Middle Paleozoic Flysch Trace Fossils from Western Junggar and Their Palaeoenvironmental Significance
-
摘要: 西准噶尔复理石相遗迹化石主要分布于上泥盆统-下石炭统塔尔巴哈台组以及石炭系的包古图组、太勒古拉组和哈拉阿拉特组中, 典型遗迹属包括Phycosiphon, Nereites, Megagrapton, Glockerichnus, Cochlichnus, Lophoctenium, Gordia, Chondrites, Zoophycos, Scolicia, Thalassinoides.这些遗迹化石构成具有典型深水Nereites遗迹相特征的Phycosiphon-Nereites遗迹化石组合和Megagrapton-Glockerichnus-Cochlichnus遗迹化石组合.包古图组和太勒古拉组属于海底扇中下扇扇缘-盆地平原环境; 哈拉阿拉特组和塔尔巴哈台组则属于海底扇中下扇扇叶环境.西准噶尔复理石相遗迹化石分布与鲍马序列的厚度密切相关, 在毫米-厘米级鲍马序列中, 遗迹化石属种单调且保存较差, 可见单一属的Phycosiphon或Nereites; 而在厘米-分米级鲍马序列中, 可见不同直径大小和形态上具有过渡的Phycosiphon和Nereites, 可能代表同种造迹生物不同个体发育阶段的生物遗迹.海底扇不同亚环境单个鲍马序列的厚度决定了底栖生物是否有足够的时间形成较为成熟的群落(包括一系列幼年和成年个体).Abstract: The flysch trace fossils of western Junggar, Xinjiang, NW China are mainly distributed in the Upper Devonian-Lower Carboniferous Ta'erbahatai Formation and Baogutu, Tailegula and Hala'alate formations of the Carboniferous. Characteristic trace fossils include Phycosiphon, Nereites, Megagrapton, Glockerichnus, Cochlichnus, Lophoctenium, Gordia, Chondrites, Zoophycos, Scolicia, Thalassinoides, forming two characteristic trace fossil assemblages of the Nereites ichnofacies: the Phycosiphon-Nereites and Megagrapton-Glockerichnus-Cochlichnus ichnoassemblages. The Baogutu and Tailegula formations represent the medial-distal submarine fan fringe-basin plain environments, while the Hala'alate and Ta'erbahatai formations are chiefly medial-distal submarine fan lobe deposits. The distribution of flysch trace fossils in western Junggar is closely linked to the thickness of the Bouma sequences. In millimetre to centimetre Bouma sequences, there are only scarce and blur traces of Phycosiphon or Nereites, while in centimetre to decimetre Bouma sequences, Phycosiphon and Nereites of various diametres and transitional morphologies occur, which might be produced by conspecific trace makers in an ontogenetic series. The thickness of a single Bouma sequence in submarine fan related environments determines if there is enough time for a mature benthic fauna to develop (with a series of young and old individuals).
-
Key words:
- trace fossil /
- flysch facies /
- depositional environment /
- Devonian /
- Carboniferous /
- western Junggar /
- palaeoenvironment
-
图 1 研究区大地构造背景
a.西准噶尔及邻区晚泥盆世古板块恢复,改编自Filippova and Bush(2001);b.新疆北部及邻区大地构造分区,改编自Han et al.(2010).(1)阿尔泰岩浆弧;(2)额尔齐斯-斋桑缝合带;(3)扎尔玛-萨吾尔岩浆弧;(4)博什库尔-成吉思岩浆弧;(5)西准噶尔增生杂岩;(6)准噶尔地体;(7)都拉特-北塔山岩浆弧;(8)野马泉岩浆弧;(9)博格达内陆裂谷;(10)北天山增生杂岩;(11)伊犁地体
Fig. 1. Sketches showing the tectonic background of the study area
图 2 研究区地质图及复理石相遗迹化石采样点分布
1.中奥陶统科克沙依组;2.兰多维列-普里道利统谢米斯台组;3.文洛克统沙尔布尔组;4.下泥盆统和布克赛尔组;5.下泥盆统马拉苏组;6.中泥盆统萨吾尔山组;7.中泥盆统库鲁木迪组;8.中泥盆统呼吉尔斯特组;9.中泥盆统巴尔雷克组;10.上泥盆统朱鲁木特组;11.上泥盆统铁列克提组;12.上泥盆统塔克台组;13.上泥盆统-下石炭统塔尔巴哈台组;14.上泥盆统-下石炭统洪古勒楞组;15.下石炭统希贝库拉斯组;16.下石炭统包古图组;17.下石炭统太勒古拉组;18.下石炭统黑山头组;19.下石炭统姜巴斯套组;20.下石炭统那林卡拉组;21.下-上石炭统哈拉阿拉特组;22.上石炭统吉木乃组;23.上石炭统阿腊徳依克赛组;24.上石炭统-下二叠统佳木河组;25.下二叠统卡拉岗组;26.中-上二叠统库吉尔台组;27.中-新生界;28.断层;29.整合接触界线;30.角度不整合接触界线(盆地边缘古生界与中-新生界角度不整合接触关系未表示);31.混杂岩;32.志留-泥盆纪侵入岩;33.早石炭世侵入岩;34.晚石炭世-二叠纪侵入岩;35.地层小区界线;Ⅰ.萨吾尔山地层小区;Ⅱ.沙尔布尔提山地层小区;Ⅲ.玛依力山地层小区;Ⅳ.克拉玛依地层小区;36.复理石相遗迹化石采样点.1~4.塔尔巴哈台组上段;5~6.塔尔巴哈台组下段;7~10.包古图组;11~17.太勒古拉组中段;18.太勒古拉组上段;19~23.哈拉阿拉特组上段
