Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constraints from C-H-O-S-Pb Isotope Geochemistry
-
摘要: 查藏错铜铅锌矿床是近年来在冈底斯成矿带北亚带西部林子宗群火山岩中发现的一个铜多金属矿床.到目前为止,对其矿床成因还缺乏明确的认识.C、H、O、S、Pb同位素分析结果表明:δ13CV-PDB值为-5.60‰~-2.40‰,δDV-SMOW值为-111.00‰~-68.00‰,δ18OV-SMOW值为-8.65‰~0.27‰,显示成矿流体早期主要来自岩浆热液,后期大气降水有所混入.δ34SCDT值集中分布在0.50‰~2.50‰,具塔式分布特征,表明硫的来源为相对单一的岩浆源.Pb同位素比值较为稳定,μ值较大(>9.58),具有上地壳铅源的特征,与冈底斯成矿带北亚带矿床矿石硫化物的铅同位素特征比较相似,但明显不同于典中组火山岩的铅同位素特征,推测成矿物质主要来自上地壳的岩浆源.结合矿床地质特征,并与国内外典型岩浆热液脉型矿床对比,认为其属岩浆热液脉型矿床.Abstract: Chazangcuo Cu-Pb-Zn deposit, hosted by the Linzizong Group volcanic rocks in the west of Gangdese metallogenic belt, is a copper polymetallic deposit discovered in recent years. So far, the genesis of the deposit is still lack of clear understanding. The results of C, H, O, S, Pb isotopic analysis show that the δ13CV-PDB values range from -5.60‰ to -2.40‰, δDV-SMOW values range from -111.00‰ to -68.00‰, and δ18OV-SMOW values range from -8.65‰ to 0.27‰, indicating that the ore-forming fluid mainly derived from the magma hydrothermal in the early time, however, with the mineralization continuing, the proportion of atmospheric precipitation gradually turned larger. δ34SCDT values range from 0.50‰ to 2.50‰ and possess the distribution characteristics of tower, indicating that the sulfur isotope derived from the single magma source. Lead isotope ratios are relatively stable and have large μ values (more than 9.58), possessing the characteristics of the upper crust lead. The lead isotope characteristics are similar to the ore sulfides from the deposits in the north subzone of Gangdese metallogenic belt, but obviously different from the lead isotope characteristics of volcanic rocks of Dianzhong Formation. Therefore, the authors infer that the source of ore-forming materials mainly came from the magmatic source of the upper crust. Combining with the geological characteristics of Chazangcuo deposit, and contrasting the typical magmatic hydrothermal vein-type deposit at home and abroad, the authors think that it belongs to the typical magmatic hydrothermal vein-type deposit.
-
Key words:
- ore-forming fluid /
- ore-forming material /
- magmatic hydrothermal vein-type /
- ore deposit /
- tectonics
-
图 3 查藏错矿床成矿流体δDV-SMOW-δ18OV-SMOW关系(Taylor, 1974)
Fig. 3. δDV-SMOW versus δ18OV-SMOW of the Chazangcuo deposit
图 5 查藏错矿床含矿方解石δ13CV-PDB-δ18OV-SMOW关系
底图据刘建明等(1998),毛景文等(2002)修改
Fig. 5. δ13CV-PDB vs. δ18OV-SMOW isotopic compositions of ore-bearing calcites from Chazangcuo deposit
图 7 查藏错矿床矿石硫化物铅同位素构造环境演化图解(Zartman and Doe, 1981)
Fig. 7. Diagram showing evolutionary tectonic settings of lead isotopes of ore sulfides from the Chazangcuo deposit
表 1 查藏错矿床碳氢氧同位素组成
Table 1. Carbon, hydrogen and oxygen isotopic compositions from the Chazangcuo deposit
