Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone
-
摘要: 布青山构造混杂岩带中的哥日卓杂岩体与区域构造线方向不一致,属于典型的“钉合岩体”,对限定地体拼贴或增生的时间上限具有特殊的构造年代学意义.锆石LA-ICP-MS U-Pb定年结果显示岩体形成于晚三叠世中期(似斑状花岗岩形成于227 Ma,闪长岩形成于224 Ma).在地球化学上,似斑状花岗岩为高钾钙碱性系列,高Sr(479~573 μg/g),低Yb(1.03~1.20 μg/g),Mg#值为48.7~51.8,判断岩石属于埃达克岩类.岩石的εHf(t)值为-2.40~2.98,判断岩石源于加厚陆壳部分熔融.闪长岩Ti/Yb值为1 930~2 178,Nb/Ta值为15.9~17.4,属混合成因.综合前人研究成果,哥日卓托杂岩体形成于古特提斯洋闭合后碰撞环境,并且标志同碰撞到后碰撞的构造体制转换.Abstract: The Gerizhuotuo complex intrusion, a typical 'stitching pluton' with its long axis cutting regional structural lines, is significant in tectonic geochronology for providing an upper-age for the timing of plate collision. The zircon U-Pb dating results indicate that the pluton was formed in 227-224 Ma. Geochemically, porphyritic granite falls into the high-K calc-alkaline series, with high Sr(479-573 μg/g) and low Yb(1.03-1.20 μg/g) and Mg#(48.7-51.8), being of the characteristics of adakitic rocks. The in situ zircon εHf(t) value varies from -2.40 to 2.98, which suggests that the primary magma was derived from partial melting of lower crustal materials. Diorite also shows high-K calc-alkaline affinitie, with a Ti/Yb ratio ranging from 1 930 to 2 178, Nb/Ta ratio ranging from 15.9 to 17.4. It is suggested that a mixture, between basaltic magma derived from partial melting of metasomatized mantle and acidic magma derived from crustal material, produced the dioritic magma. It is concluded that the pluton was formed in a post-collisional tensional environment.
-
Key words:
- zircon U-Pb age /
- zircon Hf isotope /
- adakiteic rock /
- geochemistry /
- geochronology
-
图 4 哥日卓托杂岩体似斑状花岗岩(a)、闪长岩(b)的U-Pb年龄协和图及其TAS图解(c)和SiO2-K2O图解(d)
图c中分界线上方为碱性,下方为亚碱性,据Irvine and Baragar(1971)
Fig. 4. Zircon U-Pb concordia diagram for porphyritic granite (a) and diorite (b) in Gerizhuotuo complex intrusion, and TAS diagram (c) and K2O-SiO2 diagram (d) of the rocks in Gerizhuotuo complex intrusion
图 5 哥日卓托杂岩体稀土元素球粒陨石标准化配分图解(a)和原始地幔标准化蛛网图(b)
图a据Boynton, 1984;图b据Sun and McDonough, 1989
Fig. 5. Chondrte-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) of the rocks in Gerizhuotuo complex intrusion
图 7 似斑状花岗岩的Hf同位素特征(据吴福元等,2007)
Fig. 7. Hf isotopic compositions of porphyritic granite
图 8 似斑状花岗岩Sr/Y-Y图解(Defant and Drummond, 1990)
Fig. 8. Sr/Y-Y relation of porphyritic granite
图 10 哥日卓托杂岩体的(Ta+Yb)-Rb图解(a)(Pearce et al., 1984)和(Y+Nb)-Rb图解(b)(Pearce, 1996)
Fig. 10. (Ta+Yb) vs Rb (a) and (Y+Nb) vs Rb (b) of the rocks in Gerizhuotuo complex intrusion
图 11 似斑状花岗岩R1-R2判别图解(a)(Bachelor and Bowden, 1985)和闪长岩FeOT-MgO-Al2O3判别图解(b)(Brown and Thorpe, 1984)
Fig. 11. R1-R2 factor discrimination of porphyritic granite (a) and FeOT-MgO-Al2O3 relations of diorite (b)
表 1 哥日卓托似斑状花岗岩锆石LA-ICP-MS U-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb analyses of porphyritic granite
测点 含量(10-6) 同位素比值及误差 年龄(Ma)及误差 238U 232Th Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GR-N3-1 774 358 0.46 0.462 4 0.054 0 0.001 8 0.267 2 0.008 6 0.035 7 372 72 240 7 226 2 GR-N3-2 525 229 0.44 0.436 1 0.052 9 0.001 9 0.261 4 0.009 2 0.035 9 328 81 236 7 227 2 GR-N3-3 345 184 0.53 0.533 1 0.051 0 0.002 7 0.252 2 0.012 7 0.035 9 239 122 228 10 227 3 GR-N3-4 925 420 0.45 0.454 4 0.052 3 0.001 9 0.260 0 0.009 1 0.035 8 298 86 235 7 227 2 GR-N3-5 736 350 0.48 0.475 8 0.051 4 0.002 2 0.255 3 0.010 3 0.035 9 257 92 231 8 227 3 GR-N3-6 676 309 0.46 0.457 2 0.051 2 0.002 3 0.256 0 0.012 5 0.035 7 250 104 231 10 226 4 GR-N3-7 848 388 0.46 0.457 0 0.051 5 0.002 1 0.257 2 0.010 1 0.036 0 265 93 232 8 228 3 GR-N3-8 678 302 0.45 0.446 1 0.051 1 0.001 6 0.252 0 0.007 7 0.035 8 256 72 228 6 227 3 GR-N3-9 672 320 0.48 0.476 0 0.054 8 0.002 1 0.272 5 0.010 5 0.035 8 406 83 245 8 227 2 GR-N3-10 445 214 0.48 0.479 9 0.051 7 0.002 0 0.256 5 0.009 8 0.035 8 333 89 232 8 227 2 GR-N3-11 640 309 0.48 0.482 2 0.052 5 0.002 0 0.261 2 0.009 9 0.036 0 309 85 236 8 228 3 GR-N3-12 444 209 0.47 0.471 4 0.052 1 0.002 9 0.258 6 0.014 3 0.036 0 300 125 234 12 228 3 GR-N3-13 668 320 0.48 0.478 2 0.051 0 0.003 0 0.255 1 0.014 4 0.036 1 243 135 231 12 229 3 GR-N3-14 464 320 0.69 0.688 8 0.057 4 0.002 0 0.581 7 0.021 4 0.072 7 506 81 466 14 453 4 GR-N3-15 592 131 0.22 0.222 0 0.152 1 0.002 9 5.804 9 0.104 5 0.274 6 2 369 31 1 947 16 1 564 9 表 2 哥日卓托闪长岩锆石LA-ICP-MS U-Pb同位素分析结果
