Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar
-
摘要: 西准噶尔谢米斯台花岗岩研究程度偏低, 运用锆石LA-ICP-MS U-Pb年代学、地球化学及锆石Lu-Hf同位素方法研究西准谢米斯台西段地区花岗岩, 结果表明: 谢米斯台岩体(427.6±2.3 Ma)和哈勒盖特希岩体(428.6±2.5 Ma)均形成于中志留世; 谢米斯台碱长花岗岩地球化学特征类似于Ⅰ型花岗岩, 哈勒盖特希碱长花岗岩地球化学特征类似于A型花岗岩; 锆石Hf同位素组成较均一, εHf(t)=12.4~14.5, 二阶段模式年龄tDM2变化范围在497~603 Ma之间, Ⅰ型花岗岩和A2型花岗岩可能形成于后碰撞阶段的挤压-伸展转变期, 是中志留世额尔齐斯-斋桑洋壳向南俯冲至波谢库尔-成吉斯火山弧底部, 俯冲板片与岛弧底部岩石圈之间剪切带的物质发生变形、变质及部分熔融作用, 使得由亏损地幔形成不久的年轻地壳(由洋壳和岛弧组成)发生部分熔融形成的长英质岩浆经进一步分离结晶作用形成分异Ⅰ型花岗岩和高温、缺水A2型花岗岩, A2型花岗岩较Ⅰ型花岗岩分离结晶程度高.
-
关键词:
- 锆石LA-ICP-MS U-Pb年龄 /
- 谢米斯台西段 /
- Hf同位素 /
- A型花岗岩 /
- 地球化学
Abstract: LA-ICP-MS U-Pb zircon age, geochemistry and Lu-Hf isotopic data for Xiemisitai and Halegaitexi granitic plutons in the western Junggar are presented in this paper, aiming to determine their forming ages, source regions and tectonic settings. LA-ICP-MS zircon yields 427.6±2.3 Ma for Xiemisitai alkali feldspar granites and 428.6±2.5 Ma for Halegaitexi alkali feldspar granites, respectively. Xiemisitai alkali feldspar granites are characterized as the Ⅰ-type granite, while Halegaitexi alkali feldspar granites have geochemical characteristics similar to the A-type granite. Zircon Lu-Hf isotopic compositions indicate that εHf(t)=12.4-14.5, two-stage model ages (tDM2) range from 497 to 603 Ma. The petrogenesis of Ⅰ-type and A-type granites were results of different evolutive phases of the same source magma in the compressible to extendable period of the post-collisional phase, which may be derived as follows. The southward subductional Irtysh-Zaysan Oceanic crust subductioned to the asthenospheric mantle which is the bottom of Boshchekul-Chingiz volcanic arc, resulted in the asthenospheric mafic magma underplating the lower crust. Then, the lower juvenile basaltic crust derived from the depleted mantle underwent different degrees of partial melting and fractional crystallization to a certain extent to generate the Ⅰ-type and A2-type granites.-
Key words:
- LA-ICP-MS zircon U-Pb age /
- western section of Xiemisitai /
- Hf isotope /
- A-type granite /
- geochemistry
-
图 1 新疆西准噶尔地区地质图
图 1改自申萍等(2010)、Shen et al.(2012).年龄1据Chen et al.(2010);年龄2据Shen et al.(2012);年龄3据张元元和郭召杰(2010)
Fig. 1. Geological map of western Junggar Region, Xinjiang
图 7 谢米斯台西段花岗岩SiO2-AR关系和(a)铝饱和指数图解(b)
a底图据肖庆辉等(2002)
Fig. 7. The relation of SiO2-AR (a) and Al-saturation index diagram (b) of granites in west part of Xiemisitai Mountain
图 8 谢米斯台西段花岗岩稀土元素配分型式图解(a)与微量元素配分型式图解(b)
标准化的球粒陨石REE含量引自Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE diagram (a) and primitive mantle-normalized trace element diagram (b) of granites in west part of Xiemisitai Mountain
图 9 Rb/Ba-(Zr+Nb+Ce+Y)、(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)图解和A1-A2型花岗岩图解
图a, b据Whalen et al.(1987);图c据Eby(1992).A-A.A-A型花岗岩;FG.M+I+S型分异花岗岩;OGT.未分异M+I+S型花岗岩;S.分异的S型花岗岩;I.分异的Ⅰ型花岗岩;A1.A1型花岗岩;A2.A2型花岗岩
