Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing
-
摘要: 碳酸盐岩的硫酸风化机制及其与碳循环的关系是全球碳循环研究中最为关注的科学问题之一, 其关键问题是识别硫酸盐来源.通过分析长江干流丰水期SO42-浓度及其硫、氧同位素组成特征, 探讨长江硫酸盐的来源及其主要控制因素.长江河水SO42-含量呈现逐年增加的趋势, 并且年增幅度逐渐加大.δ34SSO4和δ18OSO4变化范围为-3.5‰~5.6‰和3.7‰~9.2‰, 二者呈现显著的线性负相关关系.δ18OSO4值从上游到下游的增加趋势受长江水δ18OH2O值的空间组成特征的影响.研究表明, 大气降水(酸雨)和硫化物氧化是控制长江干流丰水期河水硫、氧同位素组成及其来源的主要机制, 为研究长江流域化学风化侵蚀作用和碳循环过程提供重要的理论依据.Abstract: Crustal weathering by sulfuric acid and its relationship with carbon cycling is a subject of greatest concern in the domain of global carbon cycling, with its key issue of the identification of riverine sulfate sources. In this study, stable sulfur and oxygen isotope compositions of riverine sulfate in the mainstream of the Yangtze River during rainy season are determined to trace the riverine sulfate sources and controlling factors. The SO42-concentration keeps increasing with ever-increasing annual growth rate. The isotope compositions of dissolved sulfate in the Yangze River range from -3.5‰ to 5.6‰ for δ34SSO4 and from 3.7‰ to 9.2‰ for δ18OSO4, showing a significantly negative linear correlation between δ34SSO4 and δ18OSO4. The tendency of increased δ18OSO4 values from upstream to downstream is controlled by δ18OH2O values of the Yangtze River water. It is indicated that atmospheric acid deposition and sulfide oxidation are dominant sources of dissolved sulfate in the Yangze River. This study offers theoretical basis which facilitates further environmental explorations for chemical weathering of carbonate and carbon cycling.
-
Key words:
- sulfur isotope /
- oxygen isotope /
- sulfate source /
- the Yangtze River /
- geochemistry
-
图 1 长江流域采样点分布(据丁悌平等(2013)修改)
Fig. 1. A sketch map of the Yangtze River drainage area with sampling locations
表 1 长江干流丰水期河水主要离子与同位素组成的分析结果
Table 1. Chemical and isotopic compositions of Yangtze River during high water period
样品编号 采集时间 采样地点 经纬度坐标 pH EC(μS/cm) SO42- Cl- HCO3- K++Na+ Ca2+ Mg2+ δ34SSO4(‰ vs. VCDT) δ18OSO4(‰ vs. VSMOW) δ18OH2O(‰ vs. VSMOW) (mg/L) CJ1 2013.8.14 宜宾 E104°36′50.65″, N28°45′23.84″ 8.19 317 37.3 24.9 124.4 22.4 31.3 7.7 3.5 5.0 -14.6 CJ2 2013.8.15 泸州 E105°26′07.41″, N28°52′13.31″ 8.07 306 37.9 20.1 127.7 19.8 32.1 7.5 -0.8 5.9 -13.9 CJ3 2013.8.16 重庆 E106°31′28.72″, N29°31′39.03″ 7.90 319 41.3 19.4 129.6 19.4 34.6 7.3 2.7 5.0 -13.7 CJ4 2013.8.17 涪陵 E107°23′20.32″, N29°42′53.31″ 7.96 312 39.5 18.0 128.3 18.0 35.4 7.3 - - -13.2 CJ5 2013.8.19 万州 E108°22′54.51″, N30°48′34.17″ 7.88 312 28.8 14.6 127.0 17.0 36.0 6.9 0.8 6.0 -12.7 CJ6 2013.8.20 奉节 E109°27′23.70″, N31°00′05.66″ 7.86 319 41.9 16.8 132.9 17.0 36.8 6.8 1.5 6.9 -12.7 CJ7 2013.8.20 巴东 E110°19′46.73″, N31°02′55.35″ 7.80 328 45.4 15.0 130.3 16.0 39.6 6.8 5.4 4.5 -11.9 CJ8 2013.8.20 宜昌 E111°16′50.94″, N30°45′16.03″ 8.01 329 43.1 16.4 133.6 17.6 37.6 7.2 3.7 5.7 -11.8 CJ9 2013.8.22 沙市 E112°14′19.51″, N30°18′22.67″ 7.84 335 42.2 17.3 128.3 17.0 37.0 7.0 5.2 3.7 -11.1 CJ23 2013.8.14 监利 E110°03′51.87″, N29°26′44.78″ 7.96 324 36.1 14.8 130.0 17.4 37.3 6.9 -0.4 8.0 -11.5 CJ10 2013.8.23 岳阳 E113°31′00.27″, N29°49′53.60″ 7.88 