• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于SREM融合数据的矿物蚀变信息提取

    王桂珍 张立福 孙雪剑 杨杭 姜海玲 童庆禧

    王桂珍, 张立福, 孙雪剑, 杨杭, 姜海玲, 童庆禧, 2015. 基于SREM融合数据的矿物蚀变信息提取. 地球科学, 40(8): 1330-1338. doi: 10.3799/dqkx.2015.114
    引用本文: 王桂珍, 张立福, 孙雪剑, 杨杭, 姜海玲, 童庆禧, 2015. 基于SREM融合数据的矿物蚀变信息提取. 地球科学, 40(8): 1330-1338. doi: 10.3799/dqkx.2015.114
    Wang Guizhen, Zhang Lifu, Sun Xuejian, Yang Hang, Jiang Hailing, Tong Qingxi, 2015. Mineral Alteration Information Extraction Based on SREM Fusion Data. Earth Science, 40(8): 1330-1338. doi: 10.3799/dqkx.2015.114
    Citation: Wang Guizhen, Zhang Lifu, Sun Xuejian, Yang Hang, Jiang Hailing, Tong Qingxi, 2015. Mineral Alteration Information Extraction Based on SREM Fusion Data. Earth Science, 40(8): 1330-1338. doi: 10.3799/dqkx.2015.114

    基于SREM融合数据的矿物蚀变信息提取

    doi: 10.3799/dqkx.2015.114
    基金项目: 

    高光谱图像融合算法及质量提升模式研究项目 41371362

    全球巨型成矿带矿产资源与能源遥感专题产品生产体系项目 2013AA12A302

    全球巨型成矿带重要矿产资源与能源遥感探测关键技术项目 2012AA12A308

    国家高技术研究发展计划(863计划)项目 2008AA121100

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    国家自然科学基金项目 41402293

    详细信息
      作者简介:

      王桂珍(1990-), 女, 硕士研究生, 主要从事高光谱遥感研究.E-mail: wanggz@radi.ac.cn

      通讯作者:

      张立福, E-mail: zhanglf@radi.ac.cn

    • 中图分类号: P627

    Mineral Alteration Information Extraction Based on SREM Fusion Data

    • 图  1  ASTER多光谱数据与Hyperion高光谱数据幅宽对比

      Fig.  1.  The different breadth of ASTER data and Hyperion data

      图  2  MF分值和不可信度值示意

      DiPietro et al.(2010)

      Fig.  2.  The schematic plot of MF and infeasibility

      图  3  丘基卡马塔地质图

      Ossandón et al.(2001)改编

      Fig.  3.  Geological sketch of Chuguicamata

      图  4  Hyperion和ASTER数据处理流程

      Fig.  4.  Data processing of Hyperion dada and ASTER data

      图  5  Hyperion(a)与SREM融合数据(b)矿物分布(重合区域)

      Fig.  5.  Alteration minerals distribution maps of Hyperion (a) and SREM fusion data (b)

      图  6  ASTER、Hyperion和SREM融合数据矿物光谱曲线对比

      a.绢云母;b.伊利石;c.高岭石;d.绿泥石;e.黄钾铁矾

      Fig.  6.  The difference of minerals spectral curves between ASTER, Hyperion and SREM fusion data

      图  7  ASTER (a)与SREM融合数据蚀变矿物分布(b)

      Fig.  7.  Alteration minerals distribution of ASTER (a) and SREM fusion data (b)

      表  1  SREM融合数据和Hyperion光谱相似性

      Table  1.   Spectral similarity between SREM fusion data and Hyperion

      矿物类型 绢云母 伊利石 高岭石 绿泥石 黄钾铁矾
      SAM(度) 3.332 9 2.615 5 2.356 5 2.968 3 4.590 5
      UIQI 0.979 9 0.989 4 0.983 8 0.985 9 0.974 9
      下载: 导出CSV

      表  2  Hyperion与SREM融合数据矿物精度分析

      Table  2.   The accuracy of minerals between Hyperion data and SREM fusion data

      矿物类型 制图精度(%) 用户精度(%)
      伊利石 70.52 71.77
      绢云母 68.97 64.45
      高岭石 95.17 92.13
      绿泥石 96.21 99.86
      黄钾铁矾 92.18 89.74
      总体精度(%) 92.85 Kappa系数0.897 3
      下载: 导出CSV