Fig. 2. Simplified geological map of the study area showing the sampling sites of flysch trace fossils
图 3 西准噶尔泥盆-石炭纪复理石相地层岩性与沉积学特征
a.水道相重力流沉积,塔尔巴哈台组,新疆额敏县乌什水;b.沟模,塔尔巴哈台组,新疆额敏县乌什水;c.厘米-分米级浊积岩韵律层,塔尔巴哈台组,新疆和布克赛尔县黑山头;d.毫米-厘米级鲍马序列,包古图组,新疆托里县哈图东南;e.粉-细粒浊积岩中的褐黄色钙质砂岩团块,包古图组,新疆托里县石棉矿;f.厘米-分米级浊积岩韵律层,太勒古拉组中段,新疆克拉玛依市西部;g.毫米-厘米级鲍马序列,可见生物扰动(Nereites纵切面),太勒古拉组中段,新疆托里县哈图东南;h.毫米-厘米级鲍马序列,可见生物扰动(?Phycosiphon斜切面),太勒古拉组中段,新疆托里县哈图东南;i.细粒玻晶屑沉凝灰岩,镜下照片(-),太勒古拉组中段,新疆托里县石棉矿达尔布特断裂以北;j.薄层状浊积岩韵律层,太勒古拉组上段,新疆克拉玛依市白碱滩;k.富泥质半远洋沉积中的放射虫化石,镜下照片(-),太勒古拉组上段,新疆克拉玛依市白碱滩;l.薄层状浊积岩韵律层,哈拉阿拉特组上段,新疆托里县柳树沟;m.植物茎干化石,哈拉阿拉特组,新疆托里县柳树沟;n.厘米-分米级鲍马序列,可见2个完整的厘米级鲍马序列和一个分米级鲍马序列(未见顶),哈拉阿拉特组,新疆托里县石棉矿达尔布特断裂北缘
Fig. 3. Lithological and sedimentological characteristics of the Devonian-Carboniferous flysch deposits in western Junggar
图 4 西准噶尔泥盆-石炭纪复理石相遗迹化石典型形态类型
采样点号与图 2和表 1中的编号一一对应,a~d, g~i, k, l, m, n比例尺为1 cm,e, f, j, o比例尺为2 cm.a.鹿角状的Phycosiphon,可见2类潜穴直径不同的个体,水平层面,塔尔巴哈台组,新疆额敏县乌什水(采样点4);b.Phycosiphon的蹼状构造,水平层面,哈拉阿拉特组,新疆托里县石棉矿(采样点22);c.蛇曲状的Nereites,保存有核部浅色的新月形回填构造和边部深色的扰动晕,水平层面,太勒古拉组中段,新疆托里县火箭牧场(采样点11);d.保存为底生迹的Nereites,可见圆环状分节,太勒古拉组中段,新疆托里县石棉矿(采样点16);e.分枝波状弯曲、分支角为锐角的网状构造?Megagrapton,水平层面,塔尔巴哈台组,新疆和布克赛尔县黑山头(采样点24);f.分枝较平直、分支角近直角的网状构造Megagrapton,水平层面,塔尔巴哈台组,新疆额敏县乌什水(采样点5);g.保存为底生迹的放射状构造Glockerichnus,可见具分支的放射脊从中心点辐射而出,塔尔巴哈台组,新疆和布克赛尔县黑山头(采样点24)(图片龚一鸣,1994a);h.螺旋盘绕的蹼状构造Lophoctenium,水平层面,哈拉阿拉特组,新疆托里县柳树沟(采样点23);i.具有自相交特征的Gordia,水平层面,塔尔巴哈台组,新疆额敏县乌什水(采样点5);j.正弦曲线形潜穴Cochlichnus,水平层面,塔尔巴哈台组,新疆和布克赛尔组县黑山头(采样点24)(图片龚一鸣,1994a);k.较粗短的分支构造Chondrites,水平层面,塔尔巴哈台组,新疆额敏县乌什水(采样点5);l.蹼层呈袋状的蹼状构造Zoophycos,水平层面,塔尔巴哈台组,新疆额敏县乌什水(采样点4);m.不完整Zoophycos蹼层,可见保存较差的小蹼纹,水平层面,哈拉阿拉特组,新疆克拉玛依市乌尔禾(采样点25);n.具深浅交替弧形纹层的?Scolicia纵切面形态,可见浅色纹层上的斜肋纹饰,太勒古拉组上段,新疆克拉玛依市白碱滩(采样点18);o.保存于浊积砂岩底面的Thalassinoides,可见Y形或T形分支以及竖直管的横截面,塔尔巴哈台组,新疆和布克赛尔组县黑山头(采样点24)
Fig. 4. Typical morphologies of the Devonian-Carboniferous flysch trace fossils in western Junggar
图 5 西准噶尔泥盆-石炭纪复理石相的Phycosiphon-Nereites遗迹化石组合及其个体发育序列
a, c, e.化石照片,标本均采自西准噶尔复理石相粉砂质-细砂质浊积岩中;b, d, f.素描图.Phycosiphon和Nereites分别具有一系列过渡直径的个体,主要显示出3个演化阶段:①第1阶段,为潜穴细小的典型Phycosiphon;②第2阶段,为潜穴稍粗的大型Phycosiphon(f)或小型Nereites(b),其形态远离典型的Phycosiphon和Nereites;③第3阶段,为潜穴较粗的典型Nereites,新月形回填构造可见(b)或不可见(d, f)
Fig. 5. The Phycosiphon-Nereites ichnoassemblage in the Devonian-Carboniferous flysch deposits of western Junggar and the reflected ontogenetic series of the trace makers
图 6 西准噶尔泥盆-石炭纪复理石相序列中火山碎屑质海底扇环境的遗迹沉积学模式
vc.极粗砂;c.粗砂;m.中砂;f.细砂;vf.极细砂;cs.粗粉砂;fc.细粉砂.1.海底扇中下扇扇叶近水道;2.海底扇中下扇扇叶;3.海底扇中下扇扇缘;4.盆地平原,局部受浊流影响;5.海底扇中下扇扇缘-盆地平原过渡;火山岛弧近深海盆地,复理石相沉积中富火山灰物质,并常见植物化石、深水遗迹化石和放射虫化石共同保存
Fig. 6. Ichnosedimentological model of the volcaniclastic submarine fan related environments in Devonian-Carboniferous flysch deposits from western Junggar
表 1 西准噶尔晚泥盆世-石炭纪复理石相遗迹化石赋存地层的遗迹沉积学特征
Table 1. Ichnosedimentological characteristics of the Late Devonian to Carboniferous flysch trace fossils bearing strata in western Junggar