312 30.4 14.2 124.1 16.5 36.4 6.6 1.3 7.6 -12.3 CJ11 2013.8.22 洪湖 E114°14′27.08″, N30°30′15.16″ 7.88 321 30.7 15.3 130.6 15.1 31.3 5.6 -3.5 9.2 -10.1 CJ12 2013.8.22 武汉 E115°03′58.39″, N30°14′48.88″ 7.82 312 33.3 12.6 126.7 14.5 38.9 6.3 5.6 5.2 -10.7 CJ13 2013.8.7 黄石 E116°00′32.40″, N29°44′30.52″ 7.77 313 35.8 12.4 128.3 15.1 38.3 6.4 3.8 7.0 -10.3 CJ14 2013.8.6 九江 E117°03′09.14″, N30°30′10.59″ 7.73 293 34.5 11.8 117.3 14.2 35.5 6.0 -0.5 8.0 -9.5 CJ15 2013.8.5 安庆 E117°43′51.69″, N30°51′09.96″ 7.78 304 33.9 12.7 123.8 14.7 36.5 6.0 4.8 5.1 -9.6 CJ16 2013.8.4 铜陵 E118°21′03.37″, N31°20′21.64″ 7.73 306 35.0 12.9 122.2 15.1 37.7 6.1 -0.3 7.0 -9.5 CJ17 2013.8.4 芜湖 E118°29′11.98″, N31°45′58.97″ 7.73 317 36.8 13.0 126.7 14.9 39.0 6.4 -1.5 8.4 -9.4 CJ18 2013.8.3 马鞍山 E118°37′08.29″, N31°56′32.31″ 7.73 319 38.0 12.8 128.7 14.8 39.7 6.5 2.4 6.3 -8.5 CJ19 2013.8.2 南京 E119°22′47.55″, N32°13′55.79″ 7.73 330 39.3 15.1 123.1 17.4 39.1 6.6 0.8 6.3 -9.1 CJ20 2013.7.31 镇江 E120°48′09.53″,N32°01′03.04″ 7.81 319 36.9 15.4 114.0 21.3 45.7 7.6 -0.8 8.4 -9.2 CJ21 2013.7.30 南通 E121°36′44.00″, N31°21′29.00″ 7.58 409 37.4 34.9 123.5 35.4 39.4 7.4 1.7 7.0 -8.4 CJ22 2013.7.28 上海 E113°01′25.00″, N29°31′44.50″ 7.78 338 48.9 13.5 137.5 17.0 39.7 7.0 -2.3 8.8 -7.6 表 2 铜陵-芜湖段SO42-含量与历史数据的对比
Table 2. Comparisons of SO42- concentration and its growth rate in the lower Tongling-Wuhu area
取样地点 取样时间 SO42-(mg/L) 年增幅(mg/(L·a)) 铜陵-芜湖段 2013年8月 35.0~36.8(35.9)a 1.00b 大通附近 2007年7月 29.6~30.1(29.9)(夏学齐等, 2008) 0.85c 大通 1958—1990年平均值 11.9(Chen et al., 2002) 0.22d a.本研究的数据,括号内为铜陵-芜湖段数据的平均值;b.2007—2013年的SO42-增加速率;c.1990—2007年的SO42-增加速率.其中,1990年SO42-含量(15.4mg/L)是结合1958—1990年SO42-含量平均值(11.9mg/L)及其年增幅估算的;d.1958—1990年的SO42-增加速率,数据来源于 Chen et al.(2002) . -
[1] Bao, H.M., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304-309. doi: 10.1021/ac051568z [2] Brunner, B., Bernasconi, S.M., 2005. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759-4771. doi: 10.1016/j.gca.2005.04.015 [3] Brunner, B., Bernasconi, S.M., Kleikemper, J., et al., 2005. A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 69(20): 4773-4785. doi: 10.1016/j.gca.2005.04.017 [4] Calmels, D., Gaillardet, J., Brenot, A., et al., 2007. Sustained Sulfide Oxidation by Physical Erosion Processes in the Mackenzie River Basin: Climatic Perspectives. Geology, 35(11): 1003-1006. doi: 10.1130/G24132A.1 [5] Chen, J.S., Wang, F.Y., Xia, X.H., et al., 2002. Major Element Chemistry of the Changjiang (Yangtze River). Chemical Geology, 187(3-4): 231-255. doi: 10.1016/S0009-2541(02)00032-3 [6] Ding, T.P., Gao, J.F., Shi, G.Y., et al., 2013. The Contents and Mineral and Chemical Compositions of Suspended Particulate Materials in the Yangtze River, and Their Geological and Environmental Implications. Acta Geologica Sinica, 87(5): 634-660 (in Chinese with English abstract). [7] Du, F., 2012. Inorganic Sulfur and Nitrogen Isotope Variation in Atmospheric Precipitation at Chengdu, China (Dissertation). Chengdu University of Technology, Chengdu, 30-32 (in Chinese with English abstract). [8] Jiang, Y.K., Liu, C.Q., Tao, F.X., 