.10 0.16 0.19 An 37.76 41.58 17.90 13.85 0.22 36.48 2.67 0.16 0.43 47.39 51.18 34.55 Ab 61.79 57.79 81.93 85.86 4.16 62.51 96.84 2.44 3.16 52.04 47.91 64.43 Or 0.45 0.45 0.17 0.28 95.62 1.02 0.49 97.40 96.41 0.56 0.90 1.02 命名 中长石 中长石 更长石 更长石 正长石 中长石 钠长石 正长石 正长石 中长石 拉长石 含钡中长 表 5 地幔包体和堆晶岩中金云母组分对比(%)
Table 5. Component comparison of phlogolite in mantle xenoliths and cumulates (%)
金云母赋存状态 样号 SiO2 TiO2 Al2O3 MgO CaO MnO FeO Na2O K2O 高寺台铬铁矿包体中富铬金云母 GST2-2.1 39.40 0.19 15.25 26.39 0.01 0.00 2.13 0.53 10.01 GST1-3.2 39.26 0.26 15.23 25.80 0.02 0.00 1.40 0.46 9.84 高寺台堆晶含橄辉石岩中金云母 G4-2.2 37.31 2.78 15.61 18.94 0.00 0.05 9.83 0.64 9.33 G4-2.3 36.63 2.59 15.57 18.54 0.00 0.10 11.00 0.27 9.31 注:探针分析仪器和方法同表 2. 表 6 堆晶岩主量元素分析结果(%)
Table 6. The analytical results of major elements of cumulates (%)
编号 地点 岩性 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total G11 高寺台 纯橄岩 34.81 0.01 0.07 7.88 0.12 43.81 0.16 0.00 0.01 0.01 13.27 100.15 BJ6 高寺台 橄辉岩 44.20 0.04 0.61 13.66 0.10 40.46 0.91 0.01 0.04 0.01 10.71 100.00 G4 高寺八家 含橄辉石岩 38.16 1.90 5.93 24.83 0.17 13.00 12.53 0.66 1.29 0.06 0.28 98.81 RP-4 北李营 辉石岩 48.40 0.14 2.87 15.82 0.28 19.05 11.53 0.55 0.18 0.09 0.69 99.59 R12 北李营 巨晶辉石岩 51.28 0.40 7.00 7.55 0.15 15.69 13.30 1.26 0.70 0.06 1.86 99.25 R8 北李营 角闪辉石岩 49.78 1.33 5.75 16.34 0.28 12.07 11.90 0.82 0.42 0.41 0.76 99.87 R21 波罗诺 辉石角闪岩 37.33 2.49 13.62 21.03 0.18 10.26 9.62 1.81 0.84 0.04 1.72 98.94 R36 波罗诺 辉石角闪岩 42.11 1.26 15.63 11.25 0.13 12.51 11.65 2.47 0.32 0.02 1.68 99.03 R16 石人沟 辉石角闪岩 45.08 1.39 12.86 11.79 0.15 13.03 10.58 2.03 0.68 0.04 1.54 99.17 R1 北李营 含斜长石角闪岩 46.59 0.74 7.64 15.01 0.26 15.69 10.08 1.14 0.23 0.09 1.92 99.39 RP-8 北李营 含斜长石角闪岩 47.83 0.87 9.45 10.35 0.16 16.64 10.51 1.89 0.61 0.12 1.24 99.66 R37 团榆树 淡色辉长岩 49.71 0.69 19.88 9.27 0.13 5.25 9.71 3.76 0.19 0.05 0.34 98.99 R33 八郎沟 角闪辉长岩 45.84 0.93 12.79 13.53 0.19 10.60 10.89 1.77 0.66 0.06 1.72 98.98 R20 波罗诺 辉绿-辉长岩 47.57 0.91 19.64 11.44 0.21 3.27 8.28 4.47 1.02 0.68 1.34 98.83 R30 八郎沟 闪长岩 43.87 1.67 19.18 13.91 0.23 4.18 9.88 2.67 1.22 0.94 1.26 99.01 RP-1 北李营 粗粒闪长岩 49.62 0.80 16.71 10.12 0.17 6.58 9.43 3.81 0.75 0.45 1.26 99.69 R4 北李营 辉绿岩 57.72 1.17 16.32 7.12 0.08 2.78 3.46 5.63 2.69 0.44 2.22 99.62 Q238 北李营 辉长岩(捕) 49.00 0.81 15.37 10.41 0.24 8.89 10.69 2.49 0.78 0.25 0.27 99.80 R24 波罗诺 斜长岩 53.27 0.32 20.39 4.64 0.08 1.89 9.74 5.55 0.54 0.34 2.70 99.46 RP-16 石人沟 石英闪长岩 60.33 0.21 25.59 3.20 0.07 1.37 7.21 3.51 0.86 0.20 1.28 100.65 RP-3 北李营 石英闪长岩 58.79 0.44 18.79 5.82 0.11 2.39 5.22 5.72 1.51 0.35 0.56 99.70 RP-9 北李营 闪长质寄主岩 65.76 0.05 21.58 1.51 0.09 0.25 4.11 3.51 1.87 0.18 0.51 99.32 注:Q238为球状斜长岩核部捕获的辉长岩;Q238和RP-9马芳等(2004);其余为中科院地质与地球物理研究所岩石圈演化国家重点实验室分析. 表 7 各类堆晶岩的微量元素(10-6)
Table 7. The trace elements in all kinds of cumulates (10-6)
