Ore-Forming Fluid and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range
-
摘要: 拜仁达坝-维拉斯托矿床是大兴安岭南段西坡最大的2个热液脉型银矿床, 对这两个矿床各阶段矿物(如黑钨矿、浅色闪锌矿、石英和萤石)中的流体包裹体进行研究, 并对硫化物进行了硫同位素分析.结果表明, 拜仁达坝矿床的流体从早阶段到晚阶段(Ⅰ→Ⅱ→Ⅲ)均一温度和盐度逐渐降低.维拉斯托矿床热液成矿期第Ⅰ、Ⅱ成矿阶段具有高温高盐度的流体; 第Ⅲ成矿阶段具有不混溶流体, 即中温中盐度的流体(均一温度为208~294 ℃, 盐度含量为4.65%~12.39%)和高温低盐度的流体(均一温度为333~406 ℃, 盐度含量为3.55%~6.88%); 第Ⅳ成矿阶段具有低温较低盐度的流体.两个矿床的流体包裹体气相成分表明成矿流体均为CO2-H2O-NaCl体系.拜仁达坝矿床的均一温度和盐度随着成矿阶段逐渐降低和氢氧同位素证据均表明, 早阶段的流体主要为岩浆水来源, 晚阶段的流体混入了大气降水.维拉斯托矿床氢氧同位素证据和流体中的成分(CH4/C2H6为39.271%~101.438%)均表明其成矿流体主要为岩浆水来源.拜仁达坝-维拉斯托矿床的硫具有深源特征, 拜仁达坝矿床的成矿机制主要与不同来源的成矿流体混合有关; 维拉斯托矿床的成矿机制主要与降温和成矿流体不混溶有关.Abstract: The Bairendaba-Weilasituo deposits are the two of the largest hydrothermal vein-type silver deposits at the southern Great Xing'an Range. This paper presents the studies of the fluid inclusions from wolframite, light sphalerite, quartz and fluorite and the sulfur isotope of sulfides. Results show that the homogenization temperatures and salinities decrease gradually from stages Ⅰ to Ⅲ in the Bairendaba deposit. During the mineralization periods of the Weilasituo deposit, fluid of stages Ⅰ and Ⅱ is featured with higher temperature and salinity. The stage Ⅲ has immiscible fluid, which is of medium temperature and salinity (homogenization temperature is 208 to 294 ℃, salinity is 4.65% to 12.39%), and the higher temperature and lower salinity (homogenization temperature is 333 to 406 ℃, salinity is 3.55% to 6.88%) respectively. The fluid of the stage Ⅳ is characterized by lower temperature and salinity. The gas phase compositions of the fluid inclusion show that ore-forming fluids are CO2-H2O-NaCl system in the two deposits. In the Bairendaba deposit, the temperature and salinity decreased from stagesⅠ to Ⅲ and H-O isotopes show that the earlier stage fluid is magmatic and the later stage fluid is meteoric water. In the Weilasituo deposit, H-O isotopes and fluid composition (CH4/C2H6 varies from 39.271% to 101.438%), showing that the fluid is magmatic. Sulfur isotopes demonstrate that the sulfur is from the deep source in Bairendaba-Weilasituo deposits. It is concluded that metallogenic mechanism of the Bairendaba deposit is the fluid mixing with different origins, metallogenic mechanism of the Weilasituo deposit is cooling and fluid immiscibility.