Fig. 9. Rb/Ba-(Zr+Nb+Ce+Y), (Na2O+K2O)/CaO-(Zr+Nb+Ce+Y) diagrams and distinguish diagrams of A1-A2 granites
图 10 Rb-(Y+Nb)构造判别
ORG.大洋脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;post-COLG.后碰撞花岗岩;底图据Pearce et al.(1984)
Fig. 10. Rb-(Y+Nb) diagram
表 1 谢米斯台西段花岗岩锆石LA-ICP-MS U-Pb测年数据
Table 1. Zircon LA-ICP-MS U-Pb dating data of granites in west part of Xiemisitai Mountain
分析点 232Th(10-6) 238U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 哈勒盖特希碱长花岗岩 N1825-1-01 1 147 1 342 0.9 0.074 9 0.003 1 0.867 3 0.033 3 0.083 5 0.000 9 1 065.7 82.6 634.1 18.1 517.2 5.5 N1825-1-02 3 057 3 155 1.0 0.072 6 0.002 1 0.696 3 0.020 3 0.068 5 0.000 7 1 003.4 58.8 536.6 12.2 427.3 4.1 N1825-1-03 3 332 2 535 1.3 0.062 8 0.001 9 0.682 1 0.020 3 0.077 9 0.000 8 701.9 64.8 528.0 12.3 483.5 4.7 N1825-1-04 2 229 1 849 1.2 0.055 3 0.002 1 0.527 1 0.018 8 0.068 7 0.000 9 433.4 85.2 429.9 12.5 428.6 5.7 N1825-1-05 3 681 2 646 1.4 0.055 8 0.001 8 0.536 1 0.017 0 0.068 8 0.000 8 455.6 74.1 435.8 11.2 429.1 4.9 N1825-1-06 2 334 1 878 1.2 0.059 9 0.002 2 0.571 9 0.020 7 0.068 4 0.000 8 611.1 79.6 459.2 13.4 426.2 4.8 N1825-1-07 1 625 1 320 1.2 0.057 9 0.002 5 0.549 3 0.022 0 0.068 8 0.000 9 524.1 92.4 444.5 14.5 429.1 5.4 N1825-1-08 2 727 2 371 1.2 0.056 4 0.001 8 0.536 4 0.016 9 0.068 5 0.000 7 477.8 72.2 436.1 11.2 427.1 4.1 N1825-1-09 605.0 753.0 0.8 0.075 6 0.003 8 0.728 1 0.038 5 0.069 0 0.001 0 1 084.9 100.0 555.5 22.6 429.9 5.8 N1825-1-10 4 645 2 878 1.6 0.055 3 0.001 8 0.528 0 0.017 0 0.068 9 0.000 8 433.4 74.1 430.5 11.3 429.4 4.8 N1825-1-11 3 121 1 828 1.7 0.071 9 0.002 5 0.687 9 0.025 0 0.068 8 0.000 9 983.3 72.2 531.5 15.1 429.0 5.3 N1825-1-12 2 604 2 657 1.0 0.062 6 0.002 4 0.596 3 0.021 5 0.069 0 0.001 0 694.5 80.4 474.9 13.7 430.1 6.0 N1825-1-13 2 867 2 160 1.3 0.068 4 0.002 7 0.661 4 0.027 1 0.069 4 0.001 0 879.6 84.3 515.4 16.5 432.7 6.0 N1825-1-14 965.0 1 033 0.9 0.057 4 0.003 7 0.546 5 0.035 9 0.068 7 0.001 3 505.6 137.9 442.7 23.5 428.1 8.1 N1825-1-15 434.0 651.0 0.7 0.062 5 0.003 8 0.588 6 0.033 7 0.068 6 0.001 1 700.0 129.6 470.0 21.6 427.8 6.9 N1825-1-16 888.0 1 044 0.9 0.062 7 0.003 1 0.605 0 0.031 0 0.069 1 0.001 1 698.2 304.6 480.4 19.6 430.7 6.8 N1825-1-17 713.0 1 008 0.7 0.056 9 0.002 2 0.544 6 0.020 7 0.068 9 0.000 9 487.1 87.0 441.4 13.6 429.6 5.5 N1825-1-18 1 865 1 701 1.1 0.058 9 0.002 2 0.564 1 0.020 9 0.068 7 0.001 0 561.1 81.5 454.2 13.6 428.5 5.9 N1825-1-19 1 077 1 309 0.8 0.053 4 0.002 0 0.510 7 0.019 1 0.068 3 0.000 9 346.4 85.2 418.9 12.8 426.1 5.4 N1825-1-20 3 945 6 786 0.6 0.068 4 0.003 0 0.660 7 0.030 0 0.068 8 0.001 3 879.6 90.7 515.1 18.3 428.7 8.0 谢米斯台碱长花岗岩 N4814-2-1 1 642 1 594 1.0 0.071 4 0.002 3 0.562 9 0.018 2 0.058 9 0.001 4 968.5 66.7 453.4 11.8 369.0 8.8 N4814-2-2 4 072 3 928 1.0 0.229 2 0.005 9 1.502 9 0.035 9 0.047 7 0.000 6 3 046.0 40.6 931.6 14.6 300.2 3.8 