样品 G11 BJ6* G4 R12 R8 R36 R1 R37 R20 R30 R24 R21 R33 R16 R4 La 0.023 0.226 2.55 4.98 11.6 3.06 6.43 3.86 34.1 28.8 21.1 6.17 7.27 5.40 30.3 Ce 0.047 0.659 9.22 12.6 33.3 10.6 22.3 8.15 80.3 76.4 43.5 19.6 19.2 17.2 68.7 Pr 0.003 1 0.115 1.67 1.90 5.38 2.08 3.99 1.16 10.7 10.9 5.16 3.55 3.03 3.11 8.54 Nd 0.021 0.568 8.80 8.53 27.7 11.9 19.9 5.64 46.7 50.6 20.6 20.1 15.3 16.5 35.2 Sm 0.003 2 0.186 2.41 2.11 7.27 3.61 5.02 1.35 9.49 11.2 3.70 5.90 3.93 4.54 6.49 Eu 0.001 3 0.041 0.74 0.71 1.81 1.34 1.39 0.91 2.83 2.96 1.39 1.98 1.21 1.62 1.80 Gd 0.006 9 0.158 2.21 1.92 7.12 3.78 4.22 1.28 7.64 9.74 2.85 6.00 3.75 4.55 4.57 Tb 0.001 0 0.029 0.33 0.31 1.07 0.57 0.63 0.20 1.08 1.43 0.39 0.91 0.57 0.71 0.57 Dy 0.006 2 0.129 1.80 1.95 6.26 3.31 3.62 1.22 5.78 7.88 2.09 5.07 3.32 4.10 2.75 Ho 0.001 1 0.022 0.33 0.38 1.23 0.67 0.70 0.24 1.10 1.51 0.40 0.97 0.66 0.80 0.45 Er 0.008 6 0.056 0.82 1.05 3.25 1.81 1.90 0.69 2.99 4.05 1.07 2.42 1.73 2.14 1.15 Tm 0.001 1 0.007 0.10 0.14 0.44 0.25 0.26 0.095 0.43 0.55 0.16 0.33 0.23 0.30 0.15 Yb 0.008 9 0.046 0.72 0.89 2.76 1.48 1.70 0.64 2.62 3.34 1.07 1.95 1.48 1.78 0.91 Lu 0.002 0 0.008 0.10 0.15 0.43 0.21 0.27 0.095 0.39 0.49 0.16 0.27 0.21 0.24 0.12 ∑REE 0.13 2.31 31.79 37.65 109.55 44.67 72.33 25.54 206.12 209.87 103.66 75.29 61.83 63.03 161.75 Rb 0.074 0.41 27.6 7.00 0.82 0.74 0.47 1.23 16.5 24.1 7.52 6.19 8.24 5.52 36.3 Ba 3.04 2.66 454 353 35.8 149 57.6 242 877 1 015 221 261 212 380 2 156 Th 0.007 4 0.021 0.012 0.18 0.35 0.022 0.092 0.008 7 0.86 1.11 3.38 0.65 0.10 0.060 1.37 U 0.003 7 0.008 0.002 5 0.075 0.11 0.014 0.050 0.006 2 0.21 0.35 0.69 0.15 0.066 0.037 0.45 Nb 0.008 6 0.07 1.08 2.26 2.54 1.37 3.50 0.20 5.09 10.7 3.65 3.47 2.44 4.30 6.92 Ta 0.002 5 0.001 0.049 0.085 0.11 0.056 0.12 0.010 0 0.16 0.42 0.21 0.16 0.090 0.15 0.33 Pb 0.066 3.45 2.27 1.34 1.31 0.69 0.84 1.94 4.49 4.46 5.20 1.85 3.00 1.49 4.06 Sr 2.46 2.66 153 282 100 763 98.5 1 395 1779 1 125 1 054 548 615 655 983 Zr 0.17 1.11 16.1 23.0 81.6 21.3 36.7 6.29 53.6 70.1 75.1 34.3 39.5 34.0 159 Y 0.044 0.707 8.30 10.2 33.1 18.0 18.4 6.51 31.9 41.2 11.7 25.1 17.1 21.0 13.0 Sc 2.71 12.2 60.5 62.8 75.2 73.6 45.9 22.6 13.5 23.5 5.37 65.8 57.2 80.6 9.97 V 5.07 19.91 851. 169 265 394 240 252 119 74.7 67.8 756 352 440 128 Cr 3 462 1 453.2 40.6 1 234 28.8 251 1 496 32.5 1.25 3.40 21.1 2.20 88.8 353 21.3 Co 117 103 93.3 49.8 63.8 52.0 70.6 29.5 17.3 25.1 10.5 73.7 52.2 57.4 18.0 Ni 1 612 893.5 101 342 63.4 108 450 25.4 1.53 3.26 9.48 4.92 57.9 156 21.0 注:测试者为武汉上谱分析科技有限责任公司史晓丽,各样号所对应的岩石名称见表 6,以上数据均为原始测试数据. 表 8 堆晶岩的Sm-Nd同位素组成
Table 8. Sm-Nd isotopic composition of cumulates
