• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因

    李瑞保 裴先治 李佐臣 陈有炘 刘成军 裴磊 徐通 刘战庆 魏博

    李瑞保, 裴先治, 李佐臣, 陈有炘, 刘成军, 裴磊, 徐通, 刘战庆, 魏博, 2015. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因. 地球科学, 40(7): 1148-1162. doi: 10.3799/dqkx.2015.096
    引用本文: 李瑞保, 裴先治, 李佐臣, 陈有炘, 刘成军, 裴磊, 徐通, 刘战庆, 魏博, 2015. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因. 地球科学, 40(7): 1148-1162. doi: 10.3799/dqkx.2015.096
    Li Ruibao, Pei Xianzhi, Li Zuochen, Chen Youxin, Liu Chengjun, Pei Lei, Xu Tong, Liu Zhanqing, Wei Bo, 2015. Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. Earth Science, 40(7): 1148-1162. doi: 10.3799/dqkx.2015.096
    Citation: Li Ruibao, Pei Xianzhi, Li Zuochen, Chen Youxin, Liu Chengjun, Pei Lei, Xu Tong, Liu Zhanqing, Wei Bo, 2015. Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. Earth Science, 40(7): 1148-1162. doi: 10.3799/dqkx.2015.096

    东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因

    doi: 10.3799/dqkx.2015.096
    基金项目: 

    国家自然科学基金项目 41172186

    国家自然科学基金项目 41472191

    国家自然科学基金项目 40972136

    中央高校基本科研业务费专项资金项目 CHD2011TD020

    中央高校基本科研业务费专项资金项目 2013G1271091

    中央高校基本科研业务费专项资金项目 2013G1271092

    青海省国土资源厅——中国铝业公司公益性区域地质矿产调查基金项目 200801

    详细信息
      作者简介:

      李瑞保(1982-), 男, 讲师, 博士, 主要从事区域构造研究.E-mail: Liruibao0971@163.com

      通讯作者:

      裴先治, E-mail: peixzh@sina.com

    • 中图分类号: P588

    Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen

    • 摘要: 东昆仑南缘布青山构造混杂带发育有较多OIB型玄武岩, 这类玄武岩成因与地幔柱密切相关.与灰岩密切伴生的具有MOR型特征的基性火山岩亦是东昆仑南缘古特提斯洋盆一类重要的海山玄武岩.为了查明布青山构造混杂带中不同类型洋岛或海山玄武岩的岩石成因, 对得力斯坦南玄武岩进行了详细的地质、地球化学和岩石成因研究.布青山地区得力斯坦南出露的玄武岩岩石类型复杂多样, 主要由枕状玄武岩、气孔-杏仁状玄武岩、角砾状玄武岩和块状玄武岩组成.主量元素地球化学特征表明, 该套玄武岩属于深海拉斑玄武岩和洋脊拉斑玄武岩系列.得力斯坦南玄武岩∑REE介于34.51×10-6~61.60×10-6, LREE/HREE介于0.89~1.37, (La/Yb)N介于0.30~0.56, δEu介于0.90~1.18.球粒陨石标准化稀土元素配分图呈现轻稀土元素亏损的左倾型, 与NMORB型玄武岩稀土元素配分曲线基本相同.得力斯坦南玄武岩Zr、Hf、Nb和Ta含量均相当于NMORB的相应元素的丰度值.Zr/Nb值介于24.59~57.69, Nb/La值介于0.45~0.94, Hf/Ta值介于18.29~31.94.在原始地幔标准化微量元素蛛网图上, 曲线右侧高场强元素基本未分异(Nb、Ta、Zr、Hf等), 并贴近于NMORB标准线, 具有与NMORB玄武岩相似而明显不同于EMORB和OIB型玄武岩的特征.微量元素判别表明其形成于洋中脊或由于洋脊扩张向两侧后移的洋中脊构造环境, 结合其上覆盖有深水硅泥岩及浅水厚层状碳酸盐岩的地质事实, 认为其在地形地貌上属于古海山.岩石成因研究表明该套玄武岩起源于亏损地幔(DM), 并估算其为地幔二辉橄榄岩发生约10%部分熔融的产物.

