Vertical Migration System and Its Control on Natural Gas Accumulation in Yinggehai Basin
-
摘要: 垂向输导体系主控下的热流体活动是莺歌海盆地重要的地质特征之一, 决定了盆内独特的油气成藏过程.依据地震剖面综合解释、三维地震属性提取和岩石薄片观察, 分析了流体垂向输导体系的构成要素, 并利用PetroMod v11进行2D盆地数值模拟, 定量化计算了自源超压和传导超压的大小, 获得以下主要认识: (1)底辟伴生断裂和水力破裂是东方区最主要的2种垂向输导要素, 且在垂向上存在分异性, 深部流体输导以水力破裂为主, 浅层输导以底辟伴生断裂为主; (2)流体的垂向输导刺穿了超压封存箱并导致自源超压面在盆地中央抬升近2 000 m, 现今盆地东方区3 000 m左右黄流组油气藏中剩余压力的90%来自传导型超压; (3)盆内存在2个有利天然气聚集带: 箱顶传导常压带和箱内自源-传导超压带, 其中后者天然气藏受水力破裂输导控制, 具有流体输导高效且距离烃源灶近的优势, 是盆地内最有勘探潜力的天然气聚集带.Abstract: Thermal fluid activity controlled by vertical migration system is one of major geological characteristics in the Yinggehai Basin, which contributes to special hydrocarbon accumulation processes. Combined with a comprehensive interpretation of seismic section, 3D property parameter extractions and thin section observation, The elements of the vertical migration system are analyzed and the diffused and migration overpressure are quantitatively calculated by PetroMod v11 2D software in the paper. It is concluded that. diapir-associated fractures and hydraulic fractures are two main elements of vertical migration system in the basin. The processes vary vertically, with deep migration mainly controlled by hydraulic fractures while the shallow one mainly controlled by diapir-associated fractures in Dongfang area. Fluid activity pierces through the overpressure compartment vertically leading to the diffused overpressure surface being uplifted about 2 000 m in the center of the Yinggehai Basin. 90% of the reservoir remaining pressure comes from migration overpressure at about 3 000 m of the Huangliu Group at present. (3) There are two potential nature gas accumulation zones in the basin, including a top-compartment conductive pressure zone and in-compartment diffused-conductive overpressure zone. As the nature gas reservoir is controlled by hydraulic fracture migration system and has the advantage of being close to the hydrocarbon source kitchen and effective migration, the in-compartment diffused-conductive overpressure zone is the most potential nature gas accumulation zone in the basin.
-
Key words:
- earthquake /
- vertical migration system /
- diapirs /
- hydraulic fracture /
- hydrocarbon accumulation /
- petroleum geology
-
图 1 莺歌海盆地底辟与天然气藏分布(a)和沉积充填概况(b)
图a中底辟位置和沉积充填参考Xie et al.(2003)
Fig. 1. Distribution of diapis (a) and petroleum pools in the Yinggehai Basin (b)
表 1 不同地区代表井压力计算结果
Table 1. Calculated pressure results of typical wells from different locations
区域 井号/深度(m) 地层压力P(MPa) 静水压力Ph(MPa) 自源超压△Pe(MPa) 传导超压△Pt(MPa) △Pt/P △Pt/Ph △Pt/(△Pe+△Pt) 临高区 LG2011/3019 29.35 29.21 0.09 0.05 0.002 0.002 0.36 岭头 LT3411/2937 28.32 28.24 0.04 0.04 0.001 0.001 0.50 东方区 DF1321/3088 53.34 31.72 1.70 19.92 0.370 0.630 0.92 DF1114/2939 54.53 30.01 1.62 22.90 0.420 0.760 0.93 DF111/2580 52.82 26.59 1.51 24.72 0.470 0.930 0.94 DF1111/2785 55.80 28.51 1.58 25.71 0.460 0.900 0.94 乐东区 LD2217/2187 34.48 22.52 1.14 10.82 0.310 0.480 0.90 LD1511/2450 33.65 25.09 1.21 7.35 0.220 0.290 0.86 -