2006. Sulfur Isotope Compositions of Wujiang River Water in Guizhou Province during Low-Flow Period. Geochimica, 35(6): 623-628 (in Chinese with English abstract). [9] Jiang, Y.K., Liu, C.Q., Tao, F.X., 2007. Sulfur Isotope Composition Characters of Wujiang River Water in Guizhou Province. Advances in Water Science, 18(4): 558-565 (in Chinese with English abstract). [10] Krouse, H.R., Mayer, B., 2000. Sulphur and Oxygen Isotopes in Sulphate. In: Cook, P.G., Herczeg, A.L., eds., Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, Boston, 195-231. [11] Li, J., Liu, C.Q., Li, L.B., et al., 2010. The Impacts of Chemical Weathering of Carbonate Rock by Sulfuric Acid on the Cycling of Dissolved Inorganic Carbon in Changjiang River Water. Geochimica, 39(4): 305-313 (in Chinese with English abstract). [12] Li, X.D., Liu, C.Q., Liu, X.L., et al., 2011a. Identication of Dissolved Sulfate Sources and the Role of Sulfuric Acid in Carbonate Weathering Using Dual-Isotopic Data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42(3): 370-380. doi: 10.1016/j.jseaes.2011.06.002 [13] Li, S.L., Liu, C.Q., Patra, S., et al., 2011b. Using a Dual Isotopic Approach to Trace Sources and Mixing of Sulphate in Changjiang Estuary, China. Applied Geochemistry, 26(S): S210-S213. doi: 10.1016/j.apgeochem.2011.03.106 [14] Li, X.Q., Gan, Y.Q., Zhou, A.G., et al., 2013a. Hydrological Controls on the Sources of Dissolved Sulfate in the Heihe River, a Large Inland River in the Arid Northwestern China, Inferred from S and O Isotopes. Applied Geochemistry, 35: 99-109. doi: 10.1016/j.apgeochem.2013.04.001 [15] Li, X.Q., Bao, H.M., Gan, Y.Q., et al., 2013b. Multiple Oxygen and Sulfur Isotope Compositions of Secondary Atmospheric Sulfate in a Mega-City in Central China. Atmospheric Environment, 81: 591-599. doi: 10.1016/j.atmosenv.2013.09.051 [16] Mukai, H., Tanaka, A., Fujii, T., et al., 2001. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environmental Science and Technology, 35(6): 1064-1072. doi: 10.1021/es001399u [17] Stögbauer, A., Strauss, H., Arndt, J., et al., 2008. Rivers of North-Rhine Westphalia Revisited: Tracing Changes in River Chemistry. Applied Geochemistry, 23(12): 3290-3304. doi: 10.1016/j.apgeochem.2008.06.030 [18] Turchyn, A.V., Tipper, E.T., Galy, A., et al., 2013. Isotope Evidence for Secondary Sulfide Precipitation along the Marsyandi River, Nepal, Himalayas. Earth and Planetary Science Letters, 374: 36-46. doi: 10.1016/j.epsl.2013.04.033 [19] Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. doi: 10.1016/j.chemgeo.2009.05.009 [20] Van Stempvoort, D.R., Krouse, H.R., 1994. Controls of δ18O in Sulphate. In: Alpers, C.A., Blowes, D.W., eds., Environmental Geochemistry of Sulphide Oxidation. American Chemical Society, Washington D.C., 445-479. [21] Wang, Y.P., Wang, L., Xu, C.X., et al., 2010. Hydro-Geochemistry and Genesis of Major Ions in the Yangtze River, China. Geological Bulletin of China, 29(2-3): 446-456 (in Chinese with English abstract). [22] Wu, Q.X., Han, G.L., 2012. Isotopic