       

    • 图  1  中央造山系构造格架(a)和东昆仑-祁连地区地质构造(b)以及布青山构造混杂带地质简图(c)

      COB.中央造山系;EKOB.东昆仑造山带;WKOB.西昆仑造山带;QDB.柴达木盆地;TRMB.塔里木盆地;ALTF.阿尔金左行走滑断层.1.第四系;2.下三叠统洪水川组;3.中下二叠统马尔争组;4.上二叠统格曲组;5.上石炭统浩特洛洼组;6.上石炭统-下二叠统树维门科组;7.中元古界苦海岩群;8.晚三叠世花岗闪长岩;9.石炭纪玄武岩与辉长岩;10.寒武纪玄武岩与辉长岩;11.石炭纪蛇纹岩;12.寒武纪橄辉岩;13.流纹斑岩;14.洋岛或海山玄武岩;15.厚层块状碳酸盐岩;16.地质界线;17.角度不整合界线;18.主干断层或一般断层;19.逆冲推覆构造;20.地层产状(°);21.实测剖面位置;22.水系

      Fig.  1.  The tectonic framework of central orogenic belt (a), the tectonic background of Qilian-East Kunlun area (b) and the simplified geological map of Buqingshan tectonic mélange belt (c)

      图  2  得力斯坦南玄武岩地质剖面

      1.块状玄武岩;2.角砾状玄武岩;3.气孔状玄武岩;4.枕状玄武岩;5.硅泥岩;6.网状碳酸盐脉;7.粉砂岩;8.砂岩;9.断层;10.产状;11.样品编号及采样位置

      Fig.  2.  The geological section of basalts from the Delisitannan area

      图  3  得力斯坦南玄武岩产出状态及岩石学特征

      a.玄武岩与围岩马尔争组呈断层接触关系;b.玄武岩与紫红色硅泥岩整合接触;c.枕状玄武岩,单个岩枕大小约30~50cm;d.角砾状玄武岩及网状碳酸盐脉;e.豆粒状玄武岩;f.杏仁状玄武岩,上为正交偏光,下为单偏光

      Fig.  3.  Photos of the Delisitannan basalts showing the field contact relationship and petrological features

      图  4  得力斯坦南古海山综合地层柱状图

      Fig.  4.  Comprehensive stratum column for Delisitannan sea mountain

      图  5  玄武岩(Zr/TiO2)×10-4-SiO2(a)和Fe2O3T/MgO-TiO2(b)分类

      Fig.  5.  Plots of (Zr/TiO2)×10-4-SiO2 (a) and Fe2O3T /MgO-TiO2 (b) for the basalts

      图  6  玄武岩球粒陨石标准化稀土元素配分图

      球粒陨石数值据Boynton(1984)

      Fig.  6.  Chondrite-normalized REE pattern for the basalts

      图  7  玄武岩原始地幔标准化微量元素蛛网图

      原始地幔数值据Sun and McDonough(1989)

      Fig.  7.  Primitive mantle-normalized trace elements spidergram for the basalts

      图  8  玄武岩(Nb/Th)N-(Th/La)N(a)、Ti/1000-V(b)、Ti-Zr(c)和Zr-Zr/Y(d)关系

      图 8a中NMORB标准化据Sun and McDonough(1989)

      Fig.  8.  Plots of (Nb/Th)N-(Th/La)N (a), Ti/1000-V (b), Ti-Zr (c) and Zr-Zr/Y(d) for the basalts

      图  9  得力斯坦南玄武岩Zr/Y-Nb/Y(a)和Y-Cr(b)关系

      UC.上地壳;EN.富集组分;PM.原始地幔;DM.亏损地幔;HIMU.高U值地幔;EM1.EM1型富集地幔;EM2.EM2型富集地幔;NMORB.正常洋中脊玄武岩;MORB.洋中脊玄武岩;WPA.板内玄武岩;IAT.岛弧玄武岩;部分熔融趋势线由二辉橄榄岩模拟

      Fig.  9.  Plot of Zr/Y-Nb/Y (a) and Y-Cr (b) for the basalts

      表  1  得力斯坦南玄武岩主量元素(%)、稀土元素和微量元素(10-6)测试结果

      Table  1.   Results of major elements(%), trace elements and rare earth elements (10-6) from the Delisitannan basalts