矿区 样号 矿物 δ13CV-PDB(‰) δDV-SMOW(‰) δ18OV-SMOW(‰)(矿物) δ18OV-SMOW(‰)(水) 资料来源 查藏错 CZC-12 石英 - -73.00 0.30 -8.65 本文 CZC-13 石英 - -109.00 0.50 -8.46 CZC-14-1 方解石 -4.60 -111.00 2.60 -5.48 CZC-14-2 方解石 -2.40 -91.00 8.40 0.27 CZC-15 方解石 -5.60 -89.00 4.20 -3.89 CZC-16 方解石 -4.80 -68.00 1.60 -6.47 CZC-11 方解石 -2.70 -111.00 9.30 1.17 康家湾 KJW-044 石英 - -65.00 9.61 -5.17 左昌虎等,2014 KJW-04404 石英 - -60.00 7.79 -7.25 KJW-048 石英 - -68.00 7.26 -7.19 KJW-50-2 石英 - -63.00 9.05 -5.32 夏塞 K10-2 石英 - -122.40 8.90 -4.90 陈冲,2013 K10-4 石英 - -128.00 9.50 -3.60 K74-1 石英 - 130.50 13.80 7.90 4695-1-3 石英 - -105.20 13.10 2.00 K18-3 石英 - -137.50 11.10 -5.80 表 2 西藏查藏错矿床和典型岩浆热液脉型矿床硫同位素组成
Table 2. Sulfur isotopic compositions of ore sulfides from the Chazangcuo deposit and the typicalmagmatic hydrothermal vein-type deposits
矿区 样号 矿物 δ34SCDT(‰) 资料来源 查藏错 CZC-12-1 黄铜矿 0.40 本文 CZC-12-2 方铅矿 0.90 CZC-13-1 黄铜矿 1.60 CZC-13-2 闪锌矿 3.00 CZC-14-1 黄铜矿 1.80 CZC-14-2 方铅矿 1.10 CZC-15-1 黄铜矿 2.30 CZC-15-2 方铅矿 1.70 CZC-18-1 黄铜矿 2.30 CZC-18-2 方铅矿 3.10 CZC-19-1 黄铜矿 -1.60 CZC-19-2 方铅矿 0.40 Arapucan -- 硫化物矿石 -5.20~-1.20 Mannijou et al., 2012 Chehelkureh -- 硫化物矿石 1.00~5.00 Orgun et al., 2005 拉诺玛 -- 硫化物矿石 -1.60~2.60 陶琰等,2011 康家湾 -- 硫化物矿石 -6.20~3.00 杨传益,1985 枞树板 -- 硫化物矿石 -6.87~2.35 陈柏林等,1999 表 3 西藏查藏错矿床和典中组火山岩铅同位素组成
Table 3. Lead isotopic compositions of ore sulfides from the Chazangcuo deposit and the volcanic rocks of Dianzhong Formation, Tibet
矿区 样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ 资料来源 查藏错 CZC-12-1 黄铜矿 18.698 15.767 39.388 9.67 本文 CZC-12-2 方铅矿 18.660 15.723 39.248 9.71 CZC-13-1 黄铜矿 18.676 15.720 39.294 9.73 CZC-13-2 闪锌矿 18.659 15.720 39.229 9.73 CZC-14-1 黄铜矿 18.675 15.740 39.292 9.81 CZC-14-2 方铅矿 18.687 15.752 39.336 9.66 CZC-15-1 黄铜矿 18.689 15.749 39.334 9.67 CZC-15-2 方铅矿 18.726 15.793 39.480 9.69 CZC-18-1 黄铜矿 18.655 15.715 39.221 9.74 CZC-18-2 方铅矿 18.663 15.721 39.231 9.72 CZC-19-1 黄铜矿 18.669 15.731 39.258 9.56 CZC-19-2 方铅矿 18.694 15.758 39.362 9.77 林周盆地典中组火山岩 典中组3 --- 18.640 5 15.637 1 38.689 0 9.54 莫宣学,2011 典中组2 --- 18.641 8 15.573 1 38.670 3 9.46 --- 18.716 1 15.581 3 38.655 2 9.52 --- 18.754 0 15.656 6 38.784 5 9.53 --- 18.683 6 15.609 7 38.754 1 9.49 典中组1 --- 18.707 4 15.644 8 39.012 1 9.55 措勤地区典中组火山岩 PM004-11TZ --- 18.734 15.651 39.053 9.66 岳相元,2012 PM004-7TZ --- 18.821 15.634 39.324 9.51 P11-7B1 --- 18.708 15.657 39.136 9.68 P11-11B1 --- 18.846 15.721 39.387 9.67 PM004-13TZ --- 18.501 15.628 39.127 9.71 P11-28B1 --- 18.757 15.729 39.237 9.73 -
[1] Chen, B.L., Liu, J.M., Li, Y.S., 1999. Study on the Genesis and Geochemical Characteristics of the Zongshuban Lead-Zinc Deposit, Chen County, Hunan. Mineral Resources and Geology, 13(4): 39-43 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_mineral-resources-geology_thesis/0201240156250.html [2] Chen, C., 2013. The Ore Genesis and Fracture Structural Ore-Controlling Regularities Analysis of Xiasai Silver-Lead-Zinc Deposit, Sichuan Province (Dissertation). China University of Geosciences, Wuhan, 54-58 (in Chinese with English abstract). [3] Cheng, W.B., Gu, X.X., Tang, J.X., et al., 2010. Lead Isotope Characteristics of Ore Sulfides from Typical Deposits in the Gangdese-Nyainqentanglha Metallogenic Belt: Implications for the Zonation of Ore-Forming Elements. Acta Petrologica Sinica, 26(11): 3350-3362 (in Chinese with English abstract). http://www.researchgate.net/publication/285532764_Lead_isotope_characteristics_of_ore_sulfides_from_typical_deposits_in_the_Gangdese-Nyainqentanglha_metallogenic_belt_Implications_for_the_zonation_of_ore_forming_elements [4] Friedman, I., O'Neil, J.R., 1977. Complication of Stable Isotope Fractionation Factors of Geochemical Interest. In: Fleischer, M., ed., Data of Geochemistry-Six Edition. Geological Survey Professional Paper, U.S., 117. [5] Fu, W., Chai, M.C., Yang, Q.J., et al., 2013. Genesis of Fozichong Pb-Zn Polymetallic Deposit: Constraints from Fluid Inclusions and H-O-S-Pb Isotopic Evidences. Acta Petrologica Sinica, 29(12): 4136-4150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201312007.htm [6] Gao, S.B., Zheng, Y.Y., Tian, L.M., et al., 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science—Journal of China University of Geosciences, 37(3): 507-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203014.htm [7] Gariepy, C., Allegre, C.J., Xu, R.H., 1985. The Pb Isotope Geochemistry of Granites from the Himalaya-Tibet Collision Zone: Implication for Crustal Evolution. Earth and Planetary Science Letters, 74(2-3): 220-234. doi: 10.1016/0012-821X(85)90023-8 [8] Hoefs, J., 1997. Stable Isotope Geochemistry (4). Springer Verlag, Berlin, 199-201. [9] Hou, Z.Q., Qu, X.M., Huang, W., et al., 2001. The Gangdese Porphyry Copper Metallogenic Belt is Expected to Become the Second "Yulong" Copper Belt in Tibet. Chinese Geology, 28(10): 27-29, 40 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200104009.htm [10] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Origen. Ore Geology Reviews, 36: 25-51. doi: 10.1016/j.oregeorev.2008.09.006 [11] Hou, Z.Q., Zhang, H.R., Pan, X.F., et al., 2011. Porphyry Cu (-Mo-Au) Deposits Related to Melting of Thickened Mafic Lower Crust: Examples from the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 39: 21-45. doi: 10.1016/j.oregeorev.2010.09.002 [12] Huang, K.X., Zheng, Y.C., Zhang, S., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet. Acta Petrologica et Mineralogica, 31(3): 348-360 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201203006.htm [13] Jia, J.W., Zhang, H.R., Hu, M.D., 2014. The Progress in the Study of Vein Pb-Zn-Cu-Ag Polymetalic Epithermal Deposits. Acta Perologica et Mineralogica, 33(4): 726-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201404011.htm [14] Johnson, C.A., Cardellach, E., Tritlla, J., 1996. Cierco Pb-Zn-Ag Vein Deposits: Isotopic and Fluid Inclusion Evidence for Formation during the Mesozoic Extension in the Pyrenees of Spain. Economic Geology, 91: 497-506. doi: 10.2113/gsecongeo.91.3.497 [15] Joncas, I., Beaudoin, G., 2002. The St. Eugene Deposit, British Columbia: A Metamorphosed Ag-Pb-Zn Vein in Proterozoic Belt-Purcell Rocks. Economic Geology, 97: 11-22. doi: 10.2113/gsecongeo.97.1.11v.97no.1p.11-22 [16] Li, G.M., Rui, Z.Y., 2004. Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang. Geotectonica et Metallogenia, 28(2): 165-170 (in Chinese with English abstract). http://www.researchgate.net/publication/288267777_Diagenetic_and_mineralization_ages_for_the_porphyry_copper_in_the_Gangdese_metallogenic_belt_southern_Tibet [17] Li, Y.S., Lü, Z.C., Yan, G.S., et al., 2012. Isotopic Charateristics of S, Pb, H and O of Jiama Copper-Polymetallic Ore Deposit, Tibet and Their Significance. Earth Science Frontier, 19(4): 72-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201204008.htm [18] Li, Z.K., Li, J.W., Zhao, X.F., et al., 2013. Crustal-Extension Ag-Pb-Zn Veins in the Xiong'ershan District, Southern North China Craton: Constraints from the Shagou Deposit. Economic Geology, 108: 1703-1729. doi: 10.2113/econgeo.108.7.1703 [19] Liu, J.M., Liu, J.J., Zheng, M.H., et al., 1998. Stable Isotope Compositions of Micro-Disseminated Gold and Genetic Discussion. Geochimica, 27(6): 585-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199806009.htm [20] Maanijou, M., Rasa, I., Lentz, D.R., 2012. Petrology, Geochemistry, and Stable Isotope Studies of the Chehelkureh Cu-Zn-Pb Deposit, Zahedan, Iran. Economic Geology, 107(4): 683-712. doi: 10.2113/econgeo.107.4.683v.107no.4p.683-712 [21] Mao, J.W., He, Y., Ding, T.P., 2002. Mantle Fluids Involved in Metallogenesis of Jiaodong (East Shandong) Gold District: Evidience of C, O and H Isotopes. Mineral Deposits, 21(2): 121-128 (in Chinese with English abstract). http://www.researchgate.net/publication/281981334_Mantle_fluids_involved_in_metallogenesis_of_Jiaodong_East_Shandong_gold_district_Evidence_of_C_O_and_H_isotopes [22] Mo, X.X., 2011. Magmatism and Evolution of the Qinghai-Tibet Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). [23] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy, 16(1): 491-559. http://ci.nii.ac.jp/naid/10003416887 [24] Orgun, Y., Gultekin, A.H., Onal, A., 2005. Geology, Mineralogy and Fluid Inclusion Data from the Arapucan Pb-Zn-Cu-Ag Deposit, Canakkale, Turkey. Journal of Asian Earth Sciences, 25(4): 629-642. doi: 10.1016/j.jseaes.2004.06.006 [25] Pirajno, F., 2009. Hydrothermal Process and Mineral System. Springer, Berlin, 1129-1250. [26] Rye, R.O., Ohmoto, H., 1974. Sulfur and Carbon Isotope and Ore Genesis: A Review. Economic Geology, 69(6): 827-842. doi: 10.2113/gsecongeo.69.6.826 [27] Sun, X., Zheng, Y.Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract). [28] Tao, Y., Bi, X.W., Xin, Z.L., et al., 2011. Geology, Geochemistry and Origin of Lanuoma Pb-Zn-Sb Deposit in Changdu Area, Tibet. Mineral Deposits, 30(4): 599-615 (in Chinese with English abstract). http://www.researchgate.net/publication/285913365_Geology_geochemistry_and_origin_of_Lanuoma_Pb-Zn-Sn_deposit_in_Changdu_area_Tibet [29] Taylor, H.P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843 [30] Veizer, J., Holser, W.T., Wilgus, C.K., et al., 