Distributions and Paleo-Environment Implications of Microbial GDGTs from Red Earth Profile in Xuancheng, Anhui Province
-
摘要: 中国南方更新世红土是古气候环境变化研究非常重要的载体之一,红土微生物类脂分子是其古气候环境研究的有效指标,但其在红土中的古气候意义需要更进一步的挖掘和明确.选取处于气候变化敏感地带并且已有很好年代学基础的安徽宣城红土剖面进行详细的野外调查和系统的样品采集,利用改善后的碱式水解法提取红土微生物类脂分子,通过对比分析、比较印证等方法对其中的甘油二烷基链甘油四醚(glycerol dialkyl glycerol tetraethers,简称GDGTs)进行系统研究.宣城剖面GDGTs分布特征显示:剖面下部各指标呈旋回性变化、而上部相对稳定,表明形成初期环境比较动荡,而后期成土环境相对稳定;土壤pH为7.0~8.0,推测其物源主要来源于北方干旱区或长江中下游干涸河滩沉积;BIT指标反映宣城地区在130 ka BP左右气候极为干旱.结果表明,红土中微生物类脂物GDGTs能够定量、高分辨率地重建安徽宣城的古气候环境,具有重要的研究意义.Abstract: Abundant information about paleo-environment, paleo-climate and paleolithic culture can be obtained from the red earth in southern China. However, the vermicular paleosol is proposed to be incapable of interpretating the original information about the past climate and envrionment changes owing to the intensive pedogenesis in the tropical-subtropical area. Therefore, previous studies on bio-climatic approaches including pollen, spore fossils and phytoliths are also believed to be not suitable for such kind of stratigraphy. Despite that some studies show the microbial molecular fossils are useful in the paleo-environment reconstruction, but their implications in red earth need to be further explored and confirmed. It is necessary to introduce some new methods to extract the detailed biological information in the red earth. In this study, we collected red earth samples from the Xuancheng section, Anhui Province in the Middle-Lower Reaches of the Yangtze River, which is well-dated and sensitive to climate change. Microbial lipids in the red earth are extracted by employing alkaline hydrolysis combined with the field survey and the laboratory investigation. The characteristics of the microbial lipids, especially glycerol dialkyl glycerol tetraethers (GDGTs) are investigated. The distributions of GDGTs from the Xuancheng profile show that all GDGT-derived proxies in the lower part of profile fluctuates frequently, whereas they are relatively stable in the upper part, which indicates that the paleo-environment changed frequently during the early period of this profile but the later soil environment was relatively stable. The CBT-inferred soil pH ranges from 7.0 to 8.0, indicating that the soil parent material likely comes from the arid areas in northwestern China or alternatively from the dry river sediments in the Middle-Lower Reaches of the Yangtze River. The low BIT values suggest that it was very dry at 130 ka BP in the Xuancheng region.
-
Key words:
- red earth /
- GDGTs /
- paleo-environment /
- climatology /
- environmental microbiology
-
图 4 GDGTs化合物含量与各环境指标随深度的变化情况及BIT指标与石笋氧同位素曲线对比
图中年代来源于马俊洁(2012);石笋氧同位素曲线来源于Cheng et al.(2009)
Fig. 4. The variation of GDGT concentration and GDGT-derived proxies vs. soil depth; the stalagmite oxygen isotopes in caves are also provided to make comparison with the BIT index
表 1 各环境指标的分布状况
Table 1. The distributions of environmental proxies
样品编号 MBT CBT pH 实测pH BIT XC-001 0.76 2.09 3.26 4.59 0.99 XC-003 0.83 1.13 5.80 4.55 0.98 XC-005 0.84 0.35 7.83 4.68 0.98 XC-007 0.81 0.29 7.99 4.78 0.99 XC-009 0.81 0.24 8.14 4.71 1.00 XC-011 0.83 0.43 7.63 5.03 0.99 XC-013 0.77 0.34 7.86 6.53 0.99 XC-015 0.71 0.39 7.75 4.71 0.96 XC-017 0.68 0.31 7.94 5.68 0.97 XC-019 0.66 0.47 7.52 4.82 0.98 XC-021 0.58 0.38 7.75 6.30 0.97 XC-023 0.59 0.25 8.12 5.67 0.90 XC-025 0.61 0.38 7.76 6.28 0.73 XC-027 0.62 0.43 7.64 5.02 0.90 XC-029 0.56 0.31 7.94 6.08 0.83 XC-031 0.50 0.31 7.94 6.62 0.96 XC-033 0.54 0.29 8.00 6.47 0.34 XC-035 0.56 0.29 8.01 4.85 0.91 XC-037 0.62 0.43 7.63 5.64 0.91 XC-039 0.72 0.79 6.69 5.12 0.82 XC-041 0.56 0.31 7.95 5.27 0.76 XC-043 0.52 0.35 7.84 5.50 0.69 XC-045 0.59 0.49 7.47 5.29 0.93 XC-047 0.68 0.67 7.01 5.16 0.64 XC-049 0.48 0.47 7.52 5.54 0.53 XC-051 0.49 0.42 7.65 5.56 0.91 XC-053 0.53 0.52 7.40 5.64 0.95 XC-055 0.67 0.58 7.23 5.46 0.84 XC-057 0.63 0.72 6.86 5.45 0.91 XC-059 0.55 0.37 7.78 6.76 0.96 XC-061 0.57 0.47 7.52 5.67 0.93 XC-065 0.40 0.13 8.41 5.71 0.94 XC-067 0.42 0.06 8.60 5.81 0.96 XC-069 0.49 0.15 8.37 5.61 0.94 XC-073 0.61 0.37 7.80 5.69 0.93 -
