Geochemical Characteristics of Reef Carbonate Rocks in well Xike-1 of Shidao Island, Xisha Area
-
摘要: 对西科1井生物礁碳酸盐岩样品进行了地球化学(常量组分、微量及稀土元素含量等)分析, 旨在探讨生物礁的形成演化以及所记录的环境变化信息.结果表明: 西科1井岩心在井深36 m附近存在地球化学参数的显著变化, 暗示该深度是一处重要的地层界面或环境突变界面.岩心中的常量组分可以分为3类组合: 以CaO为主, 辅以K2O的原生碳酸岩组分, 该组分对应的主要造岩矿物是方解石, 代表了未经白云岩化的生物礁原生碳酸盐沉积; 以MgO为主, 辅以Na2O和P2O5, 代表了白云岩化作用中的富集组分, 反映了相对封闭的泻湖环境; 以SiO2为主, 加以Al2O3、TiO2、Fe2O3和MnO, 代表造礁生物对这些组分的富集作用, 但不能排除火山组分少量混入的可能性.相对于全球第四纪碳酸盐岩、上陆壳及页岩的平均值, 岩心碳酸盐岩中大部分微量元素和稀土元素含量都较低.岩心中氧化还原敏感性微量元素(RSE)含量较低, 指示岛礁发育过程中大部分时期处于氧化环境条件下, 而RSE含量在岩心中的大幅波动体现出氧化/还原环境的交替变化.微量元素含量、ΣREE、ΣLREE、ΣHREE、LREE/HREE、δCe、δEu等地球化学指标在岩心中的分布与岩心样品的矿物组成无明显的相关性, 说明成岩作用和白云岩化作用并没有造成微量和稀土元素含量及特征指标的明显变化.Abstract: Reef carbonate rocks of well Xike-1 are analyzed for major constituents, trace and rare earth elements in this study, aimed to explore the formation, evolution and environmental change recorded in reef carbonates. The results show that there is an important interface of formation or environmental mutation at depth of 36 m, where geochemical parameters change significantly. The major constituents can be divided into following three components: the lithogenic carbonate components, consisting of CaO and K2O, corresponding to calcites; the enriched components by dolomitization, including MgO, Na2O and P2O5, which indicates restricted lagoon environment; the enriched components by reef-builders, composed of SiO2, Al2O3, TiO2, Fe2O3 and MnO, potentially including a small amount of volcanic components. Contents of most trace and rare earth elements in well Xike-1 are low compared to those of other endmembers such as carbonate rocks of Quaternary around the world, upper crustal, and shales. The contents of redox-sensitive trace elements (RSE) in well Xike-1 are low, indicating oxic environment through most of development process of reefs. There are alternations of oxidation and reduction environment, with wide fluctuations of RSE contents. In addition, there is no obvious correlation between mineral compositions and geochemical parameter distribution, such as trace elements, REEs and their characteristic parameters, indicating that dolomitization and diagenesis did not result in the significant changes of trace elements, REEs, and their eigenvalues.