1980. Correlation of 13C/12C and 34S/32S Secular Variation. Geochimica et Cosmochimica Acta, 44: 579-588. doi: 10.1016/0016-7037(80)90250-1 [31] Voudouris, P., Melfos, V., Spry, P.G., 2008. Carbonate-Replacement Pb-Zn-Ag±Au Mineralization in the Kamariza Area, Lavrion, Greece: Mineralogy and Thermochemical Conditions of Formation. Mineralogy and Petrology, 94: 85-106. doi: 10.1007/s00710-008-0007-4 [32] Wang, L.Q., Gu, X.X., Cheng, W.B., et al., 2010. Sulfur and Lead Isotope Composition and Tracing for the Sources of Ore-Forming Materials in the Mengya'a Pb-Zn Deposit, Tibet. Geoscience, 24(1): 52-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201001008.htm [33] Wang, L.Q., Luo, M.C., Yuan, Z.J., et al., 2012. Sulfur, Lead, Carbon and Oxygen Isotope Composition and Source of Ore-Forming Materials of the Bangpu Pb-Zn Ore Deposit in Tibet. Acta Geoscientica Sinica, 33(4): 435-443 (in Chinese with English abstract). http://www.oalib.com/paper/1559764 [34] Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002. Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources: A Review. Geology-Geochemistry, 30(3): 73-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200203012.htm [35] Wu, S., Zheng, Y.Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. doi: 10.1080/00206814.2014.880074 [36] Yang, C.Y., 1985. The Finding and Genesis of Kangjiawan Pb-Zn Deposit. Geology and Prospecting, 21(5): 1-7 (in Chinese). [37] Yue, X.Y., 2012. Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China (Dissertation). Chengdu University of Technology, Chengdu, 35-36 (in Chinese with English abstract). [38] Zartman, R.E., Doe, B.R., 1981. Plumbotectonics—The Model. Tectonophysics, 75: 135-162. doi: 10.1016/0040-1951(81)90213-4 [39] Zhai, Y.S., 1999. On the Metallogenic System. Earth Science Frontiers, 6(1): 13-27 (in Chinese with English abstract). [40] Zhang, L.G., 1985. The Application of the Stable Isotope to Geology. Shaanxi Science and Technology Press, Xi'an, 200-210 (in Chinese). [41] Zheng, Y.F., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing, 143-153 (in Chinese). [42] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014a. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. doi: 10.1016/j.jseaes.2014.11.036 [43] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014b. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. doi: 10.16/j.gexplo.2014.02.12 [44] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science—Journal of China University of Geosciences, 29(10): 103-108 (in Chinese with English abstract). http://www.researchgate.net/publication/285272629_Finding_characteristics_and_significances_of_Qulong_superlarge_porphyry_copper_molybdenum_deposit_Tibet [45] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane [46] Zuo, C.H., Miu, B.H., Zhao, Z.X., et al., 2014. A Study on the Isotopic Geochemistry of Kangjiawan Lead-Zinc Deposit, Changning County, Hunan Province, China. Acta Mieralogica Sinica, 34(3): 351-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201403008.htm [47] 陈柏林, 刘建民, 李玉生, 1999. 