N4814-2-3 342 412 0.8 0.057 4 0.003 6 0.536 3 0.031 9 0.068 6 0.001 0 505.6 138.9 436.0 21.1 427.8 6.2 N4814-2-4 1 261 1 188 1.1 0.056 9 0.002 3 0.542 4 0.022 0 0.068 6 0.000 8 500.0 88.9 440.0 14.5 427.7 4.6 N4814-2-5 495 536 0.9 0.068 7 0.004 6 0.647 3 0.039 9 0.068 6 0.001 2 900.0 143.5 506.8 24.6 427.5 7.5 N4814-2-6 1 368 1 412 1.0 0.089 5 0.003 5 0.849 4 0.033 0 0.068 6 0.001 0 1 416.7 74.5 624.3 18.1 427.7 6.2 N4814-2-7 925 1 134 0.8 0.060 7 0.002 1 0.662 8 0.021 8 0.079 1 0.000 9 631.5 75.9 516.3 13.3 490.8 5.5 N4814-2-8 1 298 1 406 0.9 0.085 8 0.002 9 0.817 7 0.027 4 0.068 5 0.000 8 1 400.0 60.2 606.8 15.3 427.3 4.9 N4814-2-9 381 471 0.8 0.064 1 0.003 8 0.601 2 0.034 6 0.068 4 0.001 1 746.3 124.1 478.0 22.0 426.3 6.4 N4814-2-10 332 434 0.8 0.062 6 0.003 5 0.665 5 0.037 3 0.076 6 0.001 3 694.5 120.4 517.9 22.8 476.1 8.0 N4814-2-11 1 050 1 030 1.0 0.063 1 0.003 1 0.591 6 0.028 0 0.067 9 0.000 9 722.2 101.7 471.9 17.9 423.4 5.7 N4814-2-12 533 724 0.7 0.053 0 0.003 6 0.499 0 0.029 2 0.068 8 0.001 3 331.5 151.8 411.0 19.8 429.2 8.1 N4814-2-13 2 319 3 075 0.8 0.125 6 0.005 0 0.959 3 0.030 8 0.056 9 0.001 0 2 036.7 70.4 682.9 16.0 356.9 5.8 N4814-2-14 936 1 113 0.8 0.131 6 0.008 4 1.245 5 0.070 0 0.069 0 0.001 3 2 120.4 112.3 821.4 31.7 430.0 8.1 N4814-2-15 1 824 1 662 1.1 0.102 4 0.004 0 0.962 3 0.035 6 0.068 4 0.001 0 1 677.8 72.4 684.5 18.4 426.7 5.9 N4814-2-16 961 997 1.0 0.114 8 0.004 4 1.114 5 0.042 4 0.069 9 0.000 9 1 877.5 69.9 760.3 20.4 435.5 5.7 N4814-2-17 868 1 177 0.7 0.085 7 0.003 6 0.744 0 0.033 5 0.061 8 0.000 7 1 331.8 80.1 564.7 19.5 386.8 4.4 N4814-2-18 321 455 0.7 0.056 5 0.003 9 0.540 5 0.037 6 0.069 0 0.001 4 472.3 149.1 438.8 24.8 430.1 8.3 N4814-2-19 448 532 0.8 0.058 7 0.003 7 0.554 2 0.032 8 0.069 0 0.001 2 553.7 138.9 447.7 21.4 430.3 7.5 N4814-2-20 477 512 0.9 0.058 2 0.003 0 0.558 0 0.029 4 0.069 0 0.001 0 600.0 119.4 450.2 19.2 430.0 6.0 表 2 谢米斯台西段花岗岩锆石Lu-Hf同位素分析结果
Table 2. Zircon Lu-Hf isotopic analysis results of granites in west part of Xiemisitai Mountain
测点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ 年龄(Ma) εHf(0) 1σ εHf(t) 1σ tDM1(Ma) tDM2(Ma) fLu/Hf 哈勒盖特希碱长花岗岩 N1825-1-6 0.282 889 0.000 010 0.001 492 0.000 003 0.047 059 0.000 303 426.2 4.2 0.6 13.5 0.7 521 550 -0.96 N1825-1-7 0.282 878 0.000 011 0.002 162 0.000 059 0.074 503 0.001 959 429.1 3.7 0.6 12.7 0.7 547 587 -0.93 N1825-1-9 0.282 922 0.000 010 0.002 219 0.000 078 0.070 719 0.002 474 429.9 5.3 0.6 14.5 0.7 483 497 -0.93 N1825-1-11 0.282 904 0.000 011 0.001 585 0.000 018 0.054 474 0.000 824 429.0 4.7 0.6 13.7 0.7 500 526 -0.95 N1825-1-12 0.282 920 0.000 014 0.002 200 0.000 095 0.067 869 0.002 120 430.1 5.2 0.7 14.4 0.8 486 501 -0.93 N1825-1-14 0.282 912 0.000 013 0.002 216 0.000 074 0.065 818 0.001 258 428.1 4.9 0.7 14.0 0.7 498 519 -0.93 谢米斯台碱长花岗岩 N4814-2-14 0.282 868 0.000 009 0.002 012 0.000 019 