      样品号 11204/01 11204/02 11204/03 11204/04 11204/05 11204/06 11204/07
      SiO2 47.28 46.71 48.01 48.08 49.50 46.44 40.54
      TiO2 1.21 1.21 1.29 1.17 1.36 1.41 1.28
      Al2O3 14.19 13.02 14.66 14.22 14.48 15.37 13.88
      Fe2O3 5.00 3.46 3.32 3.07 1.51 6.46 7.24
      FeO 6.08 7.65 8.08 7.50 9.22 3.99 3.13
      MnO 0.17 0.18 0.19 0.20 0.22 0.17 0.37
      MgO 6.77 11.06 9.60 9.43 10.35 8.68 2.16
      CaO 9.85 6.30 7.50 8.92 5.40 7.35 13.87
      Na2O 4.52 2.21 3.73 3.25 4.34 2.47 6.00
      K2O 0.42 0.03 0.13 0.31 0.05 2.49 0.24
      P2O5 0.11 0.10 0.10 0.09 0.10 0.11 0.12
      Mg# 66 72 68 69 67 79 55
      La 2.91 2.85 2.30 2.10 2.52 3.22 2.52
      Ce 8.79 8.47 7.43 6.69 7.7 9.9 7.15
      Pr 1.61 1.53 1.32 1.19 1.44 1.72 1.45
      Nd 9.31 9.20 8.17 7.18 8.55 10.00 9.00
      Sm 3.30 3.21 3.00 2.84 3.30 3.66 3.49
      Eu 1.260 1.090 1.040 0.913 1.230 1.370 1.320
      Gd 4.04 4.08 3.78 3.40 4.20 4.51 4.34
      Tb 0.924 0.896 0.879 0.808 0.972 1.000 0.980
      Dy 5.96 5.76 5.42 5.07 6.05 6.49 6.60
      Ho 1.33 1.28 1.18 1.14 1.35 1.43 1.38
      Er 3.88 3.65 3.61 3.39 4.01 4.22 4.23
      Tm 0.622 0.582 0.574 0.537 0.664 0.681 0.644
      Yb 3.91 3.74 3.66 3.55 4.23 4.45 4.20
      Lu 0.598 0.520 0.557 0.549 0.635 0.664 0.599
      δEu 1.05 0.92 0.94 0.90 1.01 1.03 1.04
      (La/Yb)N 0.50 0.51 0.42 0.40 0.40 0.49 0.40
      ∑LREE 28.31 27.58 24.74 22.21 26.42 31.16 26.75
      ∑HREE 18.28 17.35 16.82 15.94 18.92 19.97 19.67
      LREE/HREE 0.16 0.16 0.16 0.15 0.16 0.15 0.15
      Sc 34.1 36.4 37.9 37.9 38.5 41.7 33.2
      V 295 279 303 286 318 341 178
      Cr 270 257 247 242 307 298 176
      Co 48.1 53.2 47.6 45.1 47.2 62.2 35.6
      Ni 111.0 116.0 89.7 94.6 104.0 135.0 74.2
      Rb 10.600 0.653 1.510 4.040 0.492 53.300 4.060
      Sr 111.0 117.0 56.3 60.7 54.8 180.0 85.3
      Y 34.7 34.0 31.5 30.8 36.0 37.7 39.3
      Nb 2.15 1.98 1.55 1.43 1.82 2.68 1.59
      Cs 1.110 0.798 0.857 0.825 0.852 5.660 0.590
      Ba 22.8 11.8 14.7 18.4 10.7 67.1 25.7
      Ta 0.123 0.120 0.104 0.089 0.100 0.143 0.104
      Th 0.268 0.221 0.136 0.130 0.161 0.248 0.137
      U 0.057 0.153 0.051 0.016 0.043 0.047 0.373
      Zr 74.5 66.6 59.4 67.3 84.9 91.7 74.3
      Hf 2.25 2.07 1.85 1.97 2.54 2.51 2.32
      Zr/Nb 34.65 33.64 38.32 47.06 46.65 34.22 46.73
      Nb/La 0.74 0.69 0.67 0.68 0.72 0.83 0.63
      Hf/Ta 18.29 17.25 17.79 22.13 25.40 17.55 22.31
      Nb/Y 0.06 0.06 0.05 0.05 0.05 0.07 0.04
      Zr/Y 2.15 1.96 1.89 2.19 2.36 2.43 1.89
      Nb/Yb 0.55 0.53 0.42 0.40 0.43 0.60 0.38
      Ta/Yb 0.03 0.03 0.03 0.03 0.02 0.03 0.02
       
