Control Mechanism of Buried Depth and In-Situ Stress for Coal Reservoir Permeability in Western Guizhou
-
摘要: 基于黔西六盘水煤田和织纳煤田16口井36层次的试井资料, 采用地质统计分析等方法, 探讨了黔西地区煤储层渗透性的展布规律与地应力特征, 论证了煤层埋深与地应力对其渗透性的控制机制.研究表明, 研究区煤储层以特低渗-低渗透率储层(<0.1×10-9m2)为主, 中渗透率储层(0.1×10-9~1.0×10-9m2)也占有相当大比例; 应力场类型在浅部表现为大地动力场型, 一定深度可能转化为准静水压力状态.煤储层渗透率及其埋深的负幂指数关系较为离散, 但在不同深度渗透率转折点与地应力场类型转变一致; 单井煤储层试井渗透率差异较大, 随地应力增大和埋深增加而降低, 平面展布受地应力强度控制由SW-NE具"低-高-低"发育规律.埋深对渗透率的控制实质是地应力的控制, 区域构造位置及其所处高应力场作用下的煤体形变与破碎致使孔裂隙压缩或闭合是该区渗透性差异的主要控制机制.Abstract: Based on geological analysis of data of 16 testing wells in the Liupanshui and Zhina coalfields, the spatial distribution of coal reservoir permeability and characteristics of in-situ stress in the western Guizhou are discussed, and the control mechanism of buried depth and in-situ stress for coal reservoir permeability is obtained in this study. It is shown that the coal reservoirs have the characteristic of ultra-low and low permeability (< 0.1×10-9m2), and the permeability of coal reservoir with 0.1×10-9-1.0×10-9m2 has considerably large proportion. The type of in-situ stress field is gradually undergoing a possible change from dynamic field in shallow layer to hydrostatic pressure field in deep layer. It has a negative power exponent relationship of coal reservoir permeability and buried depth, but the change of permeability is in accordance with in-situ stress field changed. The permeability of coal reservoir varies in different testing wells, decreasing with the increased in-situ stress and depth, and its spatial distribution has a law of "low-high-low" from SW to NE for the intensity of the stress controlled. The role of coal depth to permeability is supposed to be the in-situ stress in action essentially. The main control mechanism of coal permeability difference is that the pore and fracture tend to compress or close caused by the deformation and fragmentation of coal reservoirs under the influence of high in-situ stress in regional tectonic location of study area.
-
Key words:
- western Guizhou /
- coal reservoir /
- permeability /
- buried depth /
- in-situ stress /
- control mechanism /
- energy geology
-
图 3 黔西地区应力随煤层深度变化趋势
a.六盘水煤田;b.织纳煤田,其中2个数据姜永东,2011
Fig. 3. Trend of in-situ stress variation with increased coal seam depth in western Guizhou
表 1 水力压裂试验结果分区统计
Table 1. Parameter statistics of hydraulic fracturing test in western Guizhou
地区 煤层埋深(m) 渗透率(10-9m2) 闭合压力(MPa) 闭压梯度(MPa/102m) σH/σv σH/σh σh/σv 探测半径(m) 亮山 1062.0~1243.6/ 1139.6 0.0004~0.0096/ 0.0035 23.76~27.36/ 25.57 2.1~2.4/ 2.2 1.03~1.32/ 1.14 1.26~1.49/ 1.39 0.78~0.89/ 0.55 - 金竹坪 359.09~554.24/ 440.62 0.0044~0.4260/ 0.1492 10.40~15.68/ 13.14 2.84~3.28/ 3.02 1.52~1.64/ 1.59 1.34~1.53/ 1.44 1.05~1.21/ 1.11 - 青山 292.33~771.73/ 568.70 0.000173~0.48/ 0.0549 6.28~20.65/ 11.27 1.16~2.86/ 2.35 0.45~1.51/ 0.96 0.98~1.55/ 1.28 0.40~1.03/ 0.76 0.13~8.64/ 2.64 都格 807.89~869.48/ 838.69 0.0459~0.0434/ 0.0447 9.56~13.33/ 11.45 1.20~1.55/ 1.38 0.52~0.82/ 0.67 1.19~1.44/ 1.32 0.44~0.57/ 0.50 2.90~8.30/ 5.60 化乐 464.04~577.76/ 517.52 0.1074~0.5002/ 0.2797 8.09~11.75/ 9.36 1.76~2.06/ 1.83 0.85~1.08/ 0.97 1.34~1.56/ 1.45 0.63~0.75/ 0.67 11.40~42.20/ 29.80 洞口 431.38~736.98/ 516.02 0.000164~0.0179/ 0.0062 8.01~17.56/ 13.72 2.10~3.64/ 2.71 1.01~2.26/ 1.54 1.30~1.69/ 1.50 0.78~1.34/ 1.00 1.23~1.82/ 1.53 织金 135.90~142.78/ 139.34 1.3103~1.5621/ 1.4362 2.14~2.40/ 2.27 1.69~1.75/ 1.72 0.76~0.81/ 0.78 1.30~1.31/ 1.31 0.58~0.62/ 0.60 9.40~10.70/ 10.05 注:σH/σv,水平最大主应力与垂直主应力比值;σH/σh,水平最大主应力与最小主应力比值;σh/σv,水平最小主应力与垂直主应力比值;1062.0~1243.6/1139.6,最大值~最小值/平均值;亮山,金竹坪数据引自贵州省煤田地质局内部报告,2011. -
