Baseline Correction of Strong-Motion Records of Wenchuan Ms8.0 Earthquake and Its Primary Application on Dislocation Inversion
-
摘要: 通过研究近场强震动记录, 发现汶川Ms8.0地震近场峰值加速度在空间上存在较明显的上盘效应和方向性效应, 与汶川引起的地质灾害空间分布具有较好的一致性.但在所有强震仪所记录的汶川Ms8.0地震同震加速度记录积分所得地壳同震速度中, 有的台站数据存在典型的线性偏移, 有的台站数据除线性偏移外还存在明显的非线性偏移.采用非线性基线改正方法处理汶川Ms8.0强震同震记录, 改正后所得同震位移明显要比线性基线改正更合乎实际情况.以强震动、GPS和InSAR同震位移处理结果做约束, 反演了汶川Ms8.0地震同震位错分布, 对于汶川Ms8.0地震主要同震破裂断裂(北川-映秀断裂), 强震动反演结果不仅较好地刻画了汶川Ms8.0地震同震主断裂上地表破裂空间分布详细变化特征, 同时也较好地反映北端破裂衰减情况, 该结果表明: 强震动资料可以为强震后的救援和灾害评估等工作提供具有参考价值的研究结果; 另一方面, 受数据数量的制约, 用强震动改正后位移反演所得位错分布中仅汉旺断裂南段存在较为明显位错, 强震仪布设时应更多地考虑是否相对均匀地分布在具有发震潜势的断裂周缘, 以期更好地在震后应急救灾中发挥更好的作用.Abstract: Based on the near-field strong-motion records, the distribution of peak acceleration near the Wenchuan Ms8.0 earthquake exists obvious hanging wall and directivity effect, it is consistent with the distribution of geological hazard caused by Wenchuan earthquake. However, among the crustal co-seismic velocities which are achieved by integrating the acceleration of Wenchuan Ms8.0 earthquake recorded by strong motion seismograph, there is a typical linear offset for some stations, and there are also obvious nonlinear offsets besides linear offset for some other stations. Using the approach of nonlinear baseline correction to process co-seismic records of Wenchuan Ms8.0 earthquake, the co-seismic displacement corrected by the nonlinear approach obviously is in better agreement with actual situation than the linear baseline correction approach. As a constraint of displacement processing results of strong-motion, GPS and InSAR, this paper inverts the distribution of co-seismic dislocation of Wenchuan Ms8.0 earthquake. For the main co-seismic rupture fault of Wenchuan Ms8.0 earthquake (Beichuan-Yingxiu fault), the inversion result of strong-motion is not only nicely characterize the detailed variation of distribution of co-seismic surface rupture on the main fault, but also well reflect the rupture attenuation on northernmost fault. The results show that, strong-motion data could provide valuable results for post-seismic rescue and disaster assessment. In addition, due to data limitations, for the location distribution which inverted from displacement corrected by strong motion, only the southern section of Hanwang fault exists obvious dislocation. It reveals that we should emplace the strong motion seismographs relatively uniform around the potential seismogenic faults, in order to play a better role in the post-seismic emergency rescue.
-
Key words:
- Wenchuan Ms8.0 earthquake /
- strong-motion /
- baseline correction /
- dislocation inversion /
- earthquake
-
图 1 汶川Ms8.0地震地质构造与近场强震动台站分布
1.断裂;2.汶川Ms8.0地震同震地表破裂;3.汶川Ms8.0地震震源机制解;4.汶川Ms8.0地震强震记录台站;5.本文所用强震台站及名称;紫色为同震地表破裂(徐锡伟等,2008);黑色三角为汶川Ms8.0地震近场强震动台站;黑色点为汶川Ms8.0地震余震(截止到2008年12月31日)
Fig. 1. Regional tectonic and distribution of strong-motion networks near the Wenchuan Ms8.0 earthquake
表 1 汶川Ms8.0地震同震位错断层参数
Table 1. Fault parameters of co-seismic dislocation of the Wenchuan Ms8.0 earthquake
序号 地表北端点纬度 地表北端点经度 长度(km) 宽度(km) 走向 倾角 1 32.64°N 105.45°E 81 39 228.8° 60°~20° 2 32.16°N 104.80°E 81 39 221.1° 46°~20° 3 31.61°N 104.17°E 66 39 223.9° 60°~20° 4 31.18°N 103.73°E 72 45 227.1° 42°~20° 5 31.63°N 104.37°E 111 27 228.4° 44°~20° 表 2 地壳分层介质模型参数
Table 2. Model parameters of layered crustal media
序号 深度(km) Vp(km/s) Vs(km/s) 密度(kg/m3) 1 0~15 5.89 3.40 2.80 2 15~30 7.00 4.05 2.95 3 >30 7.95 4.60 3.25 -
