Boundary Compensation Approach in Geomagnetic Map Preparation Based on BEMD
-
摘要: 针对采用矩谐分析方法构建地磁基准图的边界震荡问题, 提出一种基于二维经验模态分解的区域地磁异常数据边界补偿方法.采用二维经验模态分解方法对区域地磁异常数据进行多尺度分解, 对分解所得小尺度本征模态函数分量, 利用总体Hilbert变换法进行瞬时频率和瞬时幅值特征提取, 通过自采样和特征匹配进行边界补偿; 将大尺度分量之和作为趋势项, 利用三角函数方法建立模型并计算边界之外的大尺度磁异常值.实验证明, 相比当前已有方法, 可以更加有效地抑制对区域地磁异常数据进行矩谐分析的边界震荡问题, 稳定提高构建地磁基准图的准确性.Abstract: A boundary compensation method based on bi-dimensional empirical mode decomposition (BEMD) is proposed in this paper to address the boundary effect in preparation of geomagnetic navigation reference map. The local geomagnetic anomaly data are firstly decomposed into components with different scales with BEMD; then for small scale ones instant amplitude and frequency are computed with total Hilbert transform, and the boundary is compensated with self-sampling and feature-matching; whereas for the large scale ones, trigonometric function model is conducted and used to compute the values outside the boundary. After the compensation of local dataset, rectangular harmonic model is used to prepare geomagnetic map. Experimental results indicate that BEMD method could better compress the boundary effect of rectangular harmonic analysis, and improve the mapping precision steadily in comparison with other existing methods.
-
表 1 不同方法边界补偿效果对比
Table 1. Comparison of different compensation methods
数据编号 A B C 原始边界震荡 37.527 48.425 34.753 Malin et al.(1996)方法 28.639 34.739 26.331 李明明等(2010)方法 25.815 32.121 24.727 乔玉坤等(2010b)方法 36.703 46.308 32.562 本文方法 19.318 24.643 18.248 注:单位为nT. -
[1] Alldredge, L.R., 1981. Rectangular Harmonic Analysis Applied to the Geomagnetic Field. Journal of Geophsical Research: Solid Earth, 86(B4): 3021-3026. doi: 10.1029/JB086iB04p03021 [2] Chen, J.G., Xiao, F., Chang, T., 2011. Gravity and Magnetic Anomaly Separation Based on Bidimensional Empirical Mode Decomposition. Earth Science—Journal of China University of Geosciences, 36(2): 327-335 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.034 [3] Hou, W.S., Yang, Z.J., Zhou, Y.Z., 2012. Extracting Magnetic Anomalies Based on an Improved BEMD Method: A Case Study in the Pangxidong Area, South China. Computers & Geosciences, 48: 1-8. doi: 10.1016/j.cageo.2012.05.006 [4] Huang, J.N., Zhao, B.B., Chen, Y.Q., et al., 2010. Bidimensional Empirical Mode Decomposition (BEMD) for Extraction of Gravity Anomalies Associated with Gold Mineralization in the Tongshi Gold Field, Western Shandong Uplifted Block, Eastern China. Computers & Geosciences, 36(7): 987-995. doi: 10.1016/j.cageo.2009.12.007 [5] Huang, N.E., Shen, Z., Long, S.R., et al., 1998. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A, 454: 903-995. doi: 10.1098/rspa.1998.0193 [6] Li, M.M., Huang, X.L., Lu, H.Q., et al., 2010. Modeling of High Accuracy Local Geomagnetic Field Base on Rectangular Harmonic Analysis. Journal of Astronautics, 31(7): 1730-1736 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-astronautics_thesis/0201220249914.html [7] Malin, S.R.C., Duzgit, Z., Baydemir N., 1996. Rectangular Harmonic Analysis Revisited. Journal of Geophysical Research, 101(B12): 28205-28209. doi: 10.1029/96JB01885 [8] Nunes, J.C., Bounaoune, Y., Delechelle, E., et al., 2003. Image Analysis by Bidimensional Empirical Mode Decomposition. Image and Vision Computing, 21(12): 1019-1026. doi: 10.1016/S0262-8856(03)00094-5 [9] Qiao, Y.K., Wang, S.C., Zhang, J.S., et al., 2010a. A Constructing Method of Reference Maps for Geomagnetic Navigation Using Rectangular Harmonic Analysis and Support Vector Machine. Journal of Xi'an Jiaotong University, 44(10): 47-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAJT201010014.htm [10] Qiao, Y.K., Wang, S.C., Zhang, J.S., et al., 2010b. RHA and BP Neural Network Based Constructing Method for Geomagnetic Reference Map. Acta Armamentarii, 31(9): 1254-1258 (in Chinese with English abstract). http://www.researchgate.net/publication/290762267_RHA_and_BP_neural_network_based_constructing_method_for_geomagnetic_reference_map [11] Spector, A., Grant, F.S., 1970. Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35: 293-302. doi: 10.1190/1.1440092 [12] Thomas, B., Gerald, S., 2001. Hypercomplex Signals—A Novel Extension of the Analytic Signal to the Multidimensional Case. IEEE Trans. on Signal Processing, 49(11): 2844-2852. doi: 10.1109/78.960432 [13] Tyren, C., 1982. Magnetic Anomalies as a Reference for Ground-Speed and Map-Matching Navigation. The Journal of Navigation, 35(2): 242-254. doi: 10.1017/S0373463300022025 [14] Wang, W.Y., Pan, Z.S., 1997. The Trigonometric Function Methods for Data-Processing and Transform of Curved Surface Potential Field. Geophysical & Geochemical Exploration, 21(3): 209-218 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-WTYH199703008.htm [15] 陈建国, 肖凡, 常韬, 2011. 基于二维经验模态分解的重磁异常分离. 地球科学——中国地质大学学报, 36(2): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102019.htm [16] 李明明, 黄显林, 卢鸿谦, 等, 2010. 基于矩谐分析的高精度局部地磁场建模研究. 宇航学报, 31(7): 1730-1736. doi: 10.3873/j.issn.1000-1328.2010.07.006 [17] 乔玉坤, 王仕成, 张金生, 等, 2010a. 采用矩谐分析和支持向量机的地磁导航基准图制备方法. 西安交通大学学报, 44(10): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201010014.htm [18] 乔玉坤, 王仕成, 张金生, 等, 2010b. 基于矩谐分析和BP神经网络的地磁基准图制备方法. 兵工学报, 31(9): 1254-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201009022.htm [19] 王万银, 潘作枢, 1997. 曲面位场数据处理及转换的三角函数法. 物探与化探, 21(3): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199703008.htm