地层单元 岩性和沉积特征 沉积环境 遗迹属 化石点* 内生迹 底生迹 上泥盆统-下石炭统塔尔巴哈台组 厘米-分米级浊积岩韵律层、鲍马序列Tb~Te、软沉积变形 海底扇中下扇近水道 Phycosiphon, Nereites, Chondrites, Zoophycos, Planolites, Scolicia, Skolithos, Halopoa, Didymaulichnus, Gordia, Phycodes, Teichichnus, ?Helminthopsis, ?Cosmorhaphe Megagrapton, Glockerichnus, Cochlichnus, Gordia, Planolites, Palaeophycus, Laevicyclus, Thalassinoides, ?Paleodictyon 1~6, 24 下石炭统包古图组 毫米-厘米级浊积岩韵律层 海底扇中下扇扇缘 Phycosiphon,Nereites 7~10 下石炭统太勒古拉组中段 不规则毫米-厘米级粉细砂纹层分布于泥质岩中,整体呈厚-巨厚层状;软沉积变形 海底扇中下扇扇缘-盆地平原过渡 Phycosiphon,Nereites,?Cosmorhaphe ?Paleodictyon, Nereites 11~17 下石炭统太勒古拉组上段 中厚层状富泥质火山碎屑岩、颜色发红、含形态结构完整的放射虫化石;厘米-分米级浊积岩韵律层、鲍马序列Tc~Te 盆地平原,局部受浊流影响 Nereites,?Scolicia 18 下-上石炭统哈拉阿拉特组 厘米-分米级浊积岩韵律层、鲍马序列Tc~Te 海底扇中下扇扇叶 Phycosiphon, Nereites, Zoophycos, Lophoctenium, Teichichnus, ?Chondrites, Imponoglyphus 19~23, 25 注:*化石点1~25笔者均作考察,其中点24(新疆和布克赛尔县黑山头,龚一鸣和刘本培,1993;龚一鸣,1994a)和25(新疆克拉玛依市乌尔禾/乌禾公路剖面,晋慧娟和李育慈,1991;晋慧娟等,2003b)综合了前人研究成果,未标于图 2中. -
[1] Bottjer, D.J., Droser, M.L., Jablonski, D., 1988. Palaeoenvironmental Trends in the History of Trace Fossils. Nature, 333: 252-255. doi: 10.1038/333252a0 [2] Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1999. Lithostratigraphy of Xinjiang Uygur Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese). [3] Callow, R.H.T., McIlroy, D., 2011. Ichnofabrics and Ichnofabric-Forming Trace Fossils in Phanerozoic Turbidites. Bulletin of Canadian Petroleum Geology, 59(2): 103-111. doi: 10.2113/gscpgbull.59.2.103 [4] Callow, R.H.T., McIlroy, D., Kneller, B., et al., 2013. Integrated Ichnological and Sedimentological Analysis of a Late Cretaceous Submarine Channel-Levee System: The Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 41: 277-294. doi: 10.1016/j.marpetgeo.2012.02.001 [5] Chamberlain, C.K., 1971. Morphology and Ethology of Trace Fossils from the Ouachita Mountains, Southeast Oklahoma. Journal of Paleontology, 45(2): 212-246. [6] Choulet, F., Faure, M., Cluzel, D., et al., 2012. From Oblique Accretion to Transpression in the Evolution of the Altaid Collage: New Insights from West Junggar, Northwestern China. Gondwana Research, 21(2-3): 530-547. doi: 10.1016/j.gr.2011.07.015 [7] Cummings, J.P., Hodgson, D.M., 2011. Assessing Controls on the Distribution of Ichnotaxa in Submarine Fan Environments, the Basque Basin, Northern Spain. Sedimentary Geology, 239(3-4): 162-187. doi: 10.1016/j.sedgeo.2011.06.009 [8] Donovan, S.K., Fearnhead, F.E., Clarkson, E.N.K., 2009. The Ichnofossils Gordia Emmons and Chondrites von Sternberg from the Deerhope Formation, North Esk Inlier (Silurian, Llandovery). Scottish Journal of Geology, 45(1): 83-87. doi: 10.1144/0036-9276/01-385 [9] Ekdale, A.A., 1985. Paleoecology of the Marine Endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50(1): 63-81. doi: 10.1016/S0031-0182(85)80006-7 [10] Ekdale, A.A., Bromley, R.G., 1983. Trace Fossils and Ichnofabric in the Kj'lby Gaard Marl, Uppermost Cretaceous, Denmark. Bulletin of the Geological Society of Denmark, 31: 107-119. http://www.researchgate.net/publication/242570403_Trace_fossils_and_ichnofabric_in_the_Kjolby_Gaard_Marl_uppermost_Cretaceous_Denmark [11] Ekdale, A.A., Bromley, R.G., 2003. Paleoethologic Interpretation of Complex Thalassinoides in Shallow-Marine Limestones, Lower Ordovician, Southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4): 