-
Key words:
- fluid composition /
- ore deposit /
- H-O-S isotope /
- fluid evolution /
- Bairendaba-Weilasituo
-
图 1 (a) 区域构造纲要图和(b)矿区地质简图
1.第四系(Q);2.上侏罗统满克头鄂博组(J3m);3.下侏罗统万宝组(J1w);4.上二叠统林西组(P2l);5.下二叠统大石寨组(P1d);6.上石炭统阿木山组(C3a);7.上石炭统本巴图组(J3b);8.锡林郭勒杂岩;9.燕山期花岗岩类;10.海西期石英闪长岩;11.加里东期石英闪长岩;12.断层;13.复背斜;14.矿床和燕山期岩体位置;a据刘建明等, 2004改编;b据内蒙古自治区第九地质矿产勘查开发院,2004.内蒙古自治区克什克腾旗拜仁达坝矿区银多金属矿详查报告改编
Fig. 1. (a) The simplified tectonic map of northeast China and (b) Simplified geological map of Studied area
图 2 (a) 拜仁达坝矿床地质图和(b) 拜仁达坝矿床0勘探线剖面
1.第四系;2.锡林郭勒杂岩;3.海西期石英闪长岩;4.燕山期花岗岩;5.矿体及编号;6.辉绿岩脉;7.褐铁矿化带;8.推测的北西向断裂;9.勘探线及编号;10.钻孔及编号;a, b据内蒙古自治区第九地质矿产勘查开发院,2004.内蒙古自治区克什克腾旗拜仁达坝矿区银多金属矿详查报告改编
Fig. 2. (a) Geological map of the Bairendaba deposit and (b) Cross section of the No.0 prospecting line in the Bairendaba deposit
图 4 拜仁达坝-维拉斯托矿床野外矿体及矿石显微照片
B1~B8代表的是拜仁达坝矿床矿石野外及镜下照片;W1~W9代表的是维拉斯托矿床矿石野外及镜下照片;B1.早期围岩角砾被晚期的硫化物包裹,从中心向两边依次为绿泥石化围岩→第Ⅰ阶段毒砂-石英→第Ⅱ阶段磁黄铁矿-铁闪锌矿; B2.第Ⅱ阶段磁黄铁矿-铁闪锌矿中包含第Ⅰ阶段的毒砂-石英颗粒; B3.绿泥石化围岩中含有第Ⅲ阶段细脉状铅锌矿; B4.第Ⅱ阶段角砾状铁闪锌矿含有少量浸染状黄铜矿,并被第Ⅲ阶段萤石-白云母胶结; B5.第Ⅰ阶段具有碎裂结构的半自形毒砂被第Ⅱ阶段他形的铁闪锌矿、黄铜矿、磁黄铁矿交代; B6.第Ⅰ阶段毒砂呈半自形粒状被第Ⅱ阶段他形的铁闪锌矿、黄铜矿、磁黄铁矿包裹,且第Ⅱ阶段他形的铁闪锌矿、黄铜矿、磁黄铁矿被第Ⅲ阶段方铅矿交代; B7~B8.第Ⅲ阶段方铅矿和银矿物交代第Ⅱ阶段的磁黄铁矿、铁闪锌矿、黄铜矿; W1.从上到下矿石具有分带性,显示是第Ⅱ阶段毒砂-石英脉→第Ⅲ阶段磁黄铁矿-铁闪锌矿→第Ⅳ阶段方铅矿-铁闪锌矿→绿泥石化围岩; W2.从上到下矿石具有分带性,显示是萤石-白云母化、绿泥石化围岩→第Ⅳ阶段方铅矿-萤石→第Ⅲ阶段黄铜矿-石英、铁闪锌矿-石英→第Ⅱ阶段毒砂-石英; W3.第Ⅲ阶段铁闪锌矿矿石被第Ⅳ阶段尖角状方铅矿交代,并与萤石共生; W4~W5.第Ⅰ阶段黑钨矿与石英共生; W6~W7.第Ⅱ阶段浅色闪锌矿与毒砂共生,围岩为白云母化蚀变岩; W8.第Ⅱ阶段半自形毒砂被第Ⅲ阶段铁闪锌矿-黄铜矿-磁黄铁矿包裹; W9.第Ⅳ阶段方铅矿-含银矿物交代第Ⅲ阶段的铁闪锌矿; Apy.毒砂; Sph.铁闪锌矿; Sph*.浅色闪锌矿; Cp.黄铜矿; Po.磁黄铁矿; Gal.方铅矿; AM.银矿物; Chl.绿泥石; Q.石英; Fl.萤石; Ms.白云母
Fig. 4. The photographs showing the orebody geology and microphotographs showing the ore geology in the Bairendaba-Weilasituo deposit
图 6 拜仁达坝-维拉斯托矿床流体包裹体显微照片
B1~B2.拜仁达坝矿床第Ⅰ-Ⅱ阶段石英中的气液两相流体包裹体;B3.拜仁达坝矿床第Ⅲ阶段萤石中的气液两相流体包裹体;W1~W2.维拉斯托矿床第Ⅰ阶段黑钨矿和石英中的气液两相流体包裹体;W3~W4.维拉斯托矿床第Ⅱ阶段浅色闪锌矿中的气液两相流体包裹体和纯气相流体包裹体以及石英中的气液两相流体包裹体;W5~W6.分别为维拉斯托矿床Ⅲ、Ⅳ阶段石英中的气液两相流体包裹体;Q.石英;Fl.萤石;Wo.黑钨矿;Sph*.浅色闪锌矿
Fig. 6. Photomicrographs of representative fluid inclusions of the Bairendaba-Weilasituo deposit
图 8 流体包裹体各阶段均一温度-盐度图解
不混溶流体包裹体组合引自欧阳荷根, 2013;a.拜仁达坝矿床;b.维拉斯托矿床
Fig. 8. Summary of homogenization temperature and salinity data for individual mineralization stages
图 10 拜仁达坝和维拉斯托矿床铅同位素图解
a.拜仁达坝矿床; b.维拉斯托矿床; 拜仁达坝和维拉斯托矿床的铅同位素数据均引自欧阳荷根(2013)和江思宏等(2010)
Fig. 10. The histogram showing the lead isotope composition of the Bairendaba-Weilasituo deposit
表 1 拜仁达坝-维拉斯托矿床流体包裹体显微测温结果