      表  3  ASTER与SREM融合数据矿物精度分析

      Table  3.   The accuracy of minerals between ASTER data and SREM fusion data

      矿物类型 制图精度(%) 用户精度(%)
      Al-OH 95.10 90.08
      Mg-OH 93.26 97.66
      Fe3+ 85.11 60.08
      总体精度(%) 90.561 7 Kappa系数0.811 6
      下载: 导出CSV
    • [1] Cudahy, T., Hewson, R., Huntington, J., et al., 2001. The Performance of the Satellite-Borne Hyperion Hyperspectral VNIR-SWIR Imaging System for Mineral Mapping at Mount Fitton, South Australia. Geoscience and Remote Sensing Symposium, IEEE 2001 International, 314-316. doi: doi:10.1109/IGARSS.2001.976142
      [2] DiPietro, R., Manolakis, D., Lockwood, R., et al., 2010. Performance Evaluation of Hyperspectral Detection Algorithms for Subpixel Objects. Proceeding of SPIE, (7695): 76951W. doi: 10.1117/12.850036
      [3] Eismann, M.T., Hardie, R.C., 2004. Application of the Stochastic Mixing Model to Hyperspectral Resolution Enhancement. Geoscience and Remote Sensing, IEEE Transactions on, 42(9): 1924-1933. doi: 10.1109/TGRS.2004.830644
      [4] Gan, F.P., Wang, R.S., Yang, S.M., 2002. Studying on the Alteration Minerals Identification Using Hyperion Data. Remote Sensing for Land & Resources, (4): 44-50(in Chinese with English abstract).
      [5] Hosseinjani, Z.M., Tangestani, M.H., Roldan, F.V., et al., 2014. Sub-Pixel Mineral Mapping of a Porphyry Copper Belt Using EO-1 Hyperion Data. Advances in Space Research, 53(3): 440-451. doi: 10.1016/j.asr.2013.11.029
      [6] Iwasaki, A., Tonooka, H., 2005. Validation of a Crosstalk Correction Algorithm for ASTER/SWIR. Geoscience and Remote Sensing, IEEE Transactions on, 43(12): 2747-2751. doi: 10.1109/TGRS.2005.855066
      [7] Kruse, F.A., Boardman, J.W., Huntington, J.F., 1999. Fifteen Years of Hyperspectral Data: Northern Grapevine Mountains, Nevada. Proceedings of the 8th JPL Airborne Earth Science Workshop, (99-17): 247-258.
      [8] Lin, N., Yang, W.N., Liu, H.H., 2011. Mineral Endmember Identification and Information Extraction Based on Hyperspectral Remote Sening. Remote Sensing Information, (5): 114-117 (in Chinese with English abstract).
      [9] Liu, B., Zhang, L.F., Zhang, X., et al., 2009. Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach. Sensors, 9(4): 3090-3108. doi: 10.3390/s90403090
      [10] Lopez, V.M., 1939. The Primary Mineralization at Chuquicamata, Chile, S.A. . Economic Geology, 34(6): 674-711. doi: 10.2113/gsecongeo.34.6.674
      [11] Mayumi, N., Iwasaki, A., 2011. Image Sharpening Using Hyperspectral and Multispectral Data. Geoscience and Remote Sensing Symposium, IEEE International, 519-522. doi: 10.1109/IGARSS.2011.6049179
      [12] Ossandón, G., Gustafson, L.B., Lindsay, D.D., et al., 2001. Geology of the Chuquicamata Mine: A Progress Report. Economic Geology, 96(2): 249-270. doi: 10.2113/gsecongeo.96.2.249
      [13] Qian, Z.Q., Fang, Y.Y., Shi, J.L., 2014. Research Characteristics of Remote Sensing Technology in Overseas Mineral Exploration. Resource Development & Market, 30(7): 781-784 (in Chinese with English abstract).