0.066 244 0.001 039 430.0 3.4 0.6 12.4 0.6 559 603 -0.94 N4814-2-11 0.282 917 0.000 013 0.001 920 0.000 059 0.064 961 0.001 309 423.4 5.1 0.7 14.2 0.7 486 504 -0.94 N4814-2-6 0.282 879 0.000 011 0.001 891 0.000 051 0.067 577 0.002 224 427.7 3.8 0.6 12.9 0.7 541 578 -0.94 N4814-2-5 0.282 884 0.000 014 0.002 040 0.000 090 0.062 693 0.002 882 427.5 4.0 0.7 13.0 0.8 536 571 -0.94 N4814-2-3 0.282 913 0.000 011 0.002 424 0.000 065 0.087 726 0.002 421 427.8 5.0 0.6 13.9 0.7 500 522 -0.93 N4814-2-8 0.282 907 0.000 010 0.002 129 0.000 018 0.077 695 0.000 617 427.3 4.8 0.6 13.9 0.7 505 527 -0.94 表 3 谢米斯台西段碱长花岗岩主量元素(%)、微量(10-6)和稀土元素(10-6)分析结果
Table 3. Major and trace element contents of alkalic granites in west part of Xiemisitai Mountain
样品号 H4814-2 H2380-1 H2380-5 H2910-1 样品号 H4814-2 H2380-1 H2380-5 H2910-1 SiO2 72.32 75.64 74.92 75.02 Yb 2.35 8.04 7.28 7.14 TiO2 0.32 0.22 0.22 0.21 Lu 0.36 1.21 1.13 1.07 Al2O3 13.99 12.04 12.41 11.57 Y 20.40 65.60 62.40 61.80 Fe2O3 1.13 1.56 1.34 1.98 Cr 9.38 12.30 11.30 9.00 FeO 0.72 1.15 1.07 0.67 Co 3.06 1.32 0.87 1.87 MnO 0.08 0.08 0.02 0.05 Li 4.43 11.10 8.01 5.70 MgO 0.49 0.16 0.25 0.21 Rb 148.00 148.00 106.00 128.00 CaO 0.85 0.12 0.01 0.65 Nb 11.90 28.90 23.80 25.40 Na2O 3.77 3.56 4.59 3.54 Cs 1.79 1.34 1.15 1.66 K2O 5.19 4.71 4.28 4.83 Hf 5.93 12.80 11.20 12.50 P2O5 0.09 0.02 0.02 0.02 Zr 178.00 561.00 455.00 467.00 H2O+ 0.83 0.61 0.71 0.56 Ta 1.12 1.95 1.57 1.90 CO2 0.03 0.03 0.03 0.57 Pb 15.30 9.15 8.72 15.10 Lost 0.77 0.53 0.68 0.87 Th 15.60 14.70 11.30 12.10 Total 100.58 100.43 100.55 100.75 U 1.38 3.78 3.00 3.48 A/CNK 1.05 1.08 1.02 0.95 Sc 6.35 4.94 5.46 3.66 A/NK 1.18 1.10 1.02 1.05 Ba 778.00 71.90 73.50 104.00 Mg# 42.00 13.00 21.00 19.00 Ni 1.98 2.76 2.53 3.13 La 28.10 61.80 53.30 46.40 Sr 157.00 24.20 17.40 20.60 Ce 50.50 120.00 99.40 96.90 V 18.40 8.45 5.14 7.11 Pr 6.30 16.40 13.50 12.50 ΣREE 146.92 383.73 328.85 314.67 Nd 22.50 60.90 50.40 47.40 LREE 112.82 272.42 227.18 213.83 Sm 4.42 12.80 10.30 10.40 HREE 34.10 111.31 101.67 100.84 Eu 0.970 0.320 0.301 0.320 LREE/HREE 3.31 2.45 2.23 2.12 Gd 3.85 10.60 8.77 8.55 La/Sm 6.36 4.81 5.17 4.47 Tb 0.657 2.240 1.780 1.900 Sr/Y 7.68 0.37 0.28 0.33 Dy 3.26 11.90 10.20 10.50 Rb/Sr 0.95 6.10 6.11 6.23 Ho 0.734 2.700 2.270 2.320 (La/Yb)N 8.58 5.51 5.25 4.66 Er 2.09 7.70 6.73 6.51 δEu 0.71 0.08 0.09 0.10 Tm 0.379 1.290 1.150 1.130 AR 4.05 5.25 6.00 5.35 注:δEu=[EuN/(Sm+Gd)N]1/2,A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O),这三者均为摩尔百分比. -