Table 2. LA-ICP-MS zircon U-Pb analyses of diorite in Gerizhuotuo complex intrusion
测点 含量(10-6) 同位素比值及误差 年龄(Ma)及误差 238U 232Th Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ GR-N6-1 347 203 0.58 0.053 4 0.004 7 0.258 1 0.023 5 0.035 1 0.001 6 344 188 233 19 222 10 GR-N6-2 457 258 0.56 0.050 6 0.002 1 0.244 5 0.012 2 0.035 1 0.001 5 220 94 222 10 222 9 GR-N6-3 492 407 0.83 0.049 4 0.002 0 0.231 8 0.011 4 0.034 0 0.001 4 165 93 212 9 216 9 GR-N6-4 473 382 0.81 0.051 5 0.002 1 0.242 2 0.011 9 0.034 1 0.001 4 261 92 220 10 216 9 GR-N6-5 412 207 0.50 0.048 6 0.004 0 0.238 2 0.020 2 0.035 6 0.001 6 128 181 217 17 225 10 GR-N6-6 309 231 0.75 0.049 1 0.003 1 0.238 4 0.016 0 0.035 2 0.001 5 153 139 217 13 223 9 GR-N6-7 183 124 0.68 0.049 6 0.003 7 0.242 7 0.019 0 0.035 5 0.001 5 176 164 221 16 225 10 GR-N6-8 240 139 0.58 0.052 9 0.007 7 0.266 3 0.038 6 0.036 5 0.001 9 325 300 240 31 231 12 GR-N6-9 313 146 0.47 0.049 9 0.003 3 0.249 2 0.017 8 0.036 2 0.001 5 192 148 226 14 229 10 GR-N6-10 223 111 0.50 0.051 8 0.003 2 0.252 6 0.017 0 0.035 4 0.001 5 277 136 229 14 224 9 GR-N6-11 268 243 0.91 0.051 4 0.004 4 0.251 4 0.022 2 0.035 5 0.001 6 261 184 228 18 225 10 GR-N6-12 362 168 0.46 0.049 2 0.002 2 0.241 1 0.012 8 0.035 6 0.001 5 155 102 219 10 226 9 GR-N6-13 381 254 0.67 0.050 9 0.006 1 0.247 1 0.029 9 0.035 3 0.001 7 235 255 224 24 223 11 GR-N6-14 384 213 0.56 0.049 0 0.002 2 0.240 0 0.012 5 0.035 6 0.001 5 148 101 218 10 225 9 GR-N6-15 306 144 0.47 0.048 7 0.002 8 0.238 5 0.014 9 0.035 5 0.001 5 134 128 217 12 225 9 GR-N6-16 657 564 0.86 0.051 6 0.002 2 0.256 0 0.012 9 0.036 1 0.001 5 266 94 231 10 228 9 GR-N6-17 495 466 0.94 0.052 1 0.002 4 0.251 0 0.013 4 0.035 0 0.001 5 290 101 227 11 222 9 GR-N6-18 313 153 0.49 0.052 5 0.005 1 0.262 0 0.026 2 0.036 3 0.001 6 306 208 236 21 230 10 GR-N6-19 421 209 0.50 0.051 7 0.005 8 0.250 5 0.028 3 0.035 3 0.001 6 272 236 227 23 223 10 GR-N6-20 263 151 0.57 0.051 7 0.008 2 0.248 7 0.039 2 0.035 0 0.001 8 271 326 226 32 222 11 GR-N6-21 400 248 0.62 0.049 5 0.007 0 0.239 8 0.033 8 0.035 3 0.001 7 171 298 218 28 223 11 GR-N6-22 263 237 0.90 0.052 8 0.002 9 0.250 3 0.015 5 0.034 5 0.001 4 320 121 227 13 219 9 GR-N6-23 656 529 0.81 0.050 6 0.003 7 0.244 3 0.019 1 0.035 1 0.001 5 223 162 222 16 223 9 表 3 哥日卓托似斑状花岗岩和闪长岩主量元素、稀土元素和微量元素含量及有关参数
Table 3. Major, REE and trace element content and parameter of the rocks in Gerizhuotuo complex intrusion
样品 似斑状花岗岩 闪长岩 GR-Y3-1 GR-Y3-2 GR-Y3-3 GR-Y3-4 GR-Y3-5 GR-Y3-6 GR-Y3-7 GR-Y3-8 GR-Y6-1 GR-Y6-2 GR-Y6-3 GR-Y6-4 GR-Y6-5 GR-Y6-6 GR-Y6-7 GR-Y6-8 SiO2 68.52 67.19 68.82 67.93 68.04 67.54 67.52 68.31 57.32 57.39 58.19 57.56 56.18 57.87 57.11 57.99 TiO2 0.38 0.42 0.43 0.40 0.40 0.42 0.40 0.39 0.78 0.78 0.76 0.76 0.78 0.79 0.76 0.75 Al2O3 15.81 16.15 16.54 15.91 16.13 16.18 15.98 15.83 17.18 17.28 16.96 16.98 16.86 16.98 16.58 16.71 FeO 2.56 2.59 2.66 2.51 2.40 2.38 2.32 2.38 5.29 5.74 5.27 4.86 5.34 5.33 5.31 5.49 Fe2O3 0.22 0.48 0.49 0.55 0.48 0.60 0.51 0.46 1.59 1.27 1.39 2.39 1.86 1.50 1.78 1.29 Fe2O3T 3.06 3.36 3.45 3.34 3.15 3.24 3.09 3.11 7.47 7.65 7.25 7.80 7.79 7.42 7.68 7.39 MnO 0.06 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.14 0.15 0.14 0.14 0.15 0.15 0.15 0.15 MgO 1.51 1.73 1.77 1.60 1.65 1.74 1.67 1.62 4.59 4.79 4.28 4.21 5.56 4.59 5.76 4.36 CaO 2.62 3.38 3.47 2.79 2.36 3.08 2.72 2.56 6.55 6.20 6.30 6.73 7.17 6.24 5.94 6.67 Na2O 4.02 4.13 4.23 4.04 4.23 4.16 4.15 4.04 3.30 3.31 3.33 3.31 3.16 3.37 3.31 3.34 K2O 3.74 3.26 3.34 3.61 3.68 3.26 3.63 3.78 2.27 2.03 2.41 2.15 1.96 2.21 2.25 2.30 P2O5 0.16 0.17 0.18 0.16 0.15 0.17 0.16 0.16 0.30 0.31 0.28 0.29 0.31 0.29 0.29 0.28 LOI 2.26 2.80 2.36 2.32 2.42 2.89 2.65 2.52 2.12 2.28 1.75 1.54 1.62 2.01 3.05 1.23 Mg# 49.51 50.44 50.44 48.66 50.95 51.52 51.75 50.81 54.89 55.34 53.94 51.70 58.58 55.08 59.74 53.91 Cr 39.2 43.2 