Table 1. Microthermometric data of fluid inclusions of the Bairendaba-Weilasituo deposit
成矿阶段 主矿物 包裹体类型 n Th(均值)(℃) Tm(均值) (℃) W(NaCleq)(均值)(%) ρ(g/cm3) B-Ⅰ Q L 33 275~371(322) -3.2~-7.5(-5.2) 5.26~11.70(8.22) 0.65~0.85 B-Ⅱ Q L 21 212~284(244) -2.9~-6.3(-4.2) 4.80~9.60(6.59) 0.75~0.90 B-Ⅲ Fl L 15 150~231(188) -1.8~-4.5(-3.4) 3.06~7.17(5.57) 0.85~0.95 W-Ⅰ Wo L 30 282~345(306) -5.2~-11.1(-7.8) 8.14~15.07(11.44) 0.75~0.87 W-Ⅰ Q L 12 242~314(301) -3.4~-8.2(-6.0) 5.56~11.93(9.16) 0.75~0.87 W-Ⅱ Sph* L 12 245~306(282) -5.1~-7.9(-6.9) 8.00~11.58(10.37) 0.80~0.87 W-Ⅱ Q L 12 206~302(273) -3.4~-7.4(-5.5) 5.56~10.98(8.48) 0.77~0.90 W-Ⅲa Q/Cc C 15 333~406 4.07~6.20 W-Ⅲb Q/Cc V 5 356~425 3.55~6.88 W-Ⅲc Q/Cc L 68 192~372 4.34~8.68 W-Ⅲ Q L 45 208~294(246) -2.8~-8.6(-5.6) 4.65~12.39(8.64) 0.80~0.92 W-Ⅳ Q, Fl L 50 152~233(199) -2.1~-8.3(-5.8) 3.55~12.05(8.83) 0.85~0.97 注:n.个数;Th.均一温度;Tm.冰点温度;W(NaCleq).NaCl的质量百分含量;ρ.密度;B-Ⅰ至B-Ⅲ.拜仁达坝矿床成矿阶段;W-Ⅰ至W-Ⅳ.维拉斯托矿床成矿阶段;L.富液相的流体包裹体,均一态为液相;C.含CO2的三相流体包裹体;V.富气相的流体包裹体,均一态为气相;W-Ⅲa至W-Ⅲc.均引自欧阳荷根, 2013. 表 2 拜仁达坝-维拉斯托矿床石英中流体包裹体气相色谱和离子色谱分析结果
Table 2. Gas and Ion chromatographic analyses of fluid inclusions in the Bairendaba-Weilasituo deposit
样号 采样位置 成矿阶段 矿物名称 取样温度(℃) 相对摩尔百分含量(%) CH4 C2H2+C2H4 C2H6 CO2 H2O O2 N2 CO YD-4 拜仁达坝东区1号矿体 Ⅰ 石英 100~500 0.222 0.004 0.004 7.924 46.297 7.184 38.200 0.163 YD-6 拜仁达坝东区1号矿体 Ⅱ 石英 100~500 0.273 0.009 0.005 9.033 60.599 4.548 25.392 0.140 BR-005 拜仁达坝西区3号矿体西沿4穿脉 Ⅱ 石英 100~500 0.294 0.017 0.006 23.382 3.468 10.418 62.415 - BR12-39 拜仁达坝西区1号矿体1150中段 Ⅲ 石英 100~500 0.242 0.013 0.004 8.074 56.636 4.931 29.458 0.643 WL-007 维拉斯托1号矿体1300平硐9线 Ⅰ 石英 100~500 0.075 0.010 0.001 9.917 48.785 6.236 34.738 0.239 WL-008 维拉斯托1号矿体1300平硐 Ⅱ 石英 100~500 0.049 0.007 - 8.828 33.760 9.021 48.335 - WL12-32 维拉斯托121号矿体 Ⅳ 石英 100~500 0.054 0.006 - 8.241 54.411 5.739 31.370 0.178 WL12-62 维拉斯托1号矿体1200中段20线 Ⅳ 石英 100~500 0.061 0.012 0.002 10.301 45.079 6.834 37.435 0.275 样号 采样位置 成矿阶段 矿物名称 ω(B)×10-6 Na+ K+ Mg2+ Ca2+ F- Cl- Br- NO3- SO42- YD-4 拜仁达坝东区1号矿体 Ⅰ 石英 3.980 1.383 0.764 4.310 0.163 13.782 0.081 1.177 1.968 YD-6 拜仁达坝东区1号矿体 Ⅱ 石英 4.108 0.970 0.638 4.640 0.106 12.270 - 1.309 2.227 BR-005 拜仁达坝西区3号矿体西沿4穿脉 Ⅱ 石英 1.858 0.929 0.459 3.912 0.321 5.013 - 1.359 6.172 BR12-39 拜仁达坝西区1号矿体1150中段 Ⅲ 石英 2.465 5.116 0.949 5.892 0.877 6.431 0.108 1.624 3.622 WL-007 维拉斯托1号矿体1300平硐9线 Ⅰ 石英 1.960 1.558 0.761 5.819 0.240 3.865 - 1.115 1.498 WL-008 维拉斯托1号矿体1300平硐 Ⅱ 石英 1.176 1.327 0.629 4.866 0.189 2.358 - 1.408 4.873 WL12-32 维拉斯托121号矿体 Ⅳ 石英 2.469 - 0.705 4.260 1.171 5.941 - 1.146 1.956 WL12-62 维拉斯托1号矿体1200中段20线 Ⅳ 石英 4.678 2.211 0.739 7.279 0.604 14.751 0.107 1.550 2.275 注:“-”表示低于检测限;ω(B)为阴离子或阳离子的质量百分含量. 表 3 拜仁达坝-维拉斯托矿床各阶段流体包裹体的氢氧同位素组成(V-SMOW)(10-3)