[1] Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007 [2] Chappell, B.W., White, A.J.R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, (83): 1-26. doi: 10.1017/S0263593300007720 [3] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the Western Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019 [4] Chen, J.F., Han, B.F., Ji, J.Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern Western Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. doi: 10.1016/j.lithos.2009.11.014 [5] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol., 80: 189-200. doi: 10.1007/BF00374895 [6] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [7] Feng, Y., Coleman, R.G., Tilton, G., et al., 1989. Tectonic Evolution of the Western Junggar Region, Xinjiang, China. Tectonics, 8(4): 729-752. doi: 10.1029/TC008i004p00729 [8] Geng, H.Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the Western Junggar, Xinjiang: Implications for Ridge Subduction?Chemical Geology, 266(3-4): 364-389. doi: 10.1016/j.chemgeo.2009.07.001 [9] Han, B.F., He, G.Q., Wang, S.G., 1999. Post Collision Mantle Genesis Magma Activity Bottom, Uplifting and Character of Junggar Basin Basement. Science in China (Series D), 29(1): 16-21 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199902000.htm [10] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). http://www.researchgate.net/publication/269710583_Late_Paleozoic_vertical_growth_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post-collisional_plutonism [11] He, G.Q., Li, M.S., 2001. Significance of Paleostructure and Paleogeography of Ordovician-Silurian Rock Associations in Northern Xinjiang, China. Acta Scientiarum Naturalium, Universitatis Pekinensis, 37(1): 99-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ200101017.htm [12] Hoskin, P. W, O., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircons. Journal of Metamorphic Geology, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x [13] Hu, A., Jahn, B., Zhang, G., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. doi: 10.1016/S0040-1951(00)00176-1 [14] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. doi: 10.1039/B804760J [15] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. doi: 10.1039/C2JA30078H [16] Huang, J.H., Lü, X.C., Zhu, X.N., et al., 1995. Advance in Research of the Ophiolites in Hongguleleng of North Junggar, Xinjiang. Xinjiang Geology, 13(1): 20-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI501.002.htm [17] Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226: 73-100. doi: 10.1144/GSL.SP.2004.226.01.05 [18] Koschek, G., 1993. Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 171(3): 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x [19] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [20] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [22] Loiselle, M.C., Wones, D.R., 1979. Characteristic and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683 [23] Ludwig, K.R., 2003. User s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Sepical Publication, Berkeley. [24] Meng, L., Shen, P., Shen, Y.C., et al., 2010. Igneous Rocks Geochemistry, Zircon U-Pb Age and Its Geological Significance in the Central Section of Xiemisitai