52.5 53.9 42.8 49.5 47.1 46.4 53.4 88.3 82.5 100.0 136.0 88.4 149.0 81.1 V 28.5 41.4 44.0 42.0 39.4 46.4 36.1 39.4 118.0 138.0 139.0 148.0 144.0 136.0 141.0 132.0 Rb 140.0 129.0 118.0 144.0 136.0 130.0 149.0 143.0 82.7 78.0 91.3 79.5 68.1 82.8 89.0 78.6 Ba 791 780 776 855 1 032 844 723 891 710 648 670 698 661 685 671 648 Sr 480 490 573 521 479 514 535 485 609 608 594 575 562 603 599 517 Ce 79.1 78.3 78.3 87.5 78.2 87.4 73.1 83.4 82.8 84.6 94.2 94.4 82.0 90.1 82.5 91.6 Pr 7.91 8.17 7.98 8.97 8.29 8.83 7.45 8.26 9.08 9.28 10.2 10.1 9.04 9.75 8.93 9.63 Nb 18.1 19.6 20.4 19.9 19.4 19.4 20.1 19.3 22.3 21.8 24.0 25.5 21.4 23.0 19.9 23.0 Ta 1.42 1.53 1.34 1.55 1.47 1.52 1.41 1.62 1.38 1.26 1.42 1.47 1.27 1.38 1.25 1.45 Th 16.80 13.10 15.80 17.00 14.00 13.70 15.10 16.90 9.73 9.94 11.90 11.10 8.83 10.90 10.70 11.90 U 3.41 2.91 3.26 3.27 2.99 2.74 2.75 3.64 2.76 2.85 3.31 2.67 2.32 3.71 2.47 3.12 La 48.2 50.5 47.1 56.8 52.3 56.4 38.8 52.8 49.1 50.2 55.3 55.5 47.8 54.2 47.5 54.6 Nd 26.8 27.3 25.7 29.3 26.9 29.5 26.4 27.6 34.2 34.3 37.5 38.2 34.1 35.8 32.3 35.7 Sm 3.82 3.96 4.04 4.31 4.07 4.50 3.82 3.96 5.69 5.68 5.65 6.29 5.81 6.27 5.14 6.15 Eu 0.92 1.02 1.08 1.11 0.89 1.11 0.84 0.93 1.49 1.42 1.38 1.56 1.55 1.41 1.27 1.44 Gd 3.24 3.29 3.69 3.64 3.53 3.55 3.45 3.35 5.66 5.01 5.45 5.51 5.25 5.12 4.75 5.05 Tb 0.441 0.488 0.461 0.473 0.488 0.535 0.415 0.501 0.816 0.788 0.815 0.889 0.805 0.828 0.829 0.821 Dy 2.06 2.36 2.18 2.32 1.94 2.18 2.19 2.26 4.02 3.97 4.48 4.55 4.03 4.08 3.96 4.22 Ho 0.362 0.436 0.39 0.409 0.375 0.429 0.409 0.404 0.795 0.788 0.826 0.841 0.783 0.79.0 0.781 0.826 Er 1.04 1.17 1.17 1.16 1.09 1.18 1.16 1.16 2.21 2.38 2.49 2.35 2.26 2.28 2.15 2.42 Tm 0.161 0.170 0.171 0.174 0.171 0.177 0.154 0.178 0.352 0.338 0.349 0.362 0.337 0.358 0.328 0.353 Yb 1.03 1.20 1.09 1.15 1.07 1.13 1.13 1.12 2.27 2.25 2.29 2.34 2.21 2.21 2.08 2.32 Lu 0.158 0.172 0.157 0.164 0.159 0.163 0.146 0.172 0.345 0.342 0.341 0.349 0.317 0.340 0.320 0.340 Y 10.3 11.3 10.8 11.1 10.4 11.3 11.3 11.0 20.2 19.7 21.8 21.9 19.7 21.2 19.1 21.3 Li 34.7 42.3 44.8 38.3 39.0 44.7 38.8 33.6 23.5 23.7 22.0 16.1 23.0 23.4 26.8 17.2 Be 2.24 2.56 2.80 2.60 2.56 2.57 2.63 2.34 1.67 1.59 2.12 1.78 1.50 1.67 1.59 1.75 Sc 5.01 5.65 5.98 5.72 5.37 5.53 5.38 5.25 14.60 14.50 14.40 14.90 14.90 14.30 14.80 13.50 Cr 39.2 43.2 52.5 53.9 42.8 49.5 47.1 46.4 53.4 88.3 82.5 100.0 136.0 88.4 149.0 81.1 Co 7.90 8.82 8.84 9.65 9.17 9.50 9.04 8.84 25.70 26.10 24.90 26.60 28.50 24.60 29.40 24.10 Ni 17.5 18.2 20.6 19.2 22.3 22.8 21.9 20.1 32.7 33.3 31.4 47.3 77.7 34.5 107.0 31.1 Cu 43.3 145.0 50.3 53.6 49.3 31.9 19.5 39.3 53.2 48.4 23.2 32.0 86.2 26.8 65.5 49.5 Zn 21.3 23.1 20.3 24.2 26.9 23.6 22.5 23.7 78.2 78.1 88.5 84.3 81.7 79.3 82.1 77.7 Ga 16.6 17.7 21.0 18.4 17.6 18.2 18.2 17.0 18.3 19.2 20.2 20.2 18.0 19.2 18.3 18.7 Mo 1.080 0.597 1.170 1.020 0.614 0.562 0.372 1.310 1.170 1.630 1.720 1.430 1.430 1.170 1.120 1.390 Cd 0.029 0.022 0.058 0.033 0.036 0.029 0.018 0.016 0.082 0.084 0.132 0.079 0.088 0.103 0.099 0.081 In 0.010 0.014 0.014 0.010 0.013 0.007 0.009 0.014 0.047 0.043 0.052 0.049 0.048 0.045 0.046 0.050 Sb 0.342 0.369 0.019 0.464 0.443 0.367 0.366 0.390 0.491 0.472 0.460 0.392 0.272 0.376 0.434 0.404 Cs 5.26 6.08 5.10 6.07 5.97 6.63 5.17 5.52 3.30 2.60 4.27 5.65 3.81 3.04 2.62 4.29 W 0.742 0.862 0.856 0.872 0.942 0.811 0.735 1.380 0.893 0.991 1.290 0.970 0.984 0.988 0.957 1.080 Tl 0.612 0.560 0.570 0.677 0.704 0.591 0.597 0.665 0.432 0.387 0.473 0.396 0.384 0.441 0.461 0.420 Pb 15.6 16.6 17.8 18.7 17.5 16.6 15.8 17.1 18.0 16.1 20.7 20.0 16.5 18.9 16.4 18.9 Bi 0.199 0.676 1.320 1.130 0.386 0.256 0.102 0.168 0.120 0.111 0.155 0.137 0.304 0.123 0.149 0.152 ∑REE 175 179 174 197 179 197 159 186 199 201 221 223 196 214 193 215 Eu/Eu* 0.80 0.86 0.86 0.86 0.72 0.85 0.71 0.78 0.80 0.81 0.76 0.81 0.86 0.76 0.79 0.79 LREE 167 169 164 188 171 188 150 177 182 185 204 206 180 198 178 199 HREE 8.49 9.29 9.31 9.49 8.82 9.34 9.05 9.15 16.50 15.90 17.00 17.20 16.00 16.00 15.20 16.40 Ti/Yb 2 217 2 099 2 366 2 099 2 253 2 236 2 138 2 088 2 060 2 079 1 997 1 961 2 130 2 133 2 178 1 930 Nb/Ta 12.75 12.81 15.22 12.84 13.20 12.76 14.26 11.91 16.16 17.30 16.90 17.35 16.85 16.67 15.92 15.86 Rb/Sr 0.29 0.26 0.21 0.28 0.28 0.25 0.28 0.29 0.14 0.13 0.15 0.14 0.12 0.14 0.15 0.15 La/Yb 46.80 42.08 43.21 49.39 48.88 49.91 34.34 47.14 21.63 22.31 24.15 23.72 21.63 24.52 22.84 23.53 注:主量元素单位为%;微量元素和稀土元素单位为10-6. 表 4 哥日卓托似斑状花岗岩锆石Hf同位素分析结果