[1] Bechtel, A., Smittenberg, R.H., Bernasconi, S.M., et al., 2010. Distribution of Branched and Isoprenoid Tetraether Lipids in an Oligotrophic and a Eutrophic Swiss Lake: Insights into Sources and GDGT-Based Proxies. Organic Geochemistry, 41(8): 822-832. doi: 10.1016/j.orggeochem.2010.04.022 [2] Cheng, H., Edwards, R., L., Broecker, W.S., et al., 2009. Ice Age Terminations. Science, 326(5950): 248-252. doi: 10.1126/science.1177840 [3] Damsté, J.S.S., Rijpstra, W.I.C., Hopmans, E.C., et al., 2002. Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea. Applied and Environmental Microbiology, 68(6): 2997-3002. doi: 10.1128/AEM.68.6.2997-3002.2002 [4] Hong, H.L., Gu, Y.S., Yin, K., et al., 2010. Red Soils with White Net-Like Veins and Their Climate Significance in South China. Geoderma, 160(2): 197-207. doi: 10.1016/j.geoderma.2010.09.019 [5] Hopmans, E.C., Weijers, J.W.H., Schefuss, E., et al., 2004. A Novel Proxy for Terrestrial Organic Matter in Sediments Based on Branched and Isoprenoid Tetraether Lipids. Earth and Planetary Science Letters, 224(1-2): 107-116. doi: 10.1016/j.epsl.2004.05.012 [6] Hu, X.F., Shen, M.N., Fang, S.Q., 2004. Grain-Size Distribution of the Reticulate Red Clay in Southern Anhui Province and Its Paleo-Environmental Significance. Quaternary Sciences, 24(2): 160-166 (in Chinese with English abstract). [7] Jia, C., Huang, J., Kershaw, S., et al., 2012. Microbial Response to Limited Nutrients in Shallow Water Immediately after the End-Permian Mass Extinction. Geobiology, 10(1): 60-71. doi: 10.1111/j.1472-4669.2011.00310.x [8] Kim, J., Ludwig, W., Schouten, S., et al., 2007. Impact of Flood Events on the Transport of Terrestrial Organic Matter to the Ocean: A Study of the Têt River (SW France) Using the BIT Index. Organic Geochemistry, 38(10): 1593-1606. doi: 10.1016/j.orggeochem.2007.06.010 [9] Li, X.Y., Gu, Y.S., Huang, X.Y., et al., 2009. An Optimized Alkaline Hydrolysis Method to Extract Lipid Biomarkers from Pleistocene Vermicular Red Paleosols: An Example from Xuancheng, Anhui Province. Earth Science—Journal of China University of Geosciences, 34(4): 623-628 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.067 [10] Ma, J, J., 2012. OSL Dating about Red Earth in Xuancheng, Anhui Province(Dissertation). China University of Geosciences, Wuhan, 30-31(in Chinese with English abstract). [11] Schouten, S., Hopmans, E.C., Forster, A., et al., 2003. Extremely High Sea-Surface Temperatures at Low Latitudes during the Middle Cretaceous as Revealed by Archaeal Membrane Lipids. Geology, 31(12): 1069-1072. doi: 10.1130/G19876.1 [12] Schouten, S., Hopmans, E.C., Baas, M., et al., 2008. Intact Membrane Lipids of "Candidatus Nitrosopumilus Maritimus, " a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota. Applied and Environmental Microbiology, 74(8): 2433-2440. doi: 10.1128/AEM.01709-07 [13] Tierney, J.E., Mayes, M.T., Meyer, N., et al., 2010. Late-Twentieth-Century Warming in Lake Tanganyika Unprecedented since AD 500. Nature Geoscience, 3(6): 422-425. doi: 10.1038/NGEO865 [14] Weijers, J.W.H., Schouten, S., Hopmans, E.C., et al., 2006. Membrane Lipids of Mesophilic