Area, Xinjiang. Acta Petrologica Sinica, 26(10): 3047-3056 (in Chinese with English abstract). http://www.oalib.com/paper/1476101 [25] Miller, C.F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?The Journal of Geology, 93(6): 673-689. doi: 10.1086/628995 [26] Qiu, J.S., Wang, D.Z., Satoshi, K., et al., 2000. Geochemistry and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province. Geochimica, 29(4): 313-321 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx200004000.htm [27] Rapp, R.P., 1997. Heterogeneous Source Regions for Archaean Granitoids: Experimental and Geochemical Evidence. Oxford Monographs on Geology and Geophysics, 35: 267-279. http://www.ingentaconnect.com/content/oxup/09527028/1997/00000035/00000001/art00015 [28] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, (25): 956-983. http://petrology.oxfordjournals.org/content/25/4/956.abstract [29] Shen, P., Shen, Y.C., Liu, T.B., et al., 2010. Discovery of the Xiemisitai Copper Deposit in Western Junggar, Xinjiang ang Its Geological Significance. Xinjiang Geology, 28(4): 413-418 (in Chinese with English abstract). http://www.researchgate.net/publication/284415508_Discovery_of_the_Xiemisitai_copper_deposit_in_western_Junggar_Xinjiang_and_its_geological_significance [30] Shen, P., Shen, Y.C., Li, X.H., et al., 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A Geochemical and Geochronological Approach. Lithos, 140-141: 103-118. doi: 10.1016/j.lithos.2012.02.004 [31] Su, Y.P., Tang, H.F., Hou, G.S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in Western Junggar, Xinjiang. Geochimica, 35(1): 55-67 (in Chinese with English abstract). [32] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [33] Wang, Z.Q., Jiang, X.M., Guo, J., et al., 2014. Discovery of the Early Paleozoic Volcanic Rocks in the Xiemisitai Area of the Western Junggar, Xinjiang. Geotectonica et Metallogenia, 38(3): 670-685 (in Chinese with English abstract). http://www.researchgate.net/publication/286488329_Discovery_of_the_early_paleozoic_volcanic_rocks_in_the_Xiemisitai_area_of_the_west_Junggar_Xinjiang [34] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202 [35] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [36] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002. The Ways of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese). [37] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. doi: 10.2475/ajs.304.4.370 [38] Yin, J., Yuan, C., Sun, M., et al., 2010. Late Carboniferous High-Mg Dioritic Dikes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Gondwana Research, 17(1): 145-152. doi: 10.1016/j.gr.2009.05.011 [39] Zhang, Y.Y., Guo, Z.J., 2010. New Constraints on Formation Ages of Ophiolites in Northern Junggar and Comparative Study on Their Connection. Acta Petrologica Sinica, 26(2): 421-430 (in Chinese with English