[1] Abrahamson, N.A., Somerville, P.G., 1996. Effects of the Hanging Wall and Foot Wall on Ground Motions Recorded during the Northridge Earthquake. Bull. Seismol. Soc. Am. , 86(1B): 93-99. [2] Bonafede, M., Parenti, B., Rivalta, E., 2002. On Strike-Slip Faulting in Layered Media. Geophysical Journal International, 149(3): 698-723. doi:10.1046/ j.1365-246X.2002.01670.x [3] Boore, D.M., 2001. Effect of Baseline Corrections on Displacements and Response Spectra for Several Recording of the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am. , 91(5): 1199-1211. doi: 10.1785/0120000703 [4] Chao, W.A., Wu, Y.M., Zhao, L., 2009. An Automatic Scheme for Baseline Correction of Strong-Motion Records in Coseismic Deformation Determination. J. Seismol. , 14(3): 495-504. doi:10.1007/ s10950-009-9178-7 [5] Deng, Q.D., Chen, S.F., Zhao, X.L., 1994. Tectonics, Seismisity and Dynamics of Longmenshan Mountains and Its Adjacent Regions. Seismology and Geology, 16(4): 389-403 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ404.013.htm [6] Department of Earthquake Monitoring and Prediction, China Earthquake Administration, 2009. Research Report of Wenchuan Ms8.0 Earthquake. Seismological Press, Beijing (in Chinese). [7] Diao, F.Q., Xiong, X., Wang, R.J., 2011, Mechanisms of Transient Postseismic Deformation Following the 2001 MW7.8 Kunlun (China) Earthquake. Pure and Applied Geophysics, 168(5): 767-779. doi: 10.1007/s00024-010-0154-5 [8] Feng, G.C., Hetland, E.A., Ding, X.L., et al., 2010. Coseismic Fault Slip of the 2008 MW 7.9 Wenchuan Earthquake Estimated from InSAR and GPS Measurements. Geophys. Res. Lett. , 37(1): L01302. doi: 10.1029/2009GL041213 [9] Hashimoto, M., Enomoto, M., Fukushima, Y., 2009. Coseismic Deformation from the 2008 Wenchuan, China, Earthquake Derived from ALOS/PALSAR Images. Tectonophysics, 491(1). doi: 10.1016/j.tecto.2009.08.034 [10] Iwan, W.D., Moser, M.A., Peng, C.Y., 1985. Some Observations on Strong-Motion Earthquake Measurement Using a Digital Accelerograph. Bull. Seismol. Soc. Am. , 75(5): 1225-1246. doi: 10.1785/BSSA0750051225 [11] Li, X.J., Zhou, Z.H., Huang, M., et al., 2008. Preliminary Analysis of Strong-Motion Recording from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008. Seismological Research Letters, 79(6): 844-854. doi: 10.1785/gssrl.79.6.844 [12] Liu, Z.J., Zhang, Z., Wen, L., et al., 2009. Co-seismic Ruptures of the 12 May 2008, Ms8.0 Wenchuan Earthquake, Sichuan: East-West Crustal Shortening on Oblique, Parallel Thrusts along the Eastern Edge of Tibet. Earth Planet. Sci. Lett. , 286(3-4): 355-370. doi: 10.1016/j.epsl.2009.07.017 [13] Lu, S.D., Li, X.J., Du, W., et al., 2008. Report on Strong Motion Records in China. Seismological Press, Beijing (in Chinese). [14] National Major Scientific Project "Crustal Movement Observation Network of Chinese" Project Group, Coseismic Displacement field of the 2008 Earthquake in Wenchuan Ms8.0 Grade 2008. GPS Determination. Science in China (Series D), 2008, 38(10): 1195-1208. [15] Okada, Y., 1992. Internal Deformation due to Shear and Tensile Faults in a Half-Space. Bull. Seism. Soc. Am. , 82(2): 1018-1040. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135 [16] Shan, B., Xiong, X., Zheng, Y., et al., 2009. Stress Changes on Major Faults Caused by MW7.9 Wenchuan Earthquake, May 12, 2008. Sci. in China (Ser. D), 39(5): 537-545 (in Chinese). http://www.cqvip.com/QK/98491X/20095/30566639.html [17] Shen, Z.K., Sun. J.B., Zhang, P.Z., et al., 2009. Slip Maxima at Fault Junctions and Rupturing of Barriers during the 2008 Wenchuan Earthquake. Nature Geoscience, 27(2): 718-724. doi: 10.1038/NGEO636 [18] Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982) [19] Teng, J.W., Bai, D.H., Yang, H., et al., 2008. Deep Processes and Dynamic Responses Associated with the Wenchuan Ms8.0 Earthquake of 2008. Chinese J. Geophys. , 51(5): 1385-1402 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gjdzdt201006002 [20] Toda, S., Lin, J., Meghraoui, M., et al., 2008.12 May 2008 M=7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems. Geophysical Research Letters, 35(17): doi: 10.1029/2008GL034903 [21] Wang, C.Y., Mooney, W.D., Wang, X.L., et al., 2002. A Study on 3-D Velocity Structure of Crust and Upper Mantle in Sichuan-Yunnan Region, China. Acta Seismologica Sinica, 15(1): 1-16(in Chinese with English abstract). doi: 10.1007/s11589-002-0042-x [22] Wang, M., 2009. Coseismic Slip Distribution of the 2008 Wenchuan Great Earthquake Constrained Using GPS Coseismic Displacement Field. Chinese J. Geophys. , 52(10): 2519-2526 (in Chinese with English abstract). [23] Wang, R.J., Schurr, B., Milereit, C., et al., 2011. An Improved Automatic Scheme for Empirical Baseline Correction of Digital Strong-Motion Records. Bull. Seism. Soc. Am. , 101(5): 2029-2044. doi: 10.1785/0120110039 [24] Wang, W.M., Zhao, L.F., Li, J., et al., 2008. Rupture Process of the Ms8.0 Wenchuan Earthquake of Sichuan, China. Chinese J. Geophys. , 51(5): 1403-1410 (in Chinese with English abstract). http://www.researchgate.net/publication/279613838_Rupture_process_of_the_MS_8.0_Wenchuan_earthquake_of_Sichuan_China [25] Wang, X.Y., Nie, Z.G., Wang, D.W., 2010. Research on Relationship between Landslides and Peak Ground Accelerations induced by Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(1): 82-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201001009.htm [26] Wang, Y., 2001. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland: Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 126(3-4): 121-146. doi: 10.1016/S0031-9201(01)00251-5 [27] Wen, X.Z., Zhang, P.Z., Du, F., et al., 2009. The Background of Historical and Modern Seismic Activities of the Occurrence of the 2008 Ms8.0 Wenchuan, Sichuan, Earthquake. Chinese J. Geophys. , 52(2): 444-454 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqwlxb200902016 [28] Wu, Y.M., Chen, Y.G., Chang, C.H., et al., 2006. Seismogenic Structure in a Tectonic Suture Zone: With New Constraints from 2006 MW6.1 Taitung Earthquake. Geophys. Res. Lett. , 33(22): L22305. doi: 10.1029/2006GL027572 [29] Wu, Y.M., Wu, C.F., 2007. Approximate Recovery of Coseismic Deformation from Taiwan Strong-Motion Records. J. Seismol. , 11(2): 159-170. doi: 10.1007/s10950-006-9043-x [30] Xie, L.L., Yu, S.J., 1982. Strong-Motion Observation and Analysis Theory. Seismological Press, Beijing, 258 (in Chinese). [31] Xu, C.J., Liu, Y., Wen, Y.M., 2009. MW7.9 Wenchuan Earthquake Slip Distribution Inversion from GPS Measurements. Acta Geodaetica et Cartographica Sinica, 38(3): 195-201 (in Chinese with English abstract). [32] Xu, C.J., Liu, Y., Wen, Y.M., et al., 2010. Coseismic Slip Distribution of the 2008 MW7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data. Bull. Seismol. Soc. Am. , 100(5B): 2736-2749. doi: 10.1785/0120090253 [33] Xu, X.W., Wen, X.Z., Ye, J.Q., et al., 2008. The