      样品号 11204/08 11204/09 11204/12 11204/15 11204/16 11204/18 11204/20
      SiO2 47.71 47.29 42.22 46.05 48.36 48.73 47.34
      TiO2 1.39 1.36 1.30 1.15 1.35 1.20 1.13
      Al2O3 17.48 14.44 15.23 16.20 16.76 16.53 16.01
      Fe2O3 6.13 4.17 6.56 6.17 7.47 9.03 7.70
      FeO 6.13 8.04 5.37 4.92 2.45 2.19 2.55
      MnO 0.42 0.18 0.19 0.19 0.19 0.16 0.16
      MgO 2.60 10.15 6.74 7.72 7.96 6.28 6.86
      CaO 5.27 6.80 13.69 10.18 4.53 4.90 9.60
      Na2O 6.16 0.42 2.49 3.35 5.85 6.03 4.12
      K2O 0.79 0.38 0.03 0.14 0.07 0.29 0.09
      P2O5 0.14 0.11 0.10 0.09 0.09 0.09 0.08
      Mg# 43 69 69 74 85 84 83
      La 3.08 3.29 3.31 2.52 1.44 2.57 2.09
      Ce 7.08 10.30 10.10 7.97 5.72 7.51 6.88
      Pr 1.70 1.73 1.77 1.46 1.00 1.42 1.22
      Nd 11.00 9.96 10.30 8.66 6.18 8.26 7.45
      Sm 4.51 3.61 3.62 3.30 2.46 2.96 2.86
      Eu 1.680 1.390 1.360 1.240 0.884 1.240 1.090
      Gd 5.91 4.58 4.17 3.80 3.00 3.49 3.44
      Tb 1.470 0.983 0.999 0.890 0.723 0.842 0.826
      Dy 9.90 6.15 6.22 5.85 4.81 5.45 5.46
      Ho 2.06 1.28 1.34 1.29 1.06 1.18 1.14
      Er 5.87 3.84 4.04 3.90 3.05 3.59 3.45
      Tm 0.914 0.613 0.632 0.593 0.487 0.558 0.569
      Yb 5.62 3.99 4.19 3.82 3.23 3.54 3.68
      Lu 0.801 0.594 0.627 0.593 0.467 0.525 0.543
      δEu 0.99 1.04 1.07 1.07 0.99 1.18 1.06
      (La/Yb)N 0.37 0.56 0.53 0.44 0.30 0.49 0.38
      ∑LREE 31.88 31.57 31.32 26.43 19.24 24.88 22.94
      ∑HREE 27.63 18.49 19.12 18.00 14.82 16.86 16.73
      LREE/HREE 0.16 0.15 0.15 0.16 0.15 0.16 0.15
      Sc 38.4 39.5 36.8 40.5 39.8 36.8 35.7
      V 280 290 322 325 316 303 303
      Cr 219 276 254 299 333 299 289
      Co 47.0 54.5 50.8 47.7 50.0 47.0 46.5
      Ni 96.1 134.0 107.0 86.1 79.7 87.7 73.0
      Rb 14.800 8.510 0.610 3.220 1.000 5.480 2.110
      Sr 55.9 76.0 130.0 154.0 127.0 147.0 142.0
      Y 52.1 34.4 35.6 33.2 24.8 30.3 29.4
      Nb 2.22 2.29 1.75 1.14 1.36 1.20 1.08
      Cs 1.690 1.450 0.283 0.385 0.318 0.649 0.858
      Ba 36.7 67.6 27.6 23.7 63.6 59.1 47.3
      Ta 0.127 0.135 0.104 0.077 0.077 0.069 0.062
      Th 0.202 0.194 0.184 0.157 0.104 0.223 0.106
      U 0.793 0.053 0.125 0.071 0.258 0.192 0.063
      Zr 79.7 56.3 76.2 65.3 70.4 59.3 62.3
      Hf 2.38 2.02 2.21 2.07 2.12 1.77 1.98
      Zr/Nb 35.90 24.59 43.54 57.28 51.76 49.42 57.69
      Nb/La 0.72 0.70 0.53 0.45 0.94 0.47 0.52
      Hf/Ta 18.74 14.96 21.25 26.88 27.53 25.65 31.94
      Nb/Y 0.04 0.07 0.05 0.03 0.05 0.04 0.04
      Zr/Y 1.53 1.64 2.14 1.97 2.84 1.96 2.12
      Nb/Yb 0.40 0.57 0.42 0.30 0.42 0.34 0.29
      Ta/Yb 0.02 0.03 0.02 0.02 0.02 0.02 0.02
      下载: 导出CSV
    • [1] Bian, Q.T., Luo, X.Q., Li, H.S., et al., 1999. Discovery of Early Paleozoic and Early Carboniferous-Early Permian Ophiolites in the A'nyemaqen, Qinghai Province, China. Scientia Geologica Sinica, 34(4): 513-524 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKY199903017.htm
      [2] Bian, Q.T., Yin, L.M., Sun, S.F., et al., 2001. Discovery of Ordovician Acritarchs in Buqingshan Ophiolite Complex, East Kunlun Mountains and Its Significance. Chinese Science Bulletin, 46(4): 341-345. doi: 10.1007/BF03187200
      [3] Bian, Q.T., Li, D.H., Pospelov, I., et al., 2004. Age, Geochemistry and Tectonic Setting of Buqinshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23: 577-596. doi: 10.1016/j.jseaes.2003.09.003
      [4] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elservier, Amsterdam, 63-114.
      [5] Chen, F.K., Hegner, E., Todt, W., 2000. Zircon Ages, Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidence for a Cambrian Magmatic Arc. International Journal of Earth Sciences, 88: 791-802. doi: 10.1007/s005310050306
      [6] Chen, F.K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91: 469-481. doi: 10.1007/s00531-001-0239-6