[1] Anderson, E.M., 1972. The Dynamics of Faulting and Dyke Formation with Application to Britain. Hafner Pub. Co., New York, 1-50. [2] Brown, E.F., Hoek, E., 1978. Technical Note Trends in Relationships between Measured In-Situ Stresses and Depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15: 211-215. [3] Chen, B.J., Wen, C.Q., Cao, S.Y., et al., 2008. The Prospect of Coalbed Methane Exploration and Utilization in Liupanshui Region. Guizhou Geology, 25(4): 270-275 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ200804011.htm [4] Chen, G., Qin, Y., Yang, Q., et al., 2014. Different Stress Sensitivity of Different Coal Rank Reservoir Permeability and its Effect on the Coalbed Methane Output. Journal of Chnia Coal Society, 39(3): 504-509 (in Chinese with English abstract). doi: 10.13225/j.cnki.jccs.2013.1292 [5] Connell, L.D., Lu, M., Pan, Z., 2010. An Analytical Coal Permeability Model for Tri-Axial Strain and Stress Conditions. International Journal of Coal Geology, 84(2): 103-114. doi: 10.1016/j.coal.2010.08.011 [6] Fatt, I., Davis, D.H., 1952. Reduction in Permeability with Overburden Pressure. Journal of Petroleum Technology, 4(12): 34-41. doi: 10.2118/952329-G [7] Fu, X.H., Qin, Y., Wei, C.T., 2007. Coalbed Methane Geology. China University of Mining and Technology Press, Xuzhou, 101-108 (in Chinese). [8] Huang, W., Xu, H.J., Zhang, B.J., et al., 2013. Characteristics and CBM Potentials of Coal Seams in the Zhina Coalfield, Guizhou. Natural Gas Industry, 33(6): 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201308007.htm [9] Jiang, Y., 2008. CBM Geological Features and Exploitation Evaluation in Guanzhai Minefield, Qianxi County. Coal Geology of China, 20(4): 39-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200804012.htm [10] Li, J.Q., Liu, D.M., Yao, Y.B., et al., 2013. Controls of Gas Slippage and Effective Stress on the Gas Permeability of Coal. Natural Gas Geoscience, 24(5): 1074-1078 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201305028.htm [11] Lian, C.B., Li, H.L., 2005. Mechanism Research about Effect of In-Situ Stress on Coalbed Permeability. Coal Geology & Exploration, 33(2): 30-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT200502008.htm [12] Ma, Q., Harpalani, S., Liu, S.M., 2011. A Simplified Permeability Model for Coalbed Methane Reservoirs Based on Matchstick Strain and Constant Volume Theory. International Journal of Coal Geology, 85(1): 43-48. doi: 10.1016/j.coal.2010.09.007 [13] McLatchie, A.S., Hemstock, R.A., Young, L.W., 1958. The Effective Compressibility of Reservoir Rock and Its Effects on Permeability. Journal of Petroleum Technology, 10(6): 49-51. doi: 10.2118/894-G [14] Meng, Z.P., Hou, Q.L., 2012. Experimental Research on Stress Sensitivity of Coal Reservoir and Its Influencing Factors. Journal of China Coal Society, 37(3): 430-437 (in Chinese with English abstract). [15] Meng, Z.P., Lan, Q., Liu, C.L., et al., 2013. In-Situ Stress and Coal Reservoir Pressure in Southeast Margin of Ordos Basin and Their Coupling Relations. Journal of China Coal Society, 38(1): 122-128 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000001/art00020 [16] Meng, Z.P., Tian, Y.D., Li, G.F., 2009. Relationship between Permeability of Coal Reservoirs and In-Situ Stress in Southern Qinshui Basin and Its Controlling Mechanism. Progress in Natural Science, 19(10): 1142-1148 (in Chinese). http://www.researchgate.net/publication/284674638_Relationship_between_permeability_of_coal_reservoirs_and_in-situ_stress_in_Southern_Qinshui_Basin_and_its_controlling_mechanism [17] Meng, Z.P., Zhang, J.C., Wang, R., 2011. In-Situ Stress, Pore Pressure, and Stress-Dependent Permeability in the Southern Qinshui Basin. International Journal of Rock Mechanics and Mining Sciences, 48(1): 122-131. doi: 10.1016/j.ijrmms.2010.10.003 [18] Min, K.B., Rutqvist, J., Tsang, C.F., et al., 2004. Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1191-1210. doi: 10.1016/j.ijrmms.2004.05.005 [19] Qin, Y., Xiong, M.H., Yi, T.S., et al., 2008. On Unattached Multiple Superposed Coalbed-Methane System: In a Case of the Shuigonghe Syncline, Zhijin-Nayong Coalfield, Guizhou. Geological Review, 54(1): 65-70 (in Chinese with English abstract). http://www.researchgate.net/publication/285495774_On_Unattached_Multiple_Superposed_Coalbed-Methane_System_In_a_Case_of_the_Shuigonghe_Syncline_Zhijin-Nayong_Coalfield_Guizhou [20] Shen, Y.L., Qin, Y., Guo, Y.H., et al., 2012. Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation. Earth Science—Journal of China University of Geosciences, 37(3): 573-579 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.064 [21] Su, X.B., Lin, X.Y., 2009. Coalbed Methane Geology. China Coal Industry Publishing House, Beijing, 39-44 (in Chinese). [22] Tao, S., Wang, Y.B., Tang, D.Z., et al., 2012. Dynamic Variation Effects of Coal Permeability during the Coalbed Methane Development Process in the Qinshui Basin, China. International Journal of Coal Geology, 93: 16-22. doi: 10.1016/j.coal.2012.01.006 [23] Wang, J.L., Qin, Y., Fu, X.H., 2012. Dynamic Changes Laws of the Coal Reservoirs Permeability under the Superimposition of Multi Influential Factors. Journal of China Coal Society, 37(8): 1348-1353 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000008/art00018 [24] Wang, X., Wu, Y.L., Qin, X.Y., et al., 2004. Prospects for Exploration and Development of Coalbed Methane in Yizikong Basin in Liupanshui Area. Oil & Gas Geology, 25(3): 309-313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200403013.htm [25] Wu, C.F., Qin, Y., Fu, X.H., et al., 2005. Microcosmic Dynamical Energies of Coalbed Gas Reservoir Formation of Qinshui Basin, Shanxi Province. Geoscience, 19(3): 449-457 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200503017.htm [26] Wu, C.F., Wang, C., Jiang, W., 2014. Abnormal High-Pressure Formation Mechanism in Coal Reservoir of Bide-Santang Basin, Western Guizhou Province. Earth Science—Journal of China University of Geosciences, 39(1): 73-78 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.007 [27] Xie, F.R., Cui, X.F., Zhao, J.T., et al., 2004. Regional Division of the Recent Tectonic Stress Field in China and Adjacent Areas. Chinese Journal of Geophysics, 47(4): 654-662 (in Chinese with English abstract). http://www.oalib.com/paper/1567663 [28] Xu, H., Tang, D.Z., Qin, Y., et al., 2011. Characteristics and Origin of Coal Reservoir Pressure in the West Guizhou Area. Journal of China University of Mining & Technology, 40(4): 556-560 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgkydxxb201104010 [29] Yang, Z.B., Qin, Y., Gao, D., 2011. Type and Geological Controls of Coalbed Methane-Bearing System under Coal Seam Groups from Bide-Santang Basin, Western Guizhou. Journal of China University of Mining & Technology, 40(2): 215-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201102010.htm [30] Yi, T.S., Zhang, J., Li, X.M., 2007. Development Geology Assessment on Coalbed Methane in Panguan