221-227. doi: 10.1016/S0031-0182(02)00686-7 [12] Ekdale, A.A., Mason, T.R., 1988. Characteristic Trace-Fossil Associations in Oxygen-Poor Sedimentary Environments. Geology, 16(8): 720-723. doi:10.1130/0091-7613(1988)016<0720:CTFAIO>2.3.CO;2 [13] Filippova, I.B., Bush, V.A., 2001. Middle Paleozoic Subduction Belts: The Leading Factor in the Formation of the Central Asian Fold-and-Thrust Belt. Russian Journal of Earth Sciences, 3(6): 405-426. http://www.researchgate.net/publication/250148394_Middle_Paleozoic_subduction_belts_The_leading_factor_in_the_formation_of_the_Central_Asian_fold-and-thrust_belt [14] Föllmi, K.B., Grimm, K.A., 1990. Doomed Pioneers: Gravity-Flow Deposition and Bioturbation in Marine Oxygen-Deficient Environments. Geology, 18(11): 1069-1072. doi:10.1130/0091-7613(1990)018<1069:DPGFDA>2.3.CO;2 [15] Fu, S., 1991. Funktion, Verhalten und Einteilung Fucoider und Lophocteniider Lebensspuren. Courier Forschungsinstitut Senckenberg, 135: 1-79. http://www.researchgate.net/publication/284665995_Funktion_Verhalten_und_Einteilung_fucoider_und_lophoctenoider_Lebensspuren [16] Fu, S., Werner, F., 2000. Distribution, Ecology and Taphonomy of the Organism Trace, Scolicia, in Northeast Atlantic Deep-Sea Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(3-4): 289-300. doi: 10.1016/S0031-0182(99)00146-7 [17] Gingras, M.K., MacEachern, J.A., Dashtgard, S.E., 2011. Process Ichnology and the Elucidation of Physico-Chemical Stress. Sedimentary Geology, 237(3-4): 115-134. doi: 10.1016/j.sedgeo.2011.02.006 [18] Gong, Y.M., 1994a. Topoichnological Study of Devonian Trace Fossils in Northern Xinjiang, Northwest China. Acta Palaeontologica Sinica, 33(4): 472-498 (in Chinese). http://europepmc.org/abstract/CBA/266438 [19] Gong, Y.M., 1994b. Association Relationships among the Devonian Trace Fossils in Northern Xinjiang and Their Palaeoenvironmental and Palaeoecological Significances. Geoscience, 8(2): 154-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ402.004.htm [20] Gong, Y.M., Liu, B.P., 1993. Plate-Tectonic Sedimentology of the Devonian Volcanic Sedimentary Successions in Northern Xinjiang, Northwestern China. China University of Geosciences Press, Wuhan, 15-29 (in Chinese with English summary). [21] Gong, Y.M., Liu, B.P., Xiao, S.Y., et al., 1997. Marine Devonian Ichnofabrics of China and Their Relations to Sedimentary Sequences. Earth Science—Journal of China University of Geosciences, 22(2): 123-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX702.002.htm [22] Griffis, R.B., Suchanek, T.H., 1991. A Model of Burrow Architecture and Trophic Modes in Thalassinidean Shrimp (Decapoda: Thalassinidea). Marine Ecology Progress Series, 79: 171-183. doi: 10.3354/meps079171 [23] Han, B.F., Guo, Z.J., He, G.Q., 2010. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract). http://www.researchgate.net/publication/269710578_Timing_of_major_suture_zones_in_North_Xinjiang_China_Constraints_from_stitching_plutons [24] Han, B.F., Guo, Z.J., Zhang, Z.C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. doi: 10.1130/B26491.1 [25] Hntzschel, W., 1975. Part W. Miscellanea, Supplement 1, Trace Fossils and Problematica (Second Edition). In: Teichert, C., ed., Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, W1-W269. [26] Heard, T.G., Pickering, K.T., 2008. Trace Fossils as Diagnostic Indicators of Deep-Marine Environments, Middle Eocene Ainsa-Jaca Basin, Spanish Pyrenees. Sedimentology, 55(4): 809-844. doi: 10.1111/j.1365-3091.2007.00922.x [27] Jin, H.J., Li, Y.C., 1991. Ichnofacies in Late Paleozoic Deep-Water Slope Sediment of Junggar Basin and Its Environmental Analysis. Science in China (Series B), 34(11): 1396-1408. http://www.cnki.com.cn/Article/CJFDTotal-JBXG199111012.htm [28] Jin, H.J., Li, Y.C., 1999. Application of the Ancient Trace Fossil Group in Deep Sea to the Sedimentology. Chinese Science Bulletin, 44(14): 1264-1272. doi: 10.1007/BF02885841 [29] Jin, H.J., Li, Y.C., Fang, G.Q., 2003a. Oxygen-Dependent Ichnocoenose in Paleo-Pelagic Substrates. Acta Sedimentologica Sinica, 21(1): 75-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200301011.htm [30] Jin, H.J., Li, Y.C., Fang, G.Q., 2003b. Paleo-Abysmal Deposits and Ichnocoenoses in China. Science Press, Beijing, 93-131 (in Chinese). [31] Knaust, D., 2009. Characterisation of a Campanian Deep-Sea Fan System in the Norwegian Sea by Means of Ichnofabrics. Marine and Petroleum Geology, 26(7): 1199-1211. doi: 10.1016/j.marpetgeo.2008.09.009 [32] Książkiewicz, M., 1977. Trace Fossils in the Flysch of The Polish Carpathians. Palaeontologia Polonica, (36): 1-208. http://www.mendeley.com/research/trace-fossils-flysch-polish-carpathians/ [33] Li, J.Y., Jin, H.J., 1989. The Trace Fossils Discovery and Its Environment Significance in Carboniferous Turbidite Series, the Northwest Border of Zhunga er Basin, Xinjiang. Scientia Geologica Sinica, 1: 9-15 (in Chinese with English abstract). http://www.researchgate.net/publication/316929222_The_trace_fossils_discovery_and_it's_environment_significance_in_Carboniferous_turbidite_series_the_northwest_border_of_Zhunga'er_Basin_Xinjiang [34] Ma, B.L., 1987. The Stratum and Sedimentary Environments of Halaalate Mountain Area, Xinjiang. Acta Sedimentologica Sinica, 5(4): 66-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198704006.htm [35] MacEachern, J.A., Pemberton, S.G., Gingras, M.K., et al., 2007. The Ichnofacies Paradigm: A Fifty-Year Retrospective. In: Miller Ⅲ, W., ed., Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 52-77. doi: 10.1016/B978-044452949-7/50130-3 [36] Marintsch, E.J., Finks, R.M., 1982. Lower Devonian Ichnofacies at Highland Mills, New York and Their Gradual Replacement across Environmental Gradients. Journal of Paleontology, 56(5): 1050-1078. [37] Miller Ⅲ, W., 1991. Paleoecology of Graphoglyptids. Ichnos, 1: 305-312. doi: 10.1080/10420949109386365 [38] Myrow, P.M., 1995. Thalassinoides and the Enigma of Early Paleozoic Open-Framework Burrow Systems. Palaios, 10(1): 58-74. doi: 10.2307/3515007 [39] Olivero, D., 2003. Early Jurassic to Late Cretaceous Evolution of Zoophycos in the French Subalpine Basin (Southeastern France). Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4): 59-78. doi: 10.1016/S0031-0182(02)00679-X [40] Olivero, D., Gaillard, C., 2007. A Constructional Model for Zoophycos. In: Miller Ⅲ, W., ed., Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 466-477. [41] Pickering, K., Stow, D., Watson, M., et al., 1986. Deep-Water Facies, Processes and Models: A Review and Classification Scheme for Modern and Ancient Sediments. Earth-Science Reviews, 23(2): 75-174. doi: 10.1016/0012-8252(86)90001-2 [42] Pickering, K.T., Koren, T.N., Lytochkin, V.N., et al., 2008. Silurian-Devonian Active-Margin Deep-Marine Systems and Palaeogeography, Alai Range, Southern Tien Shan, Central Asia. Journal of the Geological Society, 165(1): 189-210. doi: 10.1144/0016-76492006-082 [43] Plaziat, J.C., Mahmoudi, M., 1988. Trace Fossils Attributed to Burrowing Echinoids: A Revision Including New Ichnogenus and Ichnospecies. Geobios, 21(2): 209-233. doi: 10.1016/S0016-6995(88)80019-6 [44] Seilacher, A., 1962. Paleontological Studies on Turbidite Sedimentation and Erosion. The Journal of Geology, 70(2): 227-234. doi: 10.1086/626811 [45] Seilacher, A., 1967. Bathymetry of Trace Fossils. Marine Geology, 5(5-6): 413-428. doi: 10.1016/0025-3227(67)90051-5 [46] Seilacher, A., 1974. Flysch Trace Fossils: Evolution of Behavioural Diversity in the Deep-Sea. Neues Jahrbuch für Geologie und Pal ontologie, Monatshefte, 4: 233-245. http://www.researchgate.net/publication/284308936_Flysch_trace_fossils_Evolution_of_behavioural_diversity_in_the_deep-sea [47] Seilacher, A., 1977. Pattern Analysis of Paleodictyon and Related Trace Fossils. In: Crimes, T.P., Harper, J.C., eds., Trace Fossils 2. Geological Journal, Special Issue, 9: 289-334. [48] Seilacher, A., 1990. Aberrations in Bivalve Evolution Related to Photo- and Chemosymbiosis. Historical Biology, 3(4): 289-311. doi: 10.1080/08912969009386528 [49] Seilacher, A., 2007. Trace Fossil Analysis. Springer, Berlin Heidelberg. [50] Smith, A.B., Crimes, T.P., 1983. Trace Fossils Formed by Heart Urchins—A Study of Scolicia and Related Traces. Lethaia, 16(1): 79-92. doi: 10.1111/j.1502-3931.1983.tb02001.x [51] Taylor, A., Goldring, R., Gowland, S., 2003. Analysis and Application of Ichnofabrics. Earth-Science Reviews, 60(3-4): 227-259. doi: 10.1016/S0012-8252(02)00105-8 [52] Uchman, A., 1995. Taxonomy and Palaeoecology of Flysch Trace Fossils: The Marnoso-Arenacea Formation and Associated Facies (Miocene, Northern Apennines, Italy). Beringeria, 15: 3-115, 16 plates. http://www.researchgate.net/publication/305114198_Taxonomy_and_palaeoecology_of_flysch_trace_fossils_The_Marnoso-arenacea_Formation_and_associated_facies_Miocene_Northern_Apennines_Italy [53] Uchman, A., 1998. Taxonomy and Ethology of Flysch Trace Fossils: Revision of the Marian Książkiewicz Collection and Studies of Complementary Material. Annales Societatis Geologorum Poloniae, 68(2-3): 105-218. http://www.researchgate.net/publication/303284888_Taxonomy_and_ethology_of_flysch_trace_fossils_a_revision_of_the_Marian_Ksiazkiewicz_collection_and_studies_of_complementary_material [54] Uchman, A., 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria, 25: 