      [14] Sun, X.J., Zhang L.F., Yang, H., et al., 2014. Enhancement of Spectral Resolution for Remotely Sensed Multi-Spectral Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/JSTARS.2014.2356512
      [15] Tan, B.X., Li, Z.Y., Chen, E.X., et al., 2005. Preprocessing of EO-1 Hyperion Hyperspectral Data. Remote Sensing Information, (6): 36-41 (in Chinese with English abstract).
      [16] Tian, F., Dong, L.N., Yang, S.M., et al., 2010. Application of Combined Spectra of Mixed Minerals to Mapping Altered Minerals: A Case Study in the Yunnan Region Based on Hyperion Data. Geology and Exploration, 46(2): 331-337(in Chinese with English abstract).
      [17] Tong, Q.X., Zhang, B., Zhen, L.F., 2006. Hyperspectral Remote Sensing. Principle, Technology and Application. Higher Education Press, Beijing (in Chinese).
      [18] Wang, Z., Bovik, A.C., 2002. A Universal Image Quality Index. Signal Processing Letters, IEEE, 9(3): 81-84. doi: 10.1109/97.995823
      [19] Winter, M.E., Winter, E.M., Beaven, S.G., et al., 2007. Hyperspectral Image Sharpening Using Multispectral Data. Aerospace Conference, IEEE, 1-9. doi: 10.1109/AERO.2007.353060
      [20] Yokoya, N., Yairi, T., Iwasaki, A., 2012. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. Geoscience and Remote Sensing, IEEE Transactions on, 50(2): 528-537. doi: 10.1109/TGRS.2011.2161320
      [21] Yuhas, R.H., Goetz, A.F., Boardman, J.W., 1992. Discrimination among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. Summaries of 3rd Annual JPL Airborne Geoscience Workshop, Jet Porpulsion Laboratory.
      [22] Zhang, J., Song, R., Yu, W.X., et al., 2005. Construction of Hierarchical Classifiers Based on the Confusion Matrix and Fisher's Principle. Journal of Software, 16(9): 1560-1567 (in Chinese with English abstract). doi: 10.1360/jos161560
      [23] Zhang, Y.F., de Backer, S., Scheunders, P., 2009. Noise-Resistant Wavelet—Based Bayesian Fusion of Multispectral and Hyperspectral Images. Geoscience and Remote Sensing, IEEE Transactions on, 47(11): 3834-3843. doi: 10.1109/TGRS.2009.2017737
      [24] Zhao, Y.S., 2003. Analysis Principle and Method of Remote Sensing Applications. Science Press, Beijing (in Chinese).
      [25] 甘甫平, 王润生, 杨苏明, 2002. 西藏Hyperion数据蚀变矿物识别初步研究. 国土资源遥感, (4): 44-50. doi: 10.3969/j.issn.1001-070X.2002.04.010
      [26] 林娜, 杨武年, 刘汉湖, 2011. 基于高光谱遥感的岩矿端元识别及信息提取研究. 遥感信息, (5): 114-117.
      [27] 钱志奇, 房莹莹, 石剑龙, 2014. 遥感技术在境外矿产勘查中的特点研究. 资源开发与市场, 30(7): 781-784. doi: 10.3969/j.issn.1005-8141.2014.07.005
      [28] 谭炳香, 李增元, 陈尔学, 等, 2005. EO-1 Hyperion高光谱数据的预处理. 遥感信息, (6): 36-41. doi: 10.3969/j.issn.1000-3177.2005.06.010
      [29] 田丰, 董丽娜, 杨苏明, 等, 2010. 混合矿物组合光谱在蚀变矿物填图中的应用——以云南香格里拉地区Hyperion数据蚀变矿物填图为例. 地质与勘探, 46(2): 331-337.
      [30] 童庆禧, 张兵, 郑兰芬, 2006. 高光谱遥感: 原理, 技术与应用. 北京: 高等教育出版社.
      [31] 张静, 宋锐, 郁文贤, 等, 2005. 基于混淆矩阵和Fisher准则构造层次化分类器. 软件学报, 16(9): 1560-1567.
      [32] 赵英时, 2003. 遥感应用分析原理与方法. 北京: 科学出版社, 202-208.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  3013
    • HTML全文浏览量:  132
    • PDF下载量:  295
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-11
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回