Table 3. Oxygen and hydrogen isotope compositions of the Bairendaba-Weilasituo deposit
样品号 采样位置 T0(℃) 成矿阶段 δ18O石英 δ18O水 δD水 YD-4 拜仁达坝东区1号矿体 322.2 Ⅰ 15.2 9.06 -128.0 BR-033 拜仁达坝西区3号矿体1竖井 335.1 Ⅰ 13.6 7.86 -108.0 BR-005 拜仁达坝西区3号矿体4穿脉西沿 243.7 Ⅱ 15.4 6.14 -129.0 YD-6 拜仁达坝东区1号矿体 240.6 Ⅱ 15.4 5.99 -124.0 WL-007 维拉斯托1号矿体1300平硐 301.0 Ⅰ 13.2 6.34 -114.0 WL-008 维拉斯托1号矿体1300平硐 248.9 Ⅱ 13.8 4.79 -132.0 wl12-62 维拉斯托1号矿体1200中段 199.0 Ⅳ 14.9 3.13 -111.2 wl12-32 维拉斯托121号矿体 205.3 Ⅳ 11.6 0.22 -129.4 注:T0.该样品的均一温度平均值;δ18O水是依据氧同位素平衡分馏方程式δ18O石英-δ18O水=103lnα含水矿物-水=3.38×106/T2-3.40( Clayton et al., 1972 ),T=T0+273 ℃计算得到的.表 4 拜仁达坝矿床硫同位素组成
Table 4. Sulfur isotopic compositions of ore in Bairendaba deposit
样品编号 采样位置 岩性 δ34SV-CDT(10-3) YD-9 拜仁达坝东区1号矿体 磁黄铁矿 -1.4 YD-9 拜仁达坝东区1号矿体 铁闪锌矿 -1.8 YD-12 拜仁达坝东区1号矿体 黄铜矿 -1.0 YD-12 拜仁达坝东区1号矿体 铁闪锌矿 -0.3 WL-10 维拉斯托1343平硐93号矿脉 方铅矿 -0.4 表 5 拜仁达坝和维拉斯托矿床成矿流体特征对比
Table 5. The comparison of the ore-forming fluid between Bairendaba and Weilasituo deposit
拜仁达坝矿床 维拉斯托矿床 成矿元素 以Pb、Zn、Ag为主, Cu次之 以Wo、Cu、Zn为主, Pb、Ag次之 矿石矿物 磁黄铁矿、铁闪锌矿、方铅矿和银矿物 黑钨矿、浅色闪锌矿、黄铜矿、铁闪锌矿、方铅矿和银矿物 包裹体类型 富液相的流体包裹体+富气相的流体包裹体(后者较少见) 富气相的流体包裹体+富液相的流体包裹体+CO2三相流体包裹体 显微测温 银铅锌成矿阶段流体的Th=150 ℃~284 ℃,W(NaCleq)=3.06%~9.60% 钨锡成矿阶段流体的Th=206 ℃~345 ℃,W(NaCleq)=5.56%~15.07%;银铅锌成矿阶段具有不混溶流体,即中温中盐度的流体(Th=152 ℃~294 ℃;W(NaCleq=4.65%~12.39%)和高温低盐度的流体(Th=333 ℃~406 ℃,W(NaCleq)=3.55%~6.88%) 激光拉曼 早阶段流体气相成分以CH4为主,其次为CO2,液相成分主要为H2O;晚阶段流体气相成分以CO2为主,其次为CH4,液相成分主要为H2O 早阶段流体气相成分主要为CH4和CO2,液相成分主要是H2O,含有少量的CO2,晚阶段流体气相成分主要为CH4,液相成分主要为H2O 流体成分 流体气相成分以H2O、CO2、N2和O2为主,其次为CH4,流体液相成分阳离子以Ca2+、Na+为主,阴离子以Cl-、SO42-为主 流体气相成分以H2O、CO2、N2和O2为主,其次为CH4,流体液相成分阳离子以Ca2+、Na+为主,阴离子以Cl-、SO42-为主 成矿流体来源 早期流体为岩浆水,与矿区深部或外围隐伏的燕山期花岗岩类(与北大山岩体)有关,晚期流体混入了大气降水 成矿流体主要为岩浆水,与矿区深部或外围隐伏的燕山期花岗岩类(与北大山岩体)有关 成矿机制 流体混合 降温和流体不混溶 -
[1] Bodnar, R.J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3): 535-542. doi: 10.2113/gsecongeo.78.2.353 [2] Chang, Y., Lai, Y., 2010. Study on Characteristics of Ore-Forming Fluid and Chronology in the Yindu Ag-Pb-Zn Polymetallic Ore Deposit, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 581-593 (in Chinese with English