      [7] Chen, L., Sun, Y., Pei, X.Z., et al., 2004. Comparison of Eastern Paleo-Tethyan Ophiolites and Its Geodynamic Significance—Evidence from A'nyemaqen Ophiolite. Science in China (Series D), 47(4): 378-384. doi: 10.1360/02YD0488
      [8] Condie, K.C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28. doi: 10.1029/2002GC000333
      [9] Condie, K.C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? Lithos, 79: 491-504. doi: 10.1016/j.lithos.2004.09.014
      [10] Dong, Y.P., Zhang, G.W., Franz, N., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002
      [11] Godard, M., Bosch, D., Einaudi, F., 2006. AMORB Source for Low-Ti Magmatism in the Semail Ophiolite. Chemical Geology, 234: 58-78. doi: 10.1016/j.chemgeo.2006.04.005
      [12] Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Geochemistry and Spatial Distribution of OIB and MORB in A'nyemaqen Ophiolite Zone: Evidence of Majixueshan Ancient Ridge—Centered Hotspot. Science in China (Series D), 50(2): 197-208. doi: 10.1007/s11430-007-0197-3
      [13] Hu, N., Pei, X.Z., Li, R.B., et al., 2013. Provenance and Tectonic Setting Study of the Maerzheng Formation at the Delistan of Buqingshan Area in the Southern Margin of East Kunlun. Acta Geologica Sinica, 87(11): 1731-1747 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201311008.htm
      [14] Jiang, G.L., Zhang, S.M., Liu, K.F., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qilian-Qaidam-East Kunlun. Earth Science—Journal of China University of Geosciences, 39(8): 1000-1016 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.091
      [15] Ji, L.X., Ouyang, S., 1996. Spore-Pollen Assemblage from Buqingshan Group in Qinghai and Its Geological Age. Acta Palaeontologica Sinica, 35(1): 1-25 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/287820
      [16] Lai, S.C., Qin, J.F., 2010. Ophiolites and Volcanic Rocks in the Mianlue Suture Belt of Qinling. Science Press, Beijing (in Chinese).
      [17] Lai, S.C., Zhang, G.W., Pei, X.Z., 2002. Geochemistry of the Pipasi Ophiolite in the Mianlue Suture Zone, South Qinling, and Its Tectonic Significance. Geological Bulletin of China, 21(8-9): 465-470(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2002Z2002.htm
      [18] Li, B. L, Sun, F.Y., Yu, X.F., et al., 2012. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granite Belt. Acta Petrologica Sinica, 28(4): 1163-1172 (in Chinese with English abstract). http://www.oalib.com/paper/1476737
      [19] Li, C., Zhai, Q.G., Dong, Y.S., et al., 2007. Lungmu Co-Shanghu Plate in the Qinghai-Tibet Plateau and Records of the Evolution of the Paleo-Tethys Ocean in the Qiangtang Area of Tibet, China. Geological Bulletin of China, 26(1): 13-21 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-zqyd200701002.htm
      [20] Li, R.B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      [21] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201205024
      [22] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013a. Geochemical and Geochronological Characteristics of Kekekete Mafic-Ultramafic Rocks and Its Tectonic Significance, Eastern Section of East Kunlun Orogeny. Acta Geologica Sinica, 87(5): 1319-1333. doi: 10.1111/1755-6724.12131
      [23] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013b. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite. Acta Geologica Sinica, 87(2): 333-345. doi: 10.1111/1755-6724.12054
      [24] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2014. Geochemical Characteristics of Gerizhuotuo OIB and Its Tectonic Significance in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. Earth Science Frontiers, 21(1): 183-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201401019.htm