Table 4. LA-ICP-MS zircon U-Pb analyses of porphyritic granite
测点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ εHf(0) εHf(t) TDM1(Hf) TDM2(Hf) fLu/Hf GR-N3-1 227 0.034 827 0.001 178 063 0.282 704 974 0.000 031 -2.37 2.42 778.60 993.17 -0.96 GR-N3-2 227 0.032 923 0.000 981 160 0.282 694 081 0.000 016 -2.76 2.06 789.90 1 012.98 -0.97 GR-N3-3 227 0.026 893 0.000 850 136 0.282 567 376 0.000 013 -7.24 -2.40 964.96 1 260.91 -0.97 GR-N3-4 227 0.035 453 0.001 018 262 0.282 690 055 0.000 014 -2.90 1.92 796.36 1 021.21 -0.97 GR-N3-5 227 0.030 399 0.000 967 203 0.282 698 832 0.000 019 -2.59 2.23 782.91 1 003.51 -0.97 GR-N3-6 227 0.025 684 0.000 736 291 0.282 687 886 0.000 016 -2.97 1.88 793.48 1 023.15 -0.98 GR-N3-7 227 0.029 830 0.000 876 503 0.282 650 459 0.000 015 -4.30 0.54 849.03 1 097.94 -0.97 GR-N3-8 227 0.037 108 0.001 091 671 0.282 631 013 0.000 017 -4.99 -0.18 881.36 1 137.94 -0.97 GR-N3-9 227 0.033 516 0.000 965 924 0.282 663 415 0.000 015 -3.84 0.98 832.80 1 073.20 -0.97 GR-N3-10 227 0.033 976 0.000 980 800 0.282 648 025 0.000 015 -4.38 0.43 854.81 1 103.58 -0.97 GR-N3-11 227 0.037 791 0.001 192 679 0.282 720 995 0.000 018 -1.80 2.98 756.17 961.74 -0.96 GR-N3-12 227 0.027 231 0.000 814 808 0.282 670 349 0.000 016 -3.59 1.25 819.74 1 058.31 -0.98 GR-N3-13 227 0.036 322 0.001 099 730 0.282 679 551 0.000 015 -3.27 1.53 812.94 1 042.56 -0.97 -
[1] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Atherton, M.P., Petford, N., 1993. Generation of Sodium Rich Magmas form Newly Underplated Basaltic Curst. Nature, 362: 144-146. doi: 10.1038/362144a0 [3] Bachelor, R.A., Bowden, P., 1985. Petrologic Interpretation of Granitoid Rocks Series Using Multicationic Parometers. Chemical Geology, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8 [4] Bian, Q.T., Luo, X.Q., Chen, H.H., et al., 1999. Zircon U-Pb Age of Granodiorite-Tonalite in the A'nyemaqen Ophiolitic Belt and Its Tectonic Significance. Chinese Journal of Geology, 34(4): 420-426 (in Chinese with English abstract). http://www.researchgate.net/publication/293092949_Zircon_U-Pb_age_of_granodiorite-tonalite_in_the_A'nyemaqen_ophiolitic_belt_and_its_tectonic_significance [5] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 63-114. http://www.researchgate.net/publication/308632289_Geochemistry_of_the_rare_earth_elements_Meteorite_studiesA [6] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources. Journal of the Geological Society, 141: 411-426. http://www.researchgate.net/publication/249546137_The_geochemical_characteristics_of_granitoids_in_contrasting_arcs_and_comments_on_magma_sources [7] Bureau of Geology and Mineral Resources of Qinghai Province, 1982. Regional Geology of Qinghai Province. Geological Publishing House, Beijing (in Chinese). [8] Chang, Y.Y., Li, J.F., Zhang, J., et al., 2009. Study of Environment and Chronology of Late Triassic Intrusive Rocks in East Nalinggele River of Qinghai. Northwestern Geology, 42(1): 57-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200901007.htm [9] Chen, G.C., 2014. Petrology, Genesis and Geological Significance of Late Paleozoic-Early Mesozoic Granitoids in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [10] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005. Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt. Geology in China, 32(3): 385-395 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200503006.htm [11] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0 [12] Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Development in Petrology, 13, Amsterdam. [13] Ding, S., Huang, H., Niu, Y.L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(2): 3603-3614 (in Chinese with English abstract). http://www.oalib.com/paper/1474254 [14] Fisher, C.M., Vervoot, J.D., Hanchar, J.M., 2014. Guidelines for Reporting Zircon Hf Istopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data. Chemical Geology, 363: 125-133. doi: 10.1016/j.chemgeo.2013.10.019 [15] Gao, S., Jin, Z.M., 1997. Delamination and Its Geodynamical Significance for the Crust-Mantle Evolution. Geological Science and Technology Information, 16(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.000.htm [16] Gao, Y.B., Li, W.Y., Qian, B., et al., 2014. Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China. Acta Petrologica Sinica, 30(6): 1647-1665 (in Chinese with English abstract). [17] Guo, F., Nakamuru, E., Fan, W.M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing: Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. doi: 10.1093/petrology/egl077 [18] Hart, S.R., 1988. Heterogeneous Mantle Domains: Signature Genesis and Mixing Chonologies. Earth and Planetary Science Letters, 90: 273-296. doi: 10.1016/0012-821X(88)90131-8 [19] Hu, F.F., Fan, H.R., Yang, J.H., et al., 2005. Magma Mixing for the Origin of Granodiorite: Geochemical, Sr-Nd Isotopic and Zircon Hf Isotopic Evidence of Dioritic Enclaves and Host Rocks from Changshannan Granodiorite in the Jiaodong Peninsula, Eastern China. Acta Petrologica Sinica, 21(3): 569-586 (in Chinese with English abstract). [20] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391-1399. doi: 10.1039/c2ja30078h [21] Huang, F., Li, S.G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255: 1-13. doi: 10.1016/j.chemgeo.2008.02.014 [22] Irvine, T.N., Baragar, W.R., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8: 523-548. doi: 10.1139/e71-055 [23] Janne, B.T., Catherine, C., Frances, A., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248-260. doi: 10.1007/s004100050278 [24] Jiang, C.F., Zhu, S.N., 1992. Introduction to Tectonic Migration Theory. Acta Geosicientia Sinica, 25: 1-14 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQXB199200000.htm [25] Kay, R.W., 1978. Aleutian Magnesian Andesite: Melts from Subducted Pacific Ocean Crust. Journal of Volcanology and Geothermal Research, 4: 117-132. doi: 10.1016/0377-0273(78)90032-X [26] Li, R.B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [27] Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geologica Sinica, 87(8): 1089-1103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201308006.htm [28] Liegeois, J.P., 1998. Preface: Some Words on Post-Collisional Magmatism. Lithos, 45: 15-17. http://www.mendeley.com/research/preface-some-words-postcollisional-magmatism-1/ [29] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [30] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [31] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun: Constraints from Zircon U-Pb Dating and Geochemistry. Geology in China, 38(5): 1150-1167 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgdizhi201105003 [32] Lu, S.N., Wang, H.C., Li, H.K., et al., 2002. Redefinition of the 'Dakendaban Group' on the Northern Margin of the Qaidam Basin. Geological Bulletin of China, 21(1): 19-23 (in Chinese with English abstract). http://www.researchgate.net/publication/285109038_Redefinition_of_the_Dakendaban_Group_on_the_northern_margin_of_the_Qaidam_basin [33] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Execl. Berkeley Geochronology Center Special Publication, 4: 1-70. http://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel [34] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297 (in Chinese with English abstract). http://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun [35] MacPherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243: 581-593. doi: 10.1016/j.epsl.2005.12.034 [36] McKenzie, D., 1984. A Possible Mechanism for Epeirogenic Uplift. Nature, 307: 616-618. doi: 10.1038/307616a0 [37] McKenzie, D.P., 1989. Some Remarks on the Movement of Small Melt Fractions in the Mantle. Earth and Planetary Science Letters, 95: 53-72. doi: 10.1016/0012-821X(89)90167-2 [38] Muller, D., Rock, N.M.S., Croves, D.L., 1992. Geochemical Discrimination between Shoshonitc and Potassic Vocanic Rocks from Different Tectonic Settings: A Pilot Study. Mineralogy and Petrology, 46: 259-289. doi: 10.1007/BF01173568 [39] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30: 915-918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 [40] Pearce, J.A., 1996. Sources and Setting of Granitic Rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005 [41] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25: 956-983. doi: 10.1093/petrology/25.4.956 [42] Pei, X.Z., 2001. Geologieal Evolution and Dynamics of the Miaulue-A'nyemaqen Tectonic Zone, Central China (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [43] Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5 [44] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt an 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 [45] Sisson, T.W., Ratajeski, K., Hankins, W.B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(5): 635-661. doi: 10.1007/s00410-004-0632-9 [46] Sun, F.Y., Chen, G.H., Chi, X.G., et al., 2003. Study of Metallogenic Regularity and Prospecting Direction in the East Kunlun Metallogenic Belt in Xinjiang-Qinghai. Geological Survey Project Research Report of China Geological Survey, Changchun. [47] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunder, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society Special Publication, 2: 313-345. [48] Tamura, Y., 2003. Andesites and Dacites from Daisen Volcano, Japan: Partial-to-Total Remelting of an Andesite Magma Body. Journal of Petrology, 44(12): 2243-2260. doi: 10.1093/petrology/egg076 [49] Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. doi: 10.1029/95RG00262 [50] Thiéblemont, D., Stein, G., Lescuyer, J.L., 1997. Epithermal and Porphyry Deposits: The Adakite Connection. Comptes Rendus de l'Académiedes Sciences, Paris, 325: 103-109. http://www.researchgate.net/publication/280069947_Epithermal_and_porphyry_deposits_The_adakite_connection/amp [51] Tong, H.K., Wang, S.L., Song, S.C., et al., 2004. Study on Volcanic Rocks and Their Structural Environment of Late Triassic Epoch in Chachaxiangka Area in Qinghai Province. Earthquake Reaearch in Plateau, 16(2): 38-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYDZ200402005.htm [52] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. doi: 10.1016/j.epsl.2008.04.034 [53] Wang, Q., Wyman, D., Li, Z.X., et al., 2010. Eocene North-South Trending Dikes in Central Tibet: New Constrains on the Timing of East-West Extension with Implications for Early Plateau Uplifting?Earth and Planetary Science Letters, 298(1-2): 204-216. http://www.sciencedirect.com/science/article/pii/S0012821X10004942 [54] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008 [55] Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2001. Melting of the Underplated Basaltic Lower Crust: Evidence from the Shaxi Adakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China. Geochimica, 30(4): 353-362 (in Chinese with English abstract). http://www.researchgate.net/publication/282561182_Melting_of_the_underplated_basaltic_lower_crust_Evidence_from_the_Shaxi_adakitic_sodic_quartz_diorite-porphyrites_Anhui_Province_China [56] Wang, Y., Deng, J.F., Ji, G.Y., 2004. A Perspective on the Geotectonic Setting of Early Cretaceous Adakite-Like Rocks in the Lower Reaches of Yangtze River and Its Significance for Copper-Gold Mineralization. Acta Petrologica Sinica, 20(2): 297-314 (in Chinese with English abstract). http://www.researchgate.net/publication/285632017_A_perspective_on_the_geotectonic_setting_of_early_Cretaceous_adakite-like_rocks_in_the_Lower_Reaches_of_Yangtze_River_and_its_significance_for_copper-gold_mineralization [57] Wang, Y., Zhang, Q., Qian, Q., 2000. Adakite: Geochemical Characteristics and Tectonic Significance. Scientia Geologica Sinica, 35(2): 251-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200002017.htm [58] Wang, Y.B., Huang, J.C., Luo, M.S., et al., 1997. Paleo-Ocean