样号 年龄 岩石 Sr(10-6) Nd(10-6) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd 2σ εNd(t) R12 284 巨晶辉石岩 277.10 8.710 0.076 2 0.705 215 15 0.704 91 0.140 6 0.511 828 12 -13.8 R8 284 角闪辉石岩 99.47 29.450 0.032 8 0.705 250 13 0.705 12 0.154 4 0.511 879 13 -13.3 R36 281 辉石角闪岩 748.50 13.490 0.075 7 0.705 569 15 0.705 27 0.179 1 0.511 859 14 -14.6 R37 281 辉长岩 1 457.00 5.875 0.002 5 0.706 504 17 0.706 49 0.142 8 0.511 756 15 -15.3 R20 284 辉绿岩 1 741.00 46.830 0.027 4 0.705 439 15 0.705 33 0.120 6 0.511 904 22 -11.6 R24 286 斜长岩 1 001.00 19.650 0.021 2 0.705 406 13 0.705 32 0.107 4 0.511 901 13 -11.1 注:测试者为中国科学院地质与地球物理研究所同位素室李潮峰,表中年龄为初始比值计算中的参考年龄. -
[1] Bai, W.J., Zhou, M.F., Hu, X.F., et al., 1993. Mafic/Ultramafic Magmatism and Tectonic Evolution of the Northern China Craton. Seismological Press, Beijing, 224-273 (in Chinese). [2] Bhattacharji, S., Smith, C.H., 1964. Flowage Differentiation. Science, 145(3628): 150-153. doi: 10.1126/science.145.3628.150 [3] Bureau of Geology and Mineral Resources of Hebei Province, 1989. Regional Geology of Hebei Province, Beijing Municipality and Tianjin Municipality. Geological Publishing House, Beijing, 567-569 (in Chinese with English abstract). [4] Chen, B., Suzuki, K., Tian, W., et al., 2009. Geochemistry and Os-Nd-Sr Isotopes of the Gaositai Alaskan-Type Ultramafic Complex from the Northern North China Craton: Implications for Mantle-Crust Interaction. Contributions to Mineralogy and Petrology, 158(5): 683-702. doi: 10.1007/s00410-009-0404-7 [5] Cocherie, A., 1986. Systematic Use of Trace Element Distribution Patterns in logA-logB Diagrams for Plutonic Suites. Geochim. et Cosmochim. Acta, 50(11): 2517-2522. doi: 10.1016/0016-7037(86)90034-7 [6] Condie, K.C., 1989. Geochemical Changes in Basalts and Andesites across the Archean-Proterozoic Boundary Identification and Significance. Lithos, 23(1-2): 1-18. doi: 10.1016/0024-4937(89)90020-0 [7] Courtillot, V., Besse, J., 1987. Magnetic Field Reversals, Polar Wander, and Core-Mantle Coupling. Science, 237(4819): 1140-1147. doi: 10.1126/science.237.4819.1140 [8] de la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. doi: 10.1016/0009-2541(80)90020-0 [9] Holm, P.E., 1985. The Geochemical Fingerprints of Different Tectonomagmatic Environments Using Hygromagmatophile Element Abundances of Tholeiitic Basalts and Basaltic Andesites. Chemical Geology, 51(3-4): 303-323. doi: 10.1016/0009-2541(85)90139-1 [10] Humphreys, M.C.S., 2009. Chemical Evolution of Intercumulus Liquid, as Recorded in Plagioclase Overgrowth Rims from the Skaergaard Intrusion. Journal of Petrology, 50(1): 127-145. doi: 10.1093/petrology/egn076 [11] Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3-4): 521-539. doi: 10.1016/j.lithos.2009.06.015 [12] Jiang, C.Y., An, S.Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/284045336_On_chemical_characteristics_of_calcic_amphiboles_from_igneous_rocks_and_their_petrogenesis_significance [13] Li, C.F., Li X.H., Li Q.L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Flament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54-60. doi: 10.1016/j.aca.2012.03.040 [14] Li, W.P., Li, X.H., 2005. Geochemical Characteristics of the Late Paleozoic Diabase Dyke Swarms of Changmaohezi from Western Liaoning, Northeast China. Earth Science—Journal of China University of Geoscinces, 30(6): 761-770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200506011.htm [15] Liu, Y., Zong, K., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016 [16] Lu, F.X., Sang, L.K., 2002. Petrology. Geological Publishing House, Beijing, 133 (in Chinese). [17] Ludwig, K.R., 2001. Users Manual for a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1-59. [18] Ma, F., Mu, Z.G., Liu, Y.L., 2004. Geochronology and Geologic Significance of the Orbicular Dioritic Rocks in Luanping, Hebei Province. Geological Review, 50(4): 360-364 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP200404003&dbcode=CJFD&year=2004&dflag=pdfdown [19] Ma, X., Chen, B., Chen, J.F., et al., 2012. Zircon SHRIMP U-Pb Age, Geochemical, Sr-Nd Isotopic, and In-Situ Hf Isotopic Data of the Late Carboniferous-Early Permian Plutons in the Northern Margin of the North China Craton. Science China: Earth Sciences, 42(12): 1830-1850 (in Chinese). [20] Mu, B.L., Yan, G.H., 1992. Geochemistry of Trissic Alkaline or Subalkaline Igneous Complexes in the Yan-Liao Area and Their Significance. Acta Geologica Sinica, 66(2): 108-121 (in Chinese with English abstract). http://www.researchgate.net/publication/284581802_Geochemistry_of_Triassic_alkaline_or_subalkaline_igneous_complexes_in_the_Yan-Liao_area_and_their_significance [21] Onuma, N., Ninomiya, S., Nagasawa, H., 1981. Mineral/Groundmass Partition Coefficients for Nepheline, Melilite, Clinopyroxene and Perovskite in Melilite-Nepheline Basalt, Nyiragongo, Zaire. Geochemical Journal, 15(4): 221-228. doi: 10.2343/geochemj.15.221 [22] Peng, R.M., Zhai, Y.S., Wang, S.G., et al., 2012. Characteristics of Zircon SHRIMP Age and Its Significance to Trace-Iron of the Bearing Nichel Minerals Ultramafic Rock Body in Ebutu, Westeen Part of Northern Margin of the North China Platform. Minerral Deposits, 31(Suppl. ): 595-596 (in Chinese). [23] Shao, J.A., Zhang, L.Q., Mu, B.L., et al., 2007. Upwelling of Da Hinggan Mountains and Its Geodynamic Background. Geological Publishing House, Beijing, 24-29 (in Chinese). [24] Shao, J.A., Yang, J.H., 2011. The Geological Corridor Recording the Early Mesozoic Crust-Mantle Evolution from Chifeng to Lingyuan. Acta Petrologica Sinica, 27(12): 3525-3534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201112003.htm [25] Shao, J.A., He, G.Q., Tang K.D., 2015. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 31(1): 47-55 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98201501003 [26] Shao, J.A., Zhang, Z., She, H.Q., et al., 2012. The Discovery of Phanerozoic Granulite in Chifeng Area of North Craton and Its Implication. Earth Science Frontiers, 19(3): 188-198 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203021.htm [27] Steiger, R.H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. doi: 10.1016/0012-821x(77)90060-7 [28] Sun, S.H., Yu, J., 1989. Interpretation of Chemical Composition and Subdivision of Mg-Fe Micas, Part B: The Natural Subdivision of Mg-Fe Micas. Scientia Geologica Sinica, 24(2): 176-189 (in Chinese with English abstract). http://www.researchgate.net/publication/316930153_Interpretation_of_chemical_composition_and_subdivision_of_Mg-Fe_micas_Part_B_the_natural_subdivision_of_Mg-Fe_micas [29] Tian, W., Chen, B., Ireland, T.R., et al., 2011. Petrology and Geochemistry of Dunites, Chromitites and Mineral Inclusions from the Gaositai Alaskan-Type Complex, North China Craton: Implications for Mantle Source Characteristics. Lithos, 127(1-2): 165-175. doi: 10.1016/j.lithos.2011.08.013 [30] Wang, H.C., Zhao, F.Q., Li, H.M., et al., 2007. Zircon SHRIMP U-Pb Age of the Dioritic Rocks from Northern Hebei: The Geological Records of Late Paleozoic Magmatic Arc. Acta Petrologica Sinica, 23(3): 587-604 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200703007 [31] Wang, L.B., 2001. Hornblende Nomenclature. Acta Petrologica et Mineralogica, 20(1): 84-100 (in Chinese). [32] Wei, X., Xu, Y.G., Feng, Y.X., et al. 2014. Plume-Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. doi: 10.2475/01.2014.09 [33] Williams, I.S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M.A., Shanks, W.C., Ridley, W.I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Rev. Economic Geol., 7: 1-35. [34] Wood, D.A., Joron, J.L., Treuil, M., 1979. A Re-appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326-336. doi: 10.1016/0012-821X(79)90133-X [35] Xia, L.Q., Li, X.M., Xia, Z.C., et al., 2006. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tianshan, Northwestern China. Northwestern Geology, 39(1): 1-49 (in Chinese with English abstract). http://www.researchgate.net/publication/285794242_Carboniferous-Permian_rift-related_volcanism_and_mantle_plume_in_the_Tianshan_northwestern_China [36] Yan, G.H., Mu, B.L., Xu, B.L., et al., 2000. Triassic Alkaline in the Yanliao-Yinshan Area: Their Chronology, Sr, Nd and Pb Isotopic Characteristics and Their Implication. Science in China (Series D), 30(4): 383-387 (in Chinese). doi: 10.1007/BF02877785 [37] Yang, J.H., Wu, F.Y., 2009. Triassic Magmatism and Its Relation to Decratonization in the Eastern North China Craton. Science in China (Series D), 39(7): 910-921 (in Chinese). doi: 10.1007/s11430-009-0137-5 [38] Zhang, S.H., Zhao, Y., Kröner, A., et al., 2009. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467. doi: 10.1007/s00531-008-0368-2 [39] Zhang. X.H., Mao, Q., Zhang, H.F., et al., 2011. Mafic and Felsic Magma Interaction during the Construction of High-K Calc-Alkaline Plutons within a Metacratonic Passive Margin: The Early Permian Guyang Batholith from the Northern North China Craton. Lithos, 125(1-2): 569-591. doi: 10.1016/j.lithos.2011.03.008 [40] Ярмолюк, B.B., Дураите, М. В., Коваленко, В. И. 1981. Возраст Комендим-Щелочно-Оранитных Ассоциации Южной Монголии, Изв. АН СССР, Сер. Теол, 9: 40-48 (in Russian). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DXES201901001011.htm [41] 白文吉, 周美付, 胡旭峰, 等, 1993. 华北地块岩石圈构造演化与镁铁-超镁铁杂岩及矿化特征. 北京: 地震出版社, 224-273. [42] 河北省地质矿产局, 1989. 河北省-北京市-天津市区域地质. 北京: 地质出版社, 567-569. [43] 姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm [44] 李伍平, 李献华, 2005. 辽西晚古生代长茂河子辉绿岩墙群的地球化学特征. 地球科学——中国地质大学学报, 30(6): 761-770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506011.htm [45] 路凤香, 桑隆康, 2002. 岩石学, 北京: 地质出版社, 133. [46] 马芳, 穆治国, 刘玉琳, 2004. 河北滦平球状闪长岩年代学及其地质意义. 地质论评, 50(4): 360-364. doi: 10.3321/j.issn:0371-5736.2004.04.004 [47] 马旭, 陈斌, 陈家富, 等, 2012. 华北克拉通北缘晚古生代岩体的成因和意义: 岩石学、锆石U-Pb年龄、Nd-Sr同位素及锆石原位Hf同位素证据. 中国科学: 地球科学, 42(12): 1830-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212006.htm [48] 牟保磊, 阎国翰, 1992. 燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义. 地质学报, 66(2): 108-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199202001.htm [49] 彭润民, 翟裕生, 王守光, 等, 2012. 华北地台北缘西段额布图镍矿超镁铁质岩岩体锆石SHRIMP年龄特征及其示踪意义. 矿床地质, 31(增刊): 595-596. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1301.htm [50] 邵济安, 张履桥, 牟保磊, 等, 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社, 24-29. [51] 邵济安, 杨进辉, 2011. 记载了早中生代壳幔演化的赤峰-凌源地质走廊. 岩石学报, 27(12): 3525-3534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112003.htm [52] 邵济安, 张舟, 佘宏全, 等, 2012. 华北克拉通北缘赤峰地区显生宙麻粒岩的发现及其意义. 地学前缘, 19(3): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203021.htm [53] 邵济安, 何国琦, 唐克东, 2015. 华北北部二叠纪陆壳演化. 岩石学报, 31(1): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501003.htm [54] 孙世华, 于杰, 1989, Mg-Fe云母化学成分的解释和分类(Ⅱ)Mg-Fe云母的自然分类. 地质科学, 24(2): 176-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198902005.htm [55] 王惠初, 赵凤清, 李惠民, 等, 2007. 冀北闪长质岩石锆石SHRIMP U-Pb年龄: 晚古生代岩浆弧的地质记录. 岩石学报, 23(3): 597-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703009.htm [56] 王立本, 2001. 角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告. 岩石矿物学杂志, 20(1): 84-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200101011.htm [57] 夏林圻, 李向民, 夏祖春, 等, 2006. 天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱. 西北地质, 39(1): 1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001 [58] 阎国翰, 牟保磊, 许保良, 等, 2000. 燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义. 中国科学(D辑), 30(4): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004005.htm [59] 杨进辉, 吴福元, 2009. 华北东部三叠纪岩浆作用与克拉通破坏. 中国科学(D辑), 39(7): 910-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907005.htm