-
Key words:
- Shidao island in Xisha /
- reef /
- carbonate rock /
- geochemistry
-
图 1 主要地球化学组分(CaO和MgO)与碳酸盐矿物含量的纵向耦合关系
深色区域为白云岩层,据翟世奎等(2015)
Fig. 1. Longitudinal coupling relationship of major geochemical components (CaO and MgO) and carbonate mineral content
图 2 微量元素组分与全球第四纪碳酸盐岩微量元素组分比较
NASC微量元素数据引自Gromet et al.(1984)
Fig. 2. The comparison of trace elements composition of well Xike-1 and globle Quaternary carbonate rocks
图 4 微量元素分布及其与矿物组成的关系
矿物数据据翟世奎等(2015)
Fig. 4. The relationships between mineral composition and trace elements distribution
表 1 常量组分分析结果(%)
Table 1. Analysis results of major constituents(%)
组分 Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 最小值 0.030 0.350 0.420 0.180 0.080 0.290 32.360 0.002 0.002 0.003 最大值 1.390 6.320 1.640 9.340 0.490 0.570 55.430 0.110 0.022 0.625 平均值 0.830 1.830 0.560 1.220 0.250 0.430 48.800 0.013 0.006 0.107 表 2 常量组分相关系数矩阵
Table 2. Correlation matrix of major constituents
组分 Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 Na2O 1.00 MgO 0.76 1.00 Al2O3 0.18 0.31 1.00 SiO2 0.05 0.20 0.96 1.00 P2O5 0.86 0.50 0.01 -0.09 1.00 K2O -0.81 -0.76 0.19 0.29 -0.69 1.00 CaO -0.89 -0.88 -0.21 -0.09 -0.69 0.92 1.00 TiO2 0.06 0.15 0.96 0.98 -0.06 0.33 -0.07 1.00 MnO -0.27 -0.002 0.61 0.64 -0.31 0.44 0.18 0.68 1.00 Fe2O3 0.08 0.21 0.94 0.94 -0.04 0.28 -0.10 0.96 0.69 1.00 表 3 微量元素含量变化范围与平均值(μg/g)
Table 3. The range and average value of trace elements (μg/g)
地层 V Cr Mn Co Rb Sr Zr Nb Ba Hf Th 资料来源 最小值 0.030 0.780 0.750 0.190 0.030 414.00 0.060 0.001 0.060 0.001 0.010 第四系 最大值 20.920 22.450 217.890 0.890 11.720 7457.00 12.340 2.272 11.080 0.326 1.490 本文 平均值 3.810 6.390 40.040 0.380 1.210 2002.00 3.700 0.187 3.820 0.093 0.210 最小值 1.020 1.400 3.240 0.130 0.230 200.00 0.300 0.012 2.170 0.005 0.050 上新统 最大值 22.540 14.720 68.630 0.460 2.340 1572.00 4.740 0.261 7.450 0.113 0.390 本文 平均值 5.090 7.770 25.950 0.210 0.620 526.00 1.160 0.060 3.630 0.033 0.170 全球第四纪碳酸盐岩 20.0 11.0 1100.0 0.1 3.0 610.0 19.0 0.3 10.0 0.3 1.7 Turekian and Wedepohl, 1961 上地壳 60.0 35.0 600.0 10.0 112.0 350.0 190.0 25.0 550.0 5.8 10.7 Taylor and McLennan, 1985 表 4 稀土元素参数变化范围与平均值(μg/g)
Table 4. The range and average value of rare earth elements (μg/g)
地层 ΣREE ΣLREE ΣHREE LREE/HREE δEu δCe 资料来源 最小值 0.76 0.49 0.28 1.76 0.03 0.34 第四系 最大值 74.09 72.48 3.25 72.40 0.29 37.88 本文 平均值 20.35 19.23 1.11 18.22 0.11 8.15 最小值 2.10 1.61 0.39 2.47 0.03 0.42 上新统 最大值 5.76 4.48 1.32 6.46 0.12 0.78 本文 平均值 3.57 2.86 0.72 4.11 0.08 0.55 页岩 207.20 188.00 19.20 9.79 0.47 0.41 Turekian and Wedepohl, 1961 上地壳 157.07 144.10 12.97 11.11 0.75 0.89 Taylor and McLennan, 1985 注:球粒陨石标准化数据引自 Haskin et al.(1964) (下同). -
[1] Cai, F., Xu, H., Hao, X.F., et al., 1996. Comparative Sedimentology of Late Tertiary Organic Reefs in Xisha—Northern South China Sea. Acta Sedimentologica Sinica, 14(4): 61-69(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB604.007.htm [2] Fan, J.S., 2005. Characteristics of Carbonate Reservoirs for Oil and Gas Fields in the World and Essential Controlling Factors for Their Formation. Earth Science Frontiers, 12(3): 23-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200503003.htm [3] Gromet, L.P., Haskin, L.A., Korotev, R.L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9 [4] Han, C.R., Meng, X.Y., 1990. Foraminiferal Fauna Distribution in Reef-Facies Beds since Late Miocene in Xisha Islands and Its Significance. Marine Geology & Quaternary Geology, 10(2): 65-80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199002007.htm [5] Haskin, L.A., Frey, F.A., Schmitt, R.A., et al., 1966. Meteoritic, Solar and Terrestrial Rare-Earth Distributions. Physics and Chemistry of the Earth, 7: 167-321. doi: 10.1016/0079-1946(66)90004-8 [6] He, Q.X., Zhang, M.S., 1986. Reef Geology of the Xisha Islands, China. Science Press, Beijing (in Chinese). [7] He, Q.X., Zhang, M.S., 1990. Origin of Neogene Dolomites in Xisha Islands and Their Significance. Marine Geology & Quaternary Geology, 10(2): 45-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199002004.htm [8] Kawabe, I., Toriumi, T., Ohta, A., et al., 1998. Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect. Geochemical Journal, 32: 213-230. doi: 10.2343/geochemj.32.213 [9] Liu, J., Han, C.R., Wu, J.Z., et al., 1998. Geochemical Evidence for the Meteoric Diagenesis in Pleistocene Reef Limestones of Xisha Islands. Acta Sedimentologica Sinica, 16(4): 71-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB804.011.htm [10] Qi, W.T., 2002. Ecologic System Evolution of Organic Reef and Global Environmental Change History. Peking University Press, Beijing (in Chinese). [11] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London, 46. [12] Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 [13] Wang, G.Z., 2001. Reef Sedimentology of the South China Sea. China Ocean Press, Beijing, 200-201(in Chinese). [14] Wang, Y.J., Gou, Y.X., Zhang, B.G., et al., 1996. Studies of Miocene Strata, Biota and Palaeoenvironment from Xi-Chen No. 1 Hole in Xisha Islands. Acta Micropalaeontologica Sinica, 13(3): 215-223(in Chinese with English abstract). http://europepmc.org/abstract/cba/294013 [15] Wang, Z.G., Yu, X.Y., Zhao, Z.H., et al., 1989. Rare Earth Element Geochemistry. Science Press, Beijing, 292-315(in Chinese). [16] Wei, P.S., Liu Q.X., Zhang J.L., et al., 2006. Re-Discussion of Relationship between Reef and Giant Oil-Gas Fields. Acta Petrolei Sinica, 27(2): 38-42(in Chinese with English abstract). [17] Wu, Y.S., Fan, J.S., 2001. Quantitative Calculation of the Magnitude of Global Sea Level Change Based on Reefs in Maokou Period. Science in China(Series D), 31(3): 233-242(in Chinese). [18] Xia, K.Y., Xia, Z.W., Zhao, M.H., et al., 2014. The Geological Basis of the China Historical Sea Lines in South China Sea. Acta Oceanologica Sinica, 36(5): 77-89(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201405009&dbcode=CJFD&year=2014&dflag=pdfdown [19] Xu, S.M., Zhang, X.D., Zhai, S.K., et al., 2007. The Geochemical Behaviors and Environmental Implications of Redox Sensitive Trace Elements in Marine Environment. Marine Geology Letters, 23(3): 11-18(in Chinese). [20] Yang, W.R., Li, X., 1995. Permian Reef Types and Controlling Factors of Reef Formation in South China. Acta Palaeontologica