Ms8.0 Wenchuan Earthquake Surface Ruptures and Its Seismogenic Structure. Seismology and Geology, 30(3): 597-629 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200803003 [34] Xu, X.W., Wen, X.Z., Yu, G.H., et al., 2009. Coseismic Reverse and Oblique-Slip Surface Faulting Generated by the 2008 MW 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1 [35] Zhang, P., Shen, Z., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 [36] Zhang, P.Z., 2008. The Coseismic Displacement Field of Wenchuan Ms8.0 Earthquake 2008. Science in China, 38(10): 1195-1206 (in Chinese). [37] Zhang, P.Z., Xu, X.W., Wen, X.Z., et al., 2008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone and Tectonic Implications for the Mechanism of the May 12 Wenchuan Earthquake, 2008, Sichuan, China. Chinese J. Geophys. , 51(4): 1066-1073 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200804017.htm [38] Zhang, Y., Feng, W.P., Xu, L.S., et al., 2008. Spatio-Temporal Rupture Process of the 2008 Great Wenchuan Earthquake. Science China (Ser. D), 38(10): 1186-1194 (in Chinese). [39] Zhao, Z., Fan, J., Zheng, S.H., et al., 1997. Precision Determination of the Crustal Structure and Hypocentral Locations in the Longmenshan Thrust Nappe Belt. Acta Seismologica Sinica, 19(6): 615-622 (in Chinese). http://www.researchgate.net/publication/288896455_Precision_determination_of_the_crustal_structure_and_hypocentral_locations_in_the_Longmenshan_thrust_nappe_belt [40] 邓起东, 陈社发, 赵小麟, 1994. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 16(4): 389-403. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ404.013.htm [41] 国家重大科学工程"中国地壳运动观测网络"项目组, 2008. GPS测定的2008年汶川Ms8.0级地震的同震位移场. 中国科学(D辑), 38(10): 1195-1208. doi: 10.3321/j.issn:1006-9267.2008.10.003 [42] 卢寿德, 李小军, 杜玮, 等, 2008. 汶川Ms8.0地震未校正加速度记录. 北京: 地震出版社. [43] 单斌, 熊熊, 郑勇, 等, 2009.2008年5月12日MW7.9汶川地震导致的周边断层应力变化. 中国科学(D辑), 39(5): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905001.htm [44] 滕吉文, 白登海, 杨辉, 等, 2008.2008汶川Ms8.0地震发生的深层过程和动力学响应. 地球物理学报, 51(5): 1385-1402. doi: 10.3321/j.issn:0001-5733.2008.05.012 [45] 王椿镛, Mooney, W.D., 王溪莉, 等, 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报, 24(1): 1-16. doi: 10.3321/j.issn:0253-3782.2002.01.001 [46] 王敏, 2009. 基于GPS同震位移场约束反演2008年5·12汶川大地震破裂空间分布. 地球物理学报, 52(10): 2519-2526. doi: 10.3969/j.issn.0001-5733.2009.10.010 [47] 王卫民, 赵连锋, 李娟, 等, 2008. 四川汶川Ms8.0地震震源过程. 地球物理学报, 51(5): 1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013 [48] 王秀英, 聂高众, 王登伟, 2010. 汶川地震诱发滑坡与地震峰值加速度对应关系研究. 岩石力学与工程学报, 29(1): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001009.htm [49] 闻学泽, 张培震, 杜方, 等, 2009.2008年汶川Ms8.0地震发生的历史与现今地震活动背景. 地球物理学报, 52(2): 444-454. [50] 谢礼力, 于双久, 1982. 强震观测与分析原理. 北京: 地震出版社, 258. [51] 许才军, 刘洋, 温扬茂, 2009. 利用GPS资料反演汶川MW7.9级地震滑动分布. 测绘学报, 38(3): 195-201. doi: 10.3321/j.issn:1001-1595.2009.03.002 [52] 徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川Ms8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629. doi: 10.3969/j.issn.0253-4967.2008.03.003 [53] 张培震, 徐锡伟, 闻学泽, 等, 2008.2008年汶川Ms8.0地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4): 1066-1073. doi: 10.3321/j.issn:0001-5733.2008.04.015 [54] 张勇, 冯万鹏, 许力生, 等, 2008.2008年汶川大地震的时空破裂过程. 中国科学(D辑), 38(10): 1186-1194. doi: 10.3321/j.issn:1006-9267.2008.10.002 [55] 赵珠, 范军, 郑斯华, 等, 1997. 龙门山断裂带地壳速度结构和震源位置的精确修订. 地震学报, 19(6): 615-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB706.007.htm [56] 中国地震局监测预报司, 2009. 汶川Ms8.0地震科学研究报告. 北京: 地震出版社.