Composition and Isotope Tracing of Sulfur in Atmospheric Precipitation at the Head Area of the Three Gorges Reservoir, China. Environmental Science, 33(7): 2145-2150 (in Chinese with English abstract). [23] Xia, X.H., Wu, Q., Mou, X.L., 2012. Advances in Impacts of Climate Change on Surface Water Quality. Advances in Water Science, 23(1): 124-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201201017.htm [24] Xia, X.Q., Yang, Z.F., Wang, Y.P., et al., 2008. Major Ion Chemistry in the Yangtze River. Earth Science Frontiers, 15(5): 194 -202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200805020.htm [25] Xiao, H.W., Xiao, H.Y., Long, A.M., et al., 2011. Sulfur Isotopic Geochemical Characteristics in Precipitation at Guiyang. Geochimica, 40(6): 559-565 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201106006.htm [26] Yue, S.K., Pan, J.Y., Chen, Y.P., et al., 2007. Study on Sulfur Isotopes in Rain Water and Lake Water in Nanchang City. Earth and Environment, 35(4): 297-302 (in Chinese with English abstract). [27] Zhang, D., Huang, X.Y., Li, C.J., 2013. Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes. Advances in Water Science, 24(3): 418-426 (in Chinese with English abstract). [28] Zhang, F.E., Lu, Y.R., Yin, M.Y., et al., 2012. Sulfur Isotopic Evidence for Biological Karst of Sulfate Rocks in Burial Environment. Earth Science—Journal of China University of Geosciences, 37(2): 357-364 (in Chinese with English abstract). [29] 丁悌平, 高建飞, 石国钰, 等, 2013. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义. 地质学报, 87(5): 634-660. doi: 10.3969/j.issn.0001-5717.2013.05.004 [30] 杜锋, 2012. 成都市大气降水中无机硫、氮同位素的变化特征(硕士学位论文). 成都: 成都理工大学, 30-32. [31] 蒋颖魁, 刘丛强, 陶发祥, 2006. 贵州乌江水系枯水期河水硫同位素组成研究. 地球化学, 35(6): 623-628. doi: 10.3321/j.issn:0379-1726.2006.06.007 [32] 蒋颖魁, 刘丛强, 陶发祥, 2007. 贵州乌江水系河水硫同位素组成特征研究. 水科学进展, 18(4): 558-565. doi: 10.3321/j.issn:1001-6791.2007.04.013 [33] 李军, 刘丛强, 李龙波, 等, 2010. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响. 地球化学, 39(4): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201004002.htm [34] 王亚平, 王岚, 许春雪, 等, 2010. 长江水系水文地球化学特征及主要离子的化学成因. 地质通报, 29(2-3): 446-456. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1033.htm [35] 吴起鑫, 韩贵琳, 2012. 三峡库首秭归地区大气降水硫同位素组成及示踪研究. 环境科学, 33(7): 2145-2150. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201207001.htm [36] 夏星辉, 吴琼, 牟新利, 2012. 全球气候变化对地表水环境质量影响研究进展. 水科学进展, 23(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201017.htm [37] 夏学齐, 杨忠芳, 王亚平, 等, 2008. 长江水系河水主要离子化学特征. 地学前缘, 15(5): 194-202. doi: 10.3321/j.issn:1005-2321.2008.05.020 [38] 肖红伟, 肖化云, 龙爱民, 等, 2011. 贵阳大气降水硫同位素地球化学特征. 地球化学, 40(6): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201106006.htm [39] 乐淑葵, 潘家永, 陈益平, 等, 2007. 南昌市雨水和湖水硫同位素特征的研究. 地球与环境, 35(4): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200704002.htm [40] 张东, 黄兴宇, 李成杰, 2013. 硫和氧同位素示踪黄河及支流河水硫酸盐来源. 水科学进展, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm [41] 张凤娥, 卢耀如, 殷密英, 等, 2012. 埋藏环境中硫酸盐岩生物岩溶作用的硫同位素证据, 地球科学——中国地质大学学报, 37(2): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202026.htm