abstract). http://www.researchgate.net/publication/282415226_Study_on_characteristics_of_ore-forming_fluid_and_chronology_in_the_Yindu_Ag-Pb-Zn_polymetallic_ore_deposit_Inner_Mongolia [3] Chen, W., Ji, S.Y., 1985. Introduction to Mineralogy. Geological Publishing House, Beijing, 168-170 (in Chinese). [4] Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. doi: 10.1029/JB077i017p03057 [5] Fei, H.C., Xiao, R.G., 2002. Ore-Forming Fluid Evolution and Metallogenetic Physical Chemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 21(2): 139-144 (in Chinese with English abstract). [6] Fu, S.H., Wang, P., 2000. Study of Fluid Inclusions and the Constraint for Ore-Forming Conditions of Gold Deposit at Manaoke, Northwestern Sichuan Province. Acta Petrologica Sinica, 16(4): 569-574 (in Chinese with English abstract). http://www.researchgate.net/publication/299230291_Study_of_Fluid_Inclusions_and_the_Constraint_for_Ore-Forming_Conditions_of_Gold_Deposit_at_Manaoke_Northwestern_Sichuan_Province [7] Giggenbach, W.F., Sheppard, D.S., Robinson, B.W., 1994. Geochemical Structure and Position of the Waiotapu Geothermal Field, New Zealand. Geothermics, 23(5-6): 599-644. doi: 10.1016/0375-6505(94)90022-1 [8] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83: 197-202. doi: 10.2113/gsecongeo.83.1.197 [9] Hoefs, J., 2009. Stable Isotope Geochemistry. Springer-Verlag, Berlin Heidelberg, 286. [10] Jiang, S.H., Nie, F.J., Liu, Y.F., et al., 2010. Sulfur and Lead Isotopic Compositions of Bairendaba and Weilasituo Silver-Polymetallic Deposits, Inner Mongolia. Mineral Deposits, 29(1): 101-112 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=33117129 [11] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dxqy200401036.htm [12] Liu, Y., Jiang, S.H., Zhang, Z.G., et al., 2011. Mineragraphy of Bairendaba and Weilasituo Silver-Polymetallic Deposits in Inner Mongolia. Mineral Deposits, 30(5): 837-854 (in Chinese with English abstract). http://www.researchgate.net/publication/292719441_Mineragraphy_of_Bairendaba_and_Weilasituo_silverpolymetallic_deposits_in_Inner_Mongolia [13] Liu, Y.F., 2009. Metallogenic Study of Bairendaba Ag Polymetallic Deposit in Hexigten Banner, Inner Mongolia (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [14] Liu, Y.F., Jiang, S.H., Zhang, Y., 2010. The SHRIMP Zircon U-Pb Dating and Geological Features of Bairendaba Diorite in the Xilinhaote Area, Inner Mongolia, China. Geological Bulletin of China, 29(5): 688-696 (in