      [25] Li, W.Y., Li, S.G., Guo, A.L., et al., 2007. Zircon SHRIMP U-Pb Ages and Trace Element Geochemistry of the Kuhai Gabbro and the Dur'ngoi Diorite in the Southern East Kunlun Tectonic Belt, Qinghai, Western China and Their Geological Implications. Science in China (Series D), 50 (Suppl. Ⅱ): 331-338. doi: 10.1007/s11430-007-6003-4
      [26] Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geologica Sinica, 87(8): 1089-1103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201308006.htm
      [27] Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20136/46670166.html
      [28] Liu, B., Ma, C.Q., Guo, P., et al., 2013b. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science—Journal of China University of Geosciences, 38(5): 947-962 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.093
      [29] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011a. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194 (in Chinese with English abstract).
      [30] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011b. Geological Characteristics of the Buqingshan Tectonic Melange Belt in the Southern Margin of East Kunlun and Its Tectonic Implications. Geological Bulletin of China, 30(8): 1182-1195 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284525.html
      [31] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011c. Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun: Constraints from Zircon U-Pb Dating and Geochemistry. Geology in China, 38(5): 1150-1167 (in Chinese with English abstract).
      [32] Ma, C.Q., Xiong, F.H., Zhang, J.Y., et al., 2013. The Effects of Subduction Plate of Magmatism in the Stage of Plate Subduction to Post-Tectonic: Evidence of Mafic Dikes of Early Permian-Late Triassic East Kunlun. Acta Geologica Sinica, 87(Suppl. ): 79-81 (in Chinese).
      [33] Malpas, J., Calon, T.J., MacDonald, R.W.J., 1994. The Shulaps Ophiolite Complex of British Columbia, Canada: A Palaeozoic/Mesozoic Arc-Related Microterrane. In: Nishiyama, T., ed., Proceedings of the 29th Intenational Geological Congress. VSP International Science Publishers, Kyoto, 69-87.
      [34] Meng, F.C., Zhang, J.X., Cui, M.H., et al., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance. Gondwana Research, 23: 825-836. doi: 10.1016/j.gr.2012.06.007
      [35] Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9: 24-46. doi: 10.1016/j.gr.2005.04.002
      [36] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. doi:org/ 10.1016/j.jseaes.2012.12.020
      [37] Miyake, Y., 1985. Morb-Like Tholeiites Formed within the Miocene Forearc Basin, Southwest Japan. Lithos, 18: 23-34. doi: 10.1016/0024-4937(85)90004-0
      [38] Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 528-548.
      [39] Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100: 14-48. doi: 10.1016/j.lithos.2007.06.016
      [40] Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in the Volcanic Rocks. Contrib. Mineral. Petrol. , 69: 33-47. doi: 10.1007/BF00375192
      [41] Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343
      [42] Pei, X.Z., 2001. Geological Evolution and Dynamics of the Mianlue-A'nyemaqen Tectonic Zone, Central China (Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
      [43] Pei, X.Z., Hu, N., Liu, C.J., et al., 2015. Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region. Geological Review, 61(2): 303-323(in Chinese with English abstract). http://www.cqvip.com/QK/91067X/201502/664331324.html
      [44] Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolite Lavas. Earth and Planetary Science Letters, 59: 101-118. doi: 10.1016/0012-821X(82)90120-0
      [45] Stampfli, G.M., Borel, G.D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrones. Earth and Planetary Science Letters, 196(1-2): 17-33. doi: 10.1016/S0012-821X(01)00588-X
      [46] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society of London, London, 313-345.