Sinica, 34(1): 67-75(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX199501004.htm [21] Zeng, D.Q., Liu, B.W., Huang, Y.M., 1988. Reefs through Geological Ages in China. Petroleum Industry Press, Beijing, 52-60 (in Chinese). [22] Zhai, S.K., Mi, L.J., Shen, X., et al., 2015. Mineral Compositions and Their Environmental Implications in Reef of Shidao Island, Xisha. Earth Science—Journal of China University of Geosciences, 40(4): 597-605(in Chinese with English abstract). doi: 10.3799/dqkx.2015.047 [23] Zhang, M.S., 1990. Quaternary Reef Stratigraphic Division in Hole Xiyong-1. Marine Geology & Quaternary Geology, 10(2): 57-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199002006.htm [24] Zhu, W.L., Wang, Z.F., Mi, L.J., et al., 2015. Sequence Stratigraphic Framework and Reef Growth Unit of Well Xike-1 from Xisha Islands, South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 677-687(in Chinese with English abstract). doi: 10.3799/dqkx.2015.055 [25] 蔡峰, 许红, 郝先锋, 等, 1996. 西沙—南海北部晚第三纪生物礁的比较沉积学研究. 沉积学报, 14(4): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB604.007.htm [26] 范嘉松, 2005. 世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素. 地学前缘, 12(3): 23-30. doi: 10.3321/j.issn:1005-2321.2005.03.004 [27] 韩春瑞, 孟祥营, 1990. 西沙晚中新世以来礁相地层中有孔虫动物群的分布及其意义. 海洋地质与第四纪地质, 10(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199002007.htm [28] 何起祥, 张明书, 1986. 中国西沙礁相地质. 北京: 科学出版社. [29] 何起祥, 张明书, 1990. 西沙群岛新第三纪白云岩的成因与意义. 海洋地质与第四纪地质, 10(2): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199002004.htm [30] 刘健, 韩春瑞, 吴建政, 等, 1998. 西沙更新世礁炭岩大气淡水成岩的地球化学证据. 沉积学报, 16(4): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB804.011.htm [31] 齐文同, 2002. 生物礁生态系统演化与全球环境变化历史. 北京: 北京大学出版社. [32] 王国忠, 2001. 南海珊瑚礁区沉积学. 北京: 海洋出版社, 200-201. [33] 王玉净, 勾韵娴, 章炳高, 等, 1996. 西沙群岛西琛一井中新世地层、古生物群和古环境研究. 微体古生物学报, 13(3): 215-223. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT603.000.htm [34] 王中刚, 于学元, 赵振华, 等, 1989. 稀土元素地球化学. 北京: 科学出版社, 292-315. [35] 卫平生, 刘全新, 张景廉, 等, 2006. 再论生物礁与大油气田的关系. 石油学报, 27(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200602007.htm [36] 吴亚生, 范嘉松, 2001. 根据生物礁定量计算茅口期全球海平面变化幅度. 中国科学(D辑), 31(3): 233-242. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200103007.htm [37] 夏戡原, 夏综万, 赵明辉, 等, 2014. 我国南海历史性水域线的地质特征. 海洋学报, 36(5): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201405009.htm [38] 许淑梅, 张晓东, 翟世奎, 等, 2007. 海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义. 海洋地质动态, 23(3): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200703001.htm [39] 杨万容, 李迅, 1995. 中国南方二叠纪礁类型及成礁的控制因素. 古生物学报, 34(1): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199501004.htm [40] 曾鼎乾, 刘炳温, 黄蕴明, 1988. 中国各地史时期的生物礁. 北京: 石油工业出版社, 52-60. [41] 翟世奎, 米立军, 沈星, 等, 2015. 西沙石岛生物礁的矿物组成及其环境指示意义. 地球科学——中国地质大学学报, 40(4): 597-605. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201504001.htm [42] 张明书, 1990. 西沙西永1井礁相第四纪地层的划分. 海洋地质与第四纪地质, 10(2): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199002006.htm [43] 朱伟林, 王振峰, 米立军, 等, 2015. 南海西沙西科1井层序地层格架与礁生长单元特征. 地球科学——中国地质大学学报, 40(4): 677-687. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201504009.htm