abstract). http://www.oalib.com/paper/1473405 [40] Zhang, Z.M., Liou, J.G., Coleman, R.G., 1984. An Outline of the Plate Tectonics of China. Geological Society of America Bulletin, 95(3): 295-312. doi:10.1130/0016-7606(1984)95<295:AOOTPT>2.0.CO;2 [41] Zhao, L., He, G.Q., Zhu, Y.B., 2013. Discovery and Its Tectonic Significance of the Ophiolite in the South of Xiemisitai Mountain, Western Junggar, Xinjiang. Geological Bulletin of China, 32(1): 195-205 (in Chinese with English abstract). http://www.researchgate.net/publication/289293063_Discovery_and_its_tectonic_significance_of_the_ophiolite_in_the_south_of_Xiemisitai_Mountain_West_Junggar_Xinjiang [42] Zhou, T., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the Western Junggar, Xinjiang, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3-4): 191-206. doi: 10.1016/j.lithos.2008.06.014 [43] Zhu, Y.F., Xu, X., Chen, B., et al., 2008. Dolomite Marble and Garnet Amphibolite in the Ophiolitic Mélange in Western Junggar; Relics of the Early Paleozoic Oceanic Crust and Its Deep Subduction. Acta Petrologica Sinica, 24(12): 2767-2777 (in Chinese with English abstract). http://www.oalib.com/paper/1473733 [44] 韩宝福, 何国琦, 王式洸, 1999. 后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901002.htm [45] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [46] 何国琦, 李茂松, 2001. 中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义. 北京大学学报(自然科学版), 37(1): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200101017.htm [47] 黄建华, 吕喜朝, 朱星南, 等, 1995. 北准噶尔洪古勒楞蛇绿岩研究的新进展. 新疆地质, 13(1): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI501.002.htm [48] 孟磊, 申萍, 沈远超, 等, 2010. 新疆谢米斯台中段火山岩岩石地球化学特征、锆石U-Pb年龄及其地质意义. 岩石学报, 26(10): 3047-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010016.htm [49] 邱检生, 王德滋, 蟹泽聪史, 等, 2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm [50] 申萍, 沈远超, 刘铁兵, 等, 2010. 西准噶尔谢米斯台铜矿的发现及意义. 新疆地质, 28(4): 413-418. doi: 10.3969/j.issn.1000-8845.2010.04.011 [51] 苏玉平, 唐红峰, 侯广顺, 等, 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200601006.htm [52] 王章棋, 江秀敏, 郭晶, 等, 2014. 新疆西准噶尔谢米斯台地区发现早古生代火山岩地层: 野外地质学和年代学证据. 大地构造与成矿学, 38(3): 670-685. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403019.htm [53] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [54] 肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社. [55] 新疆维吾尔自治区地质矿产局, 1979.1∶20万乌尔禾幅区域地质图. [56] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 1-762. [57] 张元元, 郭召杰, 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 26(2): 421-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002008.htm [58] 赵磊, 何国琦, 朱亚兵, 2013. 新疆西准噶尔北部谢米斯台山南坡蛇绿岩带的发现及其意义. 地质通报, 32(1): 195-205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201301019.htm [59] 朱永峰, 徐新, 陈博, 等, 2008. 西准噶尔蛇绿混杂岩中的白云石大理岩和石榴角闪岩: 早古生代残余洋壳深俯冲的证据. 岩石学报, 24(12): 2767-2777. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812012.htm