      [47] Wang, B.Z., Zhang, Z.Y., Zhang, S.Q., et al., 2000. Geological Features of Lower Paleozoic Ophiolite in Kunhai-Saishitang Region, Eastern Section of Eastern Kunlun. Earth Science—Journal of China University of Geosciences, 25(6): 592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200006009.htm
      [48] Wang, G.C., Zhang, T.P., Liang, B., et al., 1999. Composite Ophiolite Mélange Zone in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone and Geological Significance of "Fault Belt in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone". Earth Science—Journal of China University of Geosciences, 24(2): 129-133 (in Chinese with English abstract). http://www.researchgate.net/publication/285344054_Composite_ophiolite_mlange_belt_in_central_part_of_the_Eastern_Kunlun_orogenic_belt_and_geological_signification_of_the_Eastern_Kunlun_Central_Fault
      [49] Wang, Y.B., Yang, H., 2004. Middle Permian Palaeobiogeography Study in East Kunlun, A'nyêmaqên and Bayan Har. Science in China(Series D), 47(12): 1120-1126. http://d.wanfangdata.com.cn/Periodical_zgkx-ed200412007.aspx
      [50] Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth Planet. Sci. Lett. , 104: 381-397. doi: 10.1016/0012-821X(91)90217-6
      [51] Wilson, B.M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London.
      [52] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
      [53] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. doi: 10.1007/s00710-011-0187-1
      [54] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract). http://www.researchgate.net/publication/285907060_Pako-Tethys_system_and_accretionary_orogen_in_the_Tibet_Plateau
      [55] Yan, Z., Bian, Q.T., Korchagin, O.A., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains; Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract). http://www.oalib.com/paper/1471328
      [56] Yan, Z., Wang, Z.Q., Li, J.L., et al., 2012. Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6): 1808-1828 (in Chinese with English abstract).
      [57] Yang, J.S., Robison, P.T., Jiang, C.F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258: 215-231. doi: 10.1016/0040-1951(95)00199-9
      [58] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. doi: 10.1007/s12583-009-0027-y
      [59] Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200403000.htm
      [60] Yang, J., Pei, X.Z., Li, R.B., et al., 2014. Geochemical Characteristics and Geological Implications of Haerguole Basalt in Buqingshan Area on the Southern Margin of East Kunlun Mountains. Geology in China, 41(2): 335-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201402003.htm
      [61] Zhang, K.X., Huang, J.C., Yin, H.F., et al., 2000. Application of Radiolarians and Other Fossils in Non-Smith Strata—Exemplified by the A'nyêmaqên Melange Belt in East Kunlun Mts. Science in China(Series D), 43(4): 364-374. doi: 10.1007/BF02959447
      [62] Zhang, K.X., Lin, Q.X., Zhu Y.H., et al., 2004. New Paleontological Evidence on Time Determination of the East Part of the Eastern Kunlun Mélange and Its Tectonic Significance. Science in China(Series D), 47(10): 865-873. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414966604.html
      [63] Zhang, Z.Y., Yin, H.F., Wang, B.Z., et al., 2004. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Conjuncation between Kunlun-Qinling Mountains. Earth Science—Journal of China University of Geosciences, 29(6): 691-696 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200406008
      [64] Zhu, Y.H., Zhang, K.X., Chen, N.S., et al., 1999. Determination of Different Ophiolites Belts of the East Kunlun Orogenic Belt and Its Tectonic Implication. Earth Science—Journal of China University of Geosciences, 24(2): 134-138 (in Chinese with English abstract).