Syncline of Liupanshui Coal Field. Natural Gas Industry, 27(5): 29-31 (in Chinese with English abstract). http://www.researchgate.net/publication/284603925_Development_geology_assessment_on_coalbed_methane_in_panguan_syncline_of_liupanshui_coal_field [31] Yu, S.Z., Peng, X.F., Li, W.P., 1994. Coal Mine Engineering Geology. China Coal Industry Publishing House, Beijing, 1-28 (in Chinese). [32] Yue, G.Y., Zhang, S.J., Yang, W.N., 1994. Structural Deformation Patterns and Tectonic Stress Field in West-central Guizhou. Scientia Geologica Sinica, 29(1): 10-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199401001.htm [33] Zhong, L.W., Yuan, Z.R., Li, G.H., et al., 2004. Study on Relationship of Coal Body Structure and Permeability in Main Coal-Bearing Area in China. Coal Geology & Exploration, 32(Suppl. ): 77-81 (in Chinese). [34] 陈本金, 温春齐, 曹盛远, 等, 2008. 六盘水地区煤层气开发利用前景. 贵州地质, 25(4): 270-275. doi: 10.3969/j.issn.1000-5943.2008.04.008 [35] 陈刚, 秦勇, 杨青, 等, 2014. 不同煤阶煤储层应力敏感性差异及其对煤层气产出的影响. 煤炭学报, 39(3): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403020.htm [36] 傅雪海, 秦勇, 韦重韬, 2007. 煤层气地质学. 徐州: 中国矿业大学出版社, 101-108. [37] 黄文, 徐宏杰, 张孟江, 等, 2013. 贵州省织纳煤田煤层特征及煤层气资源潜力. 天然气工业, 33(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201308007.htm [38] 江勇, 2008. 黔西县官寨井田煤层气地质特征及开发地质评价. 中国煤炭地质, 20(4): 39-41. doi: 10.3969/j.issn.1674-1803.2008.04.012 [39] 李俊乾, 刘大锰, 姚艳斌, 等, 2013. 气体滑脱及有效应力对煤岩气相渗透率的控制作用. 天然气地球科学, 24(5): 1074-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305028.htm [40] 连承波, 李汉林, 2005. 地应力对煤储层渗透性影响的机理研究. 煤田地质与勘探, 33(2): 30-32. doi: 10.3969/j.issn.1001-1986.2005.02.009 [41] 孟召平, 侯泉林, 2012. 煤储层应力敏感性及影响因素的试验分析. 煤炭学报, 37(3): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203014.htm [42] 孟召平, 蓝强, 刘翠丽, 等, 2013. 鄂尔多斯盆地东南缘地应力, 储层压力及其耦合关系. 煤炭学报, 38(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301019.htm [43] 孟召平, 田永东, 李国富, 2009. 沁水盆地南部煤储层渗透性与地应力之间关系和控制机理. 自然科学进展, 19(10): 1142-1148. doi: 10.3321/j.issn:1002-008X.2009.10.018 [44] 秦勇, 熊孟辉, 易同生, 等, 2008. 论多层叠置独立含煤层气系统——以贵州织金-纳雍煤田水公河向斜为例. 地质论评, 54(1): 65-70. doi: 10.3321/j.issn:0371-5736.2008.01.008 [45] 沈玉林, 秦勇, 郭英海, 等, 2012. "多层叠置独立含煤层气系统"形成的沉积控制因素. 地球科学——中国地质大学学报, 37(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203021.htm [46] 苏现波, 林晓英, 2009. 煤层气地质学. 北京: 煤炭工业出版社, 39-44. [47] 汪吉林, 秦勇, 傅雪海, 2012. 多因素叠加作用下煤储层渗透率的动态变化规律. 煤炭学报, 37(8): 1348-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201208017.htm [48] 王旭, 邬云龙, 秦晓庆, 等, 2004. 浅析六盘水亦资孔盆地煤层气勘探开发前景. 石油与天然气地质, 25(3): 309-313. doi: 10.3321/j.issn:0253-9985.2004.03.014 [49] 吴财芳, 秦勇, 傅雪海, 等, 2005. 山西沁水盆地煤层气成藏的微观动力能条件研究. 现代地质, 19(3): 449-457. doi: 10.3969/j.issn.1000-8527.2005.03.018 [50] 吴财芳, 王聪, 姜玮, 2014. 黔西比德-三塘盆地煤储层异常高压形成机制. 地球科学——中国地质大学学报, 39 (1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401008.htm [51] 谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 [52] 许浩, 汤达祯, 秦勇, 等, 2011. 黔西地区煤储层压力发育特征及成因. 中国矿业大学学报, 40(4): 556-560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201104009.htm [53] 杨兆彪, 秦勇, 高弟, 2011. 黔西比德-三塘盆地煤层群含气系统类型及其形成机理. 中国矿业大学学报, 40(2): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201102010.htm [54] 易同生, 张井, 李新民, 2007. 六盘水煤田盘关向斜煤层气开发地质评价. 天然气工业, 27(5): 29-31. doi: 10.3321/j.issn:1000-0976.2007.05.009 [55] 于双忠, 彭向峰, 李文平, 1994. 煤矿工程地质学. 北京: 煤炭工业出版社, 1-28. [56] 乐光禹, 张时俊, 杨武年, 1994. 贵州中西部的构造格局与构造应力场. 地质科学, 29(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199401001.htm [57] 钟玲文, 员争荣, 李贵红, 等, 2004. 我国主要含煤区煤体结构特征及与渗透性关系的研究. 煤田地质与勘探, 32(增刊): 77-81. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200400004016.htm