Evolution of the Southern Eastern Kunlun Orogenic Belt during Hercy-Early Indosinian. Earth Science—Journal of China University of Geosciences, 22(4): 369-372 (in Chinese with English abstract). http://www.researchgate.net/publication/284340858_Paleo-ocean_evolution_of_the_southern_eastern_Kunlun_orogenic_belt_during_Hercy-Early_Indosinian [59] Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6 [60] Wolf, M.B., Wyllie, P.J., 1989. The Formation of Tonalitic Liquids during the Vapor-Absent Partial Melting of Amphibolite at 10 kbar. EOS, 70: 506-518. http://www.researchgate.net/publication/284495607_The_formation_of_tonalitic_liquids_during_the_vapor-absent_partial_melting_of_amphibolite_at_10_kbar [61] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Pertrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.researchgate.net/publication/279910636_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology [62] Wyllie, P.J., Cox, K.G., Biggar, G.M., 1962. The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 3(2): 238-243. doi: 10.1093/petrology/3.2.238 [63] Xiong, F.H., Ma, C.Q., Zhagn, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364 (in Chinese with English abstract). [64] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinhai-Tibet Plateau: Imlications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104: 211-223. doi: 10.1007/s00710-011-0187-1 [65] Xiong, X.L., Adam, T.J., Green, T.H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218: 339-359. doi: 10.1016/j.chemgeo.2005.01.014 [66] Xu, H.J., Ma, C.Q., Zhang, J.F., et al., 2012. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23: 190-207. http://www.sciencedirect.com/science/article/pii/S1342937X12000020 [67] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract). http://www.researchgate.net/publication/279767883_The_Early_Palaeozoic_terrene_framework_and_the_formation_of_the_high-pressure_ [68] Yang, J.H., Sun, J.F., Zhang, J.H., et al., 2012. Petrogenesis of Late Triassic Intrusive Rocks in the Northern Liaodong Peninsula Related to Decratonization of the North China Craton: Zircon U-Pb Age and Sr-Nd-Hf Isotope Evidence. Lithos, 153: 108-128. doi: 10.1016/j.lithos.2012.06.023 [69] Yang, J.S., Xu, Z.Q., Li, H.B., et al., 2005. The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A'nyemaqen Region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380 (in Chinese with English abstract). http://www.researchgate.net/publication/285330092_The_paleo-Tethyan_volcanism_and_plate_tectonic_regime_in_the_A'nyemaqen_region_of_East_Kunlun_northern_Tibet_Plateau [70] Yin, H.F., Zhang, K.X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science—Journal of China University of Geosciences, 22(4): 339-342 (in Chinese with English abstract). [71] Yuan, H., Gao, S., Liu, X., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [72] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb Age and Trace Element of Zircon of Cenozoic Intrusion in NE China by Laser-Ablation Inductively Couple Plasma Mass Spectrometry. Chinese Science Bulletin, 48(14): 1511-1520 (in Chinese). doi: 10.1360/csb2003-48-14-1511 [73] Zhang, G.W., Dong, Y.P., Lai, S.C., et al., 2003. Mianlue Structural Belt and Mianlue Suture at Southern Margin of Qinling-Dabie Orogen. Science in China (Series D), 33(12): 1121-1135 (in Chinese). [74] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008. Criteria for the Recongnition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm [75] Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance. Geological Bulletin of China, 29(1): 80-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201001010.htm [76] Zhang, Z.J., Klemperer, S., Bai, Z.M., et al., 2011. Crustal Structure of the Paleozoic Kunlun Orogency from an Active-Source Seismic Profile between Moba and Guide in East Tibet, China. Gondwana Research, 19: 994-1007. doi: 10.1016/j.gr.2010.09.008 [77] Zhu, Y.H., Zhu, Y.S., Lin, Q.X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science—Journal of China University of Geosciences, 28(6): 653-659 (in Chinese with English abstract). http://www.researchgate.net/publication/291077410_Characteristics_of_Early_Jurassic_volcanic_rocks_and_their_tectonic_significance_in_Haidewula_east_Kunlun_orogenic_belt_Qinghai_Province [78] 边千韬, 罗小全, 陈海泓, 等, 1999. 阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义. 