Anaerobic Bacteria Thriving in Peats have Typical Archaeal Traits. Environmental Microbiology, 8(4): 648-657. doi: 10.1111/j.1462-2920.2005.00941.x [15] Weijers, J.W.H., Steinmann, P., Hopmans, E.C., et al., 2011. Bacterial Tetraether Membrane Lipids in Peat and Coal: Testing the MBT-CBT Temperature Proxy for Climate Reconstruction. Organic Geochemistry, 42(5): 477-486. doi: 10.1016/j.orggeochem.2011.03.013 [16] Weijers, J.W.H., Schouten, S., van den Donker, J.C., et al., 2007. Environmental Controls on Bacterial Tetraether Membrane Lipid Distribution in Soils. Geochimica et Cosmochimica Acta, 71(3): 703-713. doi: 10.1016/j.gca.2006.10.003 [17] Wu, X., 2014. The Application of Glycerol Dialkyl Glycerol Tetraethers in Reconstrucion of Kusai Lake Paleo-environment on the Qinghai-Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [18] Xie, S.C., Pancost, R.D., Chen, L., et al., 2012. Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291-294. doi: 10.1130/G32570.1 [19] Xie, S.C., Evershed, R.P., Huang, X., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. doi: 10.1130/G34318.1 [20] Xie, S.C., Yi, Y., Liu, Y.Y., et al., 2003. Response of Red Clay in Southern Pleistocene Reticulate Chinese on Global Climate Change: Molecular Fossil Record. Science in China (Series D), 33(5): 411-417 (in Chinese). doi: 10.1360/02yd0555 [21] Xie, S.C., Liang, B., Gu, Y., S., et al., 2008. Distributions of N-Alkan-2-Ones in Quaternary Paleosols Indicative of Paleoclimate Changes. Acta Palaeontologica Sinica, 47(3): 273-278 (in Chinese with English abstract). http://www.researchgate.net/publication/292692751_Distributions_of_n-alkan-2-ones_in_Quaternary_paleosols_indicative_of_paleoclimate_changes [22] Yang, H., Ding, W.H., Zhang, C.L., et al., 2011. Occurrence of Tetraether Lipids in Stalagmites: Implications for Sources and GDGT-Based Proxies. Organic Geochemistry, 42(1): 108-115. doi: 10.1016/j.orggeochem.2010.11.006 [23] Yang, H., Pancost, R.D., Dang, X.Y., et al., 2014. Correlations between Microbial Tetraether Lipids and Environmental Variables in Chinese Soils: Optimizing the Paleo-Reconstructions in Semi-Arid and Arid Regions. Geochimica et Cosmochimica Acta, 126: 49-69. doi: 10.1016/j.gca.2013.10.041 [24] Zhao, Q.G., Yang, H., 1995. A Preliminary Study on Red Earth and Changes of Quaternary Environment in South China. Quaternary Sciences, (2): 107-116 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dsjj502.001.htm [25] Zhu, Z.M., Yang, W.Q., Lin, W.J., et al., 2006. Magnetic Fabric Characteristics and Significance of Reticulate Red Earth in Xuancheng Profile, Anhui Province. Marine Geology & Quaternary Geology, 26(4): 105-110 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/hydzydsjdz200604015 [26] 胡雪峰, 沈铭能, 方圣琼, 2004. 皖南网纹红土的粒度分布特征及古环境意义. 第四纪研究, 24(2): 160-166. doi: 10.3321/j.issn:1001-7410.2004.02.005 [27] 李雪艳, 顾延生, 黄咸雨, 等, 2009. 碱式水解法提取红土分子化石: 以安徽宣城更新世网纹红土为例. 地球科学——中国地质大学学报, 34(4): 623-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904008.htm [28] 马俊洁, 2012. 安徽宣城红土光释光测年(硕士学位论文). 武汉: 中国地质大学, 30-31. [29] 吴霞, 2014. 甘油二烷基甘油四醚膜类脂在青藏高原库赛湖古环境重建中的应用研究. 北京: 中国地质大学(北京), 126. [30] 谢树成, 易轶, 刘育燕, 等, 2003. 中国南方更新世网纹红土对全球气候变化的响应: 分子化石记录. 中国科学(D辑), 33(5): 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200305001.htm [31] 谢树成, 梁斌, 顾延生, 等, 2008. 脂肪酮分子在第四纪古土壤中的分布及其古气候意义. 古生物学报, 47(3): 273-278. doi: 10.3969/j.issn.0001-6616.2008.03.002 [32] 赵其国, 杨浩, 1995. 中国南方红土与第四纪环境变迁的初步研究. 第四纪研究, (2): 107-116. doi: 10.3321/j.issn:1001-7410.1995.02.002 [33] 朱宗敏, 杨文强, 林文姣, 等, 2006. 安徽宣城第四纪网纹红土的磁组构特征及其意义. 海洋地质与第四纪地质, 26(4): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200604020.htm