67-173. http://www.researchgate.net/publication/305114199_Ichnology_of_the_Rhenodanubian_Flysch_Lower_Cretaceous-Eocene_in_Austria_and_Germany [55] Uchman, A., 2001. Eocene Flysch Trace Fossils from the Hecho Group of the Pyrenees, Northern Spain. Beringeria, 28: 3-41. http://www.researchgate.net/profile/Alfred_Uchman/publication/284685578_Eocene_flysch_trace_fossils_from_the_Hecho_Group_of_the_Pyrenees_northern_Spain/links/56b8c10808aee4de7a9c5f8e.pdf [56] Uchman, A., 2003. Trends in Diversity, Frequency and Complexity of Graphoglyptid Trace Fossils: Evolutionary and Palaeoenvironmental Aspects. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1-4): 123-142. doi: 10.1016/S0031-0182(02)00682-X [57] Uchman, A., 2004. Phanerozoic History of Deep-Sea Trace Fossils. Geological Society, London, Special Publications, 228: 125-139. doi: 10.1144/GSL.SP.2004.228.01.07 [58] Uchman, A., 2007a. Deep-Sea Ichnology: Development of Major Concepts. In: Miller Ⅲ, W., ed., Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 248-267. doi: 10.1016/B978-044452949-7/50141-8 [59] Uchman, A., 2007b. Deep-Sea Trace Fossils from the Mixed Carbonate-Siliciclastic Flysch of the Monte Antola Formation (Late Campanian-Maastrichtian), North Apennines, Italy. Cretaceous Research, 28(6): 980-1004. doi: 10.1016/j.cretres.2007.01.005 [60] Uchman, A., 2009. The Ophiomorpha rudis Ichnosubfacies of the Nereites Ichnofacies: Characteristics and Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1-4): 107-119. doi: 10.1016/j.palaeo.2009.03.003 [61] Wang, Y.J., Jing, Y.G., Jiang, N.Y., 1987. On the Age and Paleoenvironmental Features of the Hala alate Formation. Journal of Stratigraphy, 11(1): 53-57 (in Chinese with English abstract). http://www.researchgate.net/publication/287182828_On_the_Age_and_Paleoenvironmental_Features_of_the_Hala'alate_Formation [62] Warcho, M., Leszczyński, S., 2009. Trace Fossils from Silurian and Devonian Turbidites of the Chauvay Area, Southern Tien Shan, Kyrgyzstan. Annales Societatis Geologorum Poloniae, 79(1): 1-11. http://www.oalib.com/paper/2555996 [63] Wetzel, A., 1984. Bioturbation in Deep-Sea Fine-Grained Sediments: Influence of Sediment Texture, Turbidite Frequency and Rates of Environmental Change. Geological Society, London, Special Publications, 15: 595-608. doi: 10.1144/GSL.SP.1984.015.01.37 [64] Wetzel, A., 2002. Modern Nereites in the South China Sea—Ecological Association with Redox Conditions in the Sediment. Palaios, 17(5): 507-515. doi:10.1669/0883-1351(2002)017<0507:MNITSC>2.0.CO;2 [65] Wetzel, A., Bromley, R.G., 1994. Phycosiphon incertum Revisited: Anconichnus horizontalis is Its Junior Subjective Synonym. Journal of Paleontology, 68(6): 1396-1402. doi: 10.1017/S0022336000034363 [66] Wetzel, A., Uchman, A., 1998. Deep-Sea Benthic Food Content Recorded by Ichnofabrics: A Conceptual Model Based on Observations from Paleogene Flysch, Carpathians, Poland. Palaios, 13(6): 533-546. doi:10.1043/0883-1351(1998)013<0533:DBFCRB>2.0.CO;2 [67] Wetzel, A., Uchman, A., 2001. Sequential Colonization of Muddy Turbidites in the Eocene Belove a Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(1-2): 171-186. doi: 10.1016/S0031-0182(00)00254-6 [68] Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. doi: 10.1144/0016-76492006-022 [69] Yang, S.P., Zhang, J.P., Yang, M.F., 2004. Trace Fossils of China. Science Press, Beijing (in Chinese with English description of selected ichnofossils). [70] Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., et al., 1990. Geology of the USSR: A Plate-Tectonic Synthesis, Geodynamic Series, Volume 21. American Geophysical Union, Washington, 55-72. doi: 10.1029/GD021 [71] Zong, R.W., Fan, R.Y., Gong, Y.M., 2015. Advances in the Research on Carboniferous Deep-Water Marine Deposits in Western Junggar, Northwestern China. Geological Journal, 50(2): 111-121. doi: 10.1002/gj.2532 [72] Zong, R.W., Fan, R.Y., Zhao, L., et al., 2014a. Discovery of Early Carboniferous Plant and Trace Fossils from the Ta erbahatai Formation in Northwestern Junggar and Its Palaeogeographical Significance. Journal of Palaeogeography, 16(3): 319-334 (in Chinese with English abstract). doi: 10.7605/gdlxb.2014.03.028 [73] Zong, R.W., Gong, Y.M., Wang, G.C., 2014b. Carboniferous Stratal Sequence and Its Palaeogeographical Evolution in Southern Western Junggar, NW China. Earth Science Frontiers, 21(2): 216-233 (in Chinese with English abstract). doi: 10.13745/j.esf.2014.02.016 [74] 新疆维吾尔自治区地质矿产局, 1999. 新疆维吾尔自治区岩石地层. 武汉: 中国地质大学出版社. [75] 龚一鸣, 1994a. 新疆北部泥盆系遗迹化石的拓扑遗迹学研究. 古生物学报, 33(4): 472-498. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199404006.htm [76] 龚一鸣, 1994b. 新疆北部泥盆系遗迹化石共生组合关系及其古环境和古生态意义. 现代地质, 8(2): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ402.004.htm [77] 龚一鸣, 刘本培, 1993. 新疆北部泥盆纪火山沉积岩系的板块沉积学研究. 武汉: 中国地质大学出版社, 15-29. [78] 龚一鸣, 刘本培, 肖诗宇, 等, 1997. 中国海相泥盆纪遗迹组构及其与沉积层序的关系. 地球科学——中国地质大学学报, 22(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX702.002.htm [79] 韩宝福, 郭召杰, 何国琦, 2010. "钉合岩体"与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233-2246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008002.htm [80] 晋慧娟, 李育慈, 1991. 准噶尔盆地晚古生代深水斜坡沉积中的遗迹相及其环境分析. 中国科学(B辑), 4: 408-415. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199104009.htm [81] 晋慧娟, 李育慈, 1999. 古代深海遗迹化石群落在沉积学中的应用. 科学通报, 44(2): 123-130. doi: 10.3321/j.issn:0023-074X.1999.02.002 [82] 晋慧娟, 李育慈, 方国庆, 2003a. 古代深海底质氧控的遗迹化石群落. 沉积学报, 21(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200301011.htm [83] 晋慧娟, 李育慈, 方国庆, 2003b. 中国古代深海沉积和遗迹化石群落. 北京: 科学出版社, 93-131. [84] 李菊英, 晋慧娟, 1989. 新疆准噶尔盆地西北缘石炭纪浊积岩系中遗迹化石的发现及其意义. 地质科学, (1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198901001.htm [85] 马宝林, 1987. 新疆哈拉阿拉特山地区的地层和沉积环境. 沉积学报, 5(4): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198704006.htm [86] 王玉净, 金玉玕, 江纳言, 1987. 论哈拉阿拉特组的时代及古环境特征. 地层学杂志, 11(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198701005.htm [87] 杨式溥, 张建平, 杨美芳, 2004. 中国遗迹化石. 北京: 科学出版社. [88] 纵瑞文, 范若颖, 赵龙, 等, 2014a. 准噶尔西北部塔尔巴哈台组早石炭世植物和遗迹化石的发现及其古地理意义. 古地理学报, 16(3): 319-334. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201403004.htm [89] 纵瑞文, 龚一鸣, 王国灿, 2014b. 西准噶尔南部石炭纪地层层序及古地理演化. 地学前缘, 21(2): 216-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402018.htm