地质科学, 34(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm [79] 常有英, 李建放, 张军, 等, 2009. 青海那陵郭勒河东晚三叠世侵入岩形成环境及年代学研究. 西北地质, 42(1): 57-65. doi: 10.3969/j.issn.1009-6248.2009.01.005 [80] 陈国超, 2014. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义(博士学位论文). 西安: 长安大学. [81] 谌宏伟, 罗照华, 莫宣学, 等, 2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制. 中国地质, 32(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503006.htm [82] 丁烁, 黄慧, 牛耀玲, 等, 2011. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因. 岩石学报, 27(2): 3603-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112009.htm [83] 高山, 金振民, 1997. 拆沉作用(delamination)及其壳-幔演化动力学意义. 地质科技情报, 16(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.000.htm [84] 高永宝, 李文渊, 钱兵, 等, 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征. 岩石学报, 30(6): 1647-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406009.htm [85] 胡芳芳, 范宏瑞, 杨进辉, 等, 2005. 胶东文登长山南花岗闪长岩体的岩浆混合成因: 闪长质包体及及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据. 岩石学报, 21(3): 569-586. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503003.htm [86] 姜春发, 朱松年, 1992. 构造迁移论概述. 中国地质科学院院报, 25: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199200000.htm [87] 李瑞宝, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学. [88] 李佐臣, 裴先治, 刘战庆, 等, 2013. 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义. 地质学报, 87(8): 1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005 [89] 刘战庆, 裴先治, 李瑞宝, 等, 2011. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据. 中国地质, 38(5): 1150-1167. doi: 10.3969/j.issn.1000-3657.2011.05.003 [90] 陆松年, 王惠初, 李怀坤, 等, 2002. 柴达木盆地北缘"达肯大坂群"的再厘定. 地质通报, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004 [91] 罗照华, 柯珊, 曹永清, 等, 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [92] 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学. [93] 青海省地质矿产局, 1982. 青海省区域地质志. 北京: 地质出版社. [94] 孙丰月, 陈国华, 迟效国, 等, 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究. 长春: 中国地质调查局地质调查项目科研报告. [95] 童海奎, 王树林, 宋生春, 2004. 青海省查查香卡地区晚三叠世火山岩岩石学及其构造环境. 高原地震, 16(2): 38-48. doi: 10.3969/j.issn.1005-586X.2004.02.005 [96] 王强, 赵振华, 熊小林, 等, 2001. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据. 地球化学, 30(4): 353-362. doi: 10.3321/j.issn:0379-1726.2001.04.008 [97] 汪洋, 邓晋福, 姬广义, 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 20(2): 297-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402010.htm [98] 王焰, 张旗, 钱青, 2000. 埃达克岩(adakite)的地球化学特征及其构造意义. 地质科学, 35(2): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200002017.htm [99] 王永标, 黄继春, 骆满生, 等, 1997. 海西-印支早期东昆仑造山带南侧古海洋盆地的演化. 地球科学——中国地质大学学报, 22(4): 369-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.007.htm [100] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [101] 熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石定年, 元素和Sr-Nd-H同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm [102] 许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 [103] 杨经绥, 许志琴, 李海兵, 等, 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系. 岩石矿物学杂志, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004 [104] 殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学——中国地质大学学报, 22(4): 339-342. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm [105] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [106] 张国伟, 董云鹏, 赖绍聪, 等, 2003. 秦岭-大别造山带南缘勉略构造带与勉略缝合带. 中国科学, 33(12): 1121-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312000.htm [107] 张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27(1): 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 [108] 张亚峰, 裴先治, 丁仨平, 等, 2010. 东昆仑都兰可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001010.htm [109] 朱云海, 朱耀生, 林启祥, 等, 2003. 东昆仑造山带海德乌拉一带早侏罗世火山岩特征及其构造意义. 地球科学——中国地质大学, 28(6): 653-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306011.htm