      [65] 边千韬, 罗小全, 李红生, 等, 1999. 阿尼玛卿山早古生代和早石炭世-早二叠世蛇绿岩的发现. 地质科学, 34(4): 513-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904014.htm
      [66] 胡楠, 裴先治, 李瑞保, 等, 2013. 东昆仑南缘布青山得力斯坦地区马尔争组物源分析及其构造背景研究. 地质学报, 87(11): 1731-1747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311008.htm
      [67] 姜高磊, 张思敏, 柳坤峰, 等, 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学——中国地质大学学报, 39(8): 1000-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408006.htm
      [68] 冀六祥, 欧阳舒, 1996. 青海中东部布青山群孢粉组合及其时代. 古生物学报, 35(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199601000.htm
      [69] 赖绍聪, 秦江峰, 2010. 秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社.
      [70] 赖绍聪, 张国伟, 裴先治, 2002. 南秦岭勉略结合带琵琶寺洋壳蛇绿岩的厘定及其大地构造意义. 地质通报, 21(8-9): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z2002.htm
      [71] 李碧乐, 孙丰月, 于晓飞, 等, 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204014.htm
      [72] 李才, 翟庆国, 董永胜, 等, 2007. 青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录. 地质通报, 26(1): 13-21. doi: 10.3969/j.issn.1671-2552.2007.01.003
      [73] 李瑞保, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学.
      [74] 李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm
      [75] 李瑞保, 裴先治, 李佐臣, 等, 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地球前缘, 21(1): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201401019.htm
      [76] 李佐臣, 裴先治, 刘战庆, 等, 2013. 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义. 地质学报, 87(8): 1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005
      [77] 刘彬, 马昌前, 蒋红安, 等, 2013a. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm
      [78] 刘彬, 马昌前, 郭盼, 等, 2013b. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学——中国地质大学学报, 38(5): 947-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305005.htm
      [79] 刘战庆, 裴先治, 李瑞保, 等, 2011a. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      [80] 刘战庆, 裴先治, 李瑞保, 等, 2011b. 东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义. 地质通报, 30(8): 1182-1195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108002.htm
      [81] 刘战庆, 裴先治, 李瑞保, 等, 2011c. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据. 中国地质, 38(5): 1150-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm
      [82] 马昌前, 熊富浩, 张金阳, 等, 2013. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据. 地质学报, 87(增刊): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2013S1046.htm
      [83] 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学.
      [84] 裴先治, 胡楠, 刘成军, 等, 2015. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201502008.htm
      [85] 王秉璋, 张智勇, 张森琦, 等, 2000. 东昆仑东端苦海-塞什塘地区晚古生代蛇绿岩的特征. 地球科学——中国地质大学学报, 25(6): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006009.htm
      [86] 王国灿, 张天平, 梁斌, 等, 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及"东昆中断裂带"地质涵义. 地球科学——中国地质大学学报, 24(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.004.htm
      [87] 许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      [88] 闫臻, 边千韬, Korchagin, O.A., 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805014.htm
      [89] 闫臻, 王宗起, 李继亮, 等, 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206009.htm
      [90] 杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001
      [91] 杨杰, 裴先治, 李瑞保, 等, 2014. 布青山构造混杂带哈尔郭勒洋岛玄武岩地质、地球化学特征及构造意义. 中国地质, 41(2): 335-350. doi: 10.3969/j.issn.1000-3657.2014.02.003
      [92] 张智勇, 殷鸿福, 王秉璋, 等, 2004. 昆秦接合部海西期苦海-塞什塘分支洋的存在及证据. 地球科学——中国地质大学学报, 29(6): 691-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406007.htm
      [93] 朱云海, 张克信, 陈能松, 等, 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学——中国地质大学学报, 24(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.005.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3408
    • HTML全文浏览量:  144
    • PDF下载量:  420
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-12-05
    • 刊出日期:  2015-07-15

    目录

      /

      返回文章
      返回