Chinese with English abstract). http://www.researchgate.net/publication/279549467_The_SHRIMP_zircon_U-Pb_dating_and_geological_features_of_Bairendaba_diorite_in_the_Xilinhaote_area_Inner_Mongolia_China [15] Ouyang, H.G., 2013. Metallogenesis of Bairendaba-Weilasituo Silver-Polymetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing'an Range, NE China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [16] Pan, X.F., Guo, L.J., Wang, S., et al., 2009. Laser Microprobe Ar-Ar Dating of Biotite from the Weilasituo Cu-Zn Polymetallic Deposit in Inner Mongolia. Acta Petrologica et Mineralogica, 28(5): 473-479 (in Chinese with English abstract). http://www.researchgate.net/publication/308360144_Laser_microprobe_Ar-Ar_dating_of_biotite_from_the_Weilasituo_Cu-Zn_polymetallic_deposit_in_Inner_Mongolia?ev=auth_pub [17] Shang, L.B., Fan, W.L., Hu, R.Z., et al., 2004. A Thermodynamic Study on Paragenesis and Separation of Silver, Lead and Zinc in Hydrothermal Solutions. Acta Mineralogica Sinica, 24(1): 81-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200401013.htm [18] Shmulovich, K.I., Landwehr, D., Simon, K., et al., 1999. Stable Isotope Fractionation between Liquid and Vapour in Water-Salt Systems up to 600 ℃. Chemical Geology, 157(3-4): 343-354. doi: 10.1016/S0009-2541(98)00202-2 [19] Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Prompted by Magnetite Crystallization. Nature, 431(7011), 975-978. doi: 10.1038/nature02972 [20] Tang, R.K., Lü, X.B., Cao, X.F., et al., 2014. Mineralogy and Metallogenic Mechanism of Weilasituo and Bairendaba Deposits, Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 39(6): 671-686 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.063 [21] Taylor, H.P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843 [22] Wang, J., Hou, Q.Y., Chen, Y.L., et al., 2010. Fluid Inclusion Study of the Weilasituo Cu Polymetal Deposit in Inner Mongolia. Geoscience, 24(5): 847-855 (in Chinese with English abstract). [23] Wang, X.Y., Hou, Q.Y., Wang, J., et al., 2013. SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia. Geoscience, 27(1): 67-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201301007.htm [24] Yang, D., Xu, W.Y., Cui, Y.H., et al., 2007. Determination of Gaseous Components in Fluid Inclusion Samples by Two-Dimensional Gas Chromatography. Rock and Mineral Analysis, 26(6): 451-454 (in Chinese with English