枞树板铅锌矿床地球化学特征及成因探讨. 矿产与地质, 13(4): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD904.008.htm [48] 陈冲, 2013. 四川省巴塘县夏塞银铅锌矿床成因及断裂控矿规律(硕士学位论文). 武汉: 中国地质大学, 54-58. [49] 程文斌, 顾雪祥, 唐菊兴, 等, 2010. 西藏冈底斯念青唐古拉成矿带典型矿床硫化物Pb同位素特征对成矿元素组合分带性的指示. 岩石学报, 26(11): 3350-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011017.htm [50] 付伟, 柴明春, 杨启军, 等, 2013. 广西佛子冲大型铅锌多金属矿床的成因: 流体包裹体和H-O-S-Pb同位素地球化学约束. 岩石学报, 29(12): 4136-4150. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312007.htm [51] 高顺宝, 郑有业, 田立明, 等, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学——中国地质大学学报, 37(3): 507-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203014.htm [52] 侯增谦, 曲晓明, 黄卫, 等, 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带. 中国地质, 28(10): 27-29, 40. doi: 10.3969/j.issn.1000-3657.2001.10.005 [53] 黄克贤, 郑远川, 张松, 等, 2012. 西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义. 岩石矿物学杂志, 31(3): 348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005 [54] 贾敬伍, 张洪瑞, 胡茂德, 2014. 脉状铅锌(铜、银)多金属热液矿床研究进展. 岩石矿物学杂志, 33(4): 726-746. doi: 10.3969/j.issn.1000-6524.2014.04.011 [55] 李光明, 芮宗瑶, 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008 [56] 李永胜, 吕志成, 严光生, 等, 2012. 西藏甲玛铜多金属矿床S-Pb-H-O同位素特征及其指示意义. 地学前缘, 19(4): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204008.htm [57] 刘建明, 刘家军, 郑明华, 等, 1998. 微细浸染型金矿床的稳定同位素特征与成因探讨. 地球化学, 27(6): 585-591. doi: 10.3321/j.issn:0379-1726.1998.06.010 [58] 毛景文, 赫英, 丁悌平, 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据. 矿床地质, 21(2): 121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004 [59] 莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001 [60] 孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304023.htm [61] 陶琰, 毕献武, 辛忠雷, 等, 2011. 西藏昌都地区拉诺玛铅锌锑多金属矿床地质地球化学特征及成因分析. 矿床地质, 30(4): 599-615. doi: 10.3969/j.issn.0258-7106.2011.04.002 [62] 王立强, 顾雪祥, 程文斌, 等, 2010. 西藏蒙亚阿铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪. 现代地质, 24(1): 52-58. doi: 10.3969/j.issn.1000-8527.2010.01.007 [63] 王立强, 罗茂澄, 袁志洁, 等, 2012. 西藏邦铺铅锌矿床S、Pb、C、O同位素组成及成矿物质来源研究. 地球学报, 33(4): 435-443. doi: 10.3975/cagsb.2012.04.05 [64] 吴开兴, 胡瑞忠, 毕献武, 等, 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013 [65] 杨传益, 1985. 康家湾铅锌矿床的发现及成因. 地质与勘探, 21(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198505000.htm [66] 岳相元, 2012. 西藏措勤地区典中组火山岩地球化学特征及其地质意义(硕士学位论文). 成都: 成都理工大学, 35-36. [67] 翟裕生, 1999. 论成矿系统. 地学前缘, 6(1): 13-27. doi: 10.3321/j.issn:1005-2321.1999.01.002 [68] 张理刚, 1985. 稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 88. [69] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社, 143-153. [70] 郑有业, 薛迎喜, 程力军, 等, 2004. 西藏驱龙超大型斑岩铜(钼)矿床: 发现, 特征及意义. 地球科学——中国地质大学学报, 29(10): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm [71] 朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001 [72] 左昌虎, 缪柏虎, 赵增霞, 等, 2014. 湖南常宁康家湾铅锌矿床同位素地球化学研究. 矿物学报, 34(3): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201403008.htm