abstract). [25] Zajaca, Z., Halter, W.E., Pettke, T., et al., 2008. Determination of Fluid/Melt Partition Coefficients by LA-ICPMS Analysis of Co-Existing Fluid and Silicate Melt Inclusions: Controls on Element Partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034 [26] Zhou, W.X., Ge, M.C., 2013. Redefinition and Significance of Metamorphism Xilinhot Group in Xilinhot Area, Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 38(4): 715-724 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.070 [27] 常勇, 赖勇, 2010. 内蒙古银都银铅锌多金属矿床成矿流体特征及成矿年代学研究. 北京大学学报(自然科学版), 46(4): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201004013.htm [28] 陈武, 季寿元, 1985. 矿物学导论. 北京: 地质出版社, 168-170. [29] 费红彩, 肖荣阁, 2002. 成矿流体演化与成矿物理化学. 矿物岩石地球化学通报, 21(2): 139-144. doi: 10.3969/j.issn.1007-2802.2002.02.013 [30] 付绍洪, 王苹, 2000. 川西北马脑壳金矿床流体包裹体研究及对成矿条件的制约. 岩石学报, 16(4): 569-574. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004016.htm [31] 江思宏, 聂凤军, 刘翼飞, 等, 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 29(1): 101-112. doi: 10.3969/j.issn.0258-7106.2010.01.010 [32] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [33] 刘妍, 江思宏, 张志刚, 等, 2011. 内蒙古拜仁达坝-维拉斯托银多金属矿床的矿相学特征. 矿床地质, 30(5): 837-854. doi: 10.3969/j.issn.0258-7106.2011.05.007 [34] 刘翼飞, 2009. 内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究(硕士学位论文). 北京: 中国地质科学院. [35] 刘翼飞, 江思宏, 张义, 2010. 内蒙古锡林浩特地区拜仁达坝矿区闪长岩体锆石SHRIMP U-Pb定年及其地质意义. 地质通报, 29(5): 688-696. doi: 10.3969/j.issn.1671-2552.2010.05.008 [36] 欧阳荷根, 2013. 大兴安岭南段拜仁达坝-维拉斯托银多金属矿床成矿作用及动力学背景(博士学位论文). 北京: 中国地质大学. [37] 潘小菲, 郭利军, 王硕, 等, 2009. 内蒙古维拉斯托铜锌矿床的白云母Ar/Ar年龄探讨. 岩石矿物学杂志., 28(5): 473-479. doi: 10.3969/j.issn.1000-6524.2009.05.007 [38] 尚林波, 樊文苓, 胡瑞忠, 等, 2004. 热液中铅、锌、银共生分异的热力学探讨. 矿物学报, 24(1): 81-86. doi: 10.3321/j.issn:1000-4734.2004.01.013 [39] 唐然坤, 吕新彪, 曹晓峰, 等, 2014. 内蒙古维拉斯托-拜仁达坝矿床矿石特征及成矿机理. 地球科学——中国地质大学学报, 39(6): 671-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406003.htm [40] 王瑾, 侯青叶, 陈岳龙, 等, 2010. 内蒙古维拉斯托铜多金属矿床流体包裹体研究. 现代地质, 24(5): 847-855. doi: 10.3969/j.issn.1000-8527.2010.05.004 [41] 王新宇, 侯青叶, 王瑾, 等, 2013. 内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究. 现代地质, 27(1): 67-78. doi: 10.3969/j.issn.1000-8527.2013.01.007 [42] 杨丹, 徐文艺, 崔艳合, 等, 2007. 二维气相色谱法测定流体包裹体中气相成分. 岩矿测试, 26(6): 451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005 [43] 周文孝, 葛梦春, 2013. 内蒙古锡林浩特地区中元古代锡林浩特岩群的厘定及其意义. 地球科学——中国地质大学学报, 38(4): 715-724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304006.htm