[1] Cosgrove, J.W., 2001. Hydraulic Fracturing during the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments. AAPG Bulletin, 85(4): 737-748. doi: 10.1306/8626C997-173B-11D7-8645000102C1865D [2] Danesh, A., 1998. PVT and Phase Behaviour of Petroleum Reservoir Fluids (47). Elsevier, Amsterdam. [3] Delaney, P.T., Pollard, D.D., Ziony, J.I., et al., 1986. Field Relations between Dikes and Joints: Emplacement Processes and Paleostress Analysis. Journal of Geophysical Research: Solid Earth (1978-2012), 91(B5): 4920-4938. doi: 10.1029/JB091iB05p04920 [4] Dong, W.L., Huang, B.J., 1999. Heterogeneity of Natural Gases and the Episodic Charging Process: A Case Study for Dongfang 1-1 Gas Field, Yinggehai Basin. Petroleum Exploration and Development, 26(2): 35-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK902.004.htm [5] Engelder, T., Lash, G.G., 2008. Marcellus Shale Play's Vast Resource Potential Causing Big Stir in Appalachia. The American Oil and Gas Report. [6] Finkbeiner, T., Zoback, M., Flemings, P., et al., 2001. Stress, Pore Pressure, and Dynamically Constrained Hydrocarbon Columns in the South Eugene Island 330 Field, Northern Gulf of Mexico. AAPG Bulletin, 85(6): 1007-1031. doi: 10.1306/8626CA55-173B-11D7-8645000102C1865D [7] Fowler, S.R., Mildenhall, J., Zalova, S., et al., 2000. Mud Volcanoes and Structural Development on Shah Deniz. Journal of Petroleum Science and Engineering, 28(4): 189-206. doi: 10.1016/S0920-4105(00)0078-4 [8] Gong, Z.S., Li, S.T., Xie, T.J., et al., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing (in Chinese). [9] Grauls, D.J., Baleix, J.M., 1994. Role of Overpressures and In-Situ Stresses in Fault-Controlled Hydrocarbon Migration: A Case Study. Marine and Petroleum Geology, 11(6): 734-742. doi: 10.1016/0264-8172(94)90026-4 [10] Hantschel, T., Kauerauf, A.I., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer-Verlag, Heidelberg. doi: 10.1007/978-3-540-72318-9 [11] Hao, F., Dong, W.L., Zou, H.Y., et al., 2003. Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin. Acta Petrolei Sinica, 24(6): 7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm [12] Hao, F., Li, S.T., Sun, Y.C., et al., 1996. Characteristics and Origin of the Gas and Condensate in the Yinggehai Basin, Offshore South China Sea: Evidence for Effects of Overpressure on Petroleum Generation and Migration. Organic Geochemistry, 24(3): 363-375. doi: 10.1016/0146-6380(96)00009-5 [13] He, J.X., Yao, Y.J., Liu, H.L., et al., 2007. Migration and Accumulation Characteristics and Resource Potential of Crust-Derived Inorganic CO2 in the Yinggehai Basin, Northern South China Sea. Geology in China, 34(5): 887-893 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200705015.htm [14] He, L.J., Xiong, L.P., Wang, J.Y., et al., 2000. The Numerical Modeling of Tectonic Development in the Yinggehai Basin. Science in China (Series D), 30(4): 415-419 (in Chinese). [15] Heppard, P.D., Cander, H.S., Eggertson, E.B., 1998. Abnormal Pressure and the Occurrence of Hydrocarbons off the East Coast of Trinidad, West Indies. In: Law, B.E., Ulmishek, G.F., Slavin, V.I., eds., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 215-246. [16] Holland, D.S., Leedy, J.B., Lammlein, D.R., 1990. Eugene Island Block 330 Field-USA, Offshore Louisiana. In: Beaumont, E.A., Foster, N.H. eds., Structural Traps III, Tectonic Fold and Fault Traps. AAPG Treatise of Petroleum Geology Atlas of Oil and Gas Fields, 103-143. [17] Huang, B., Xiao, X., Li, X., 2003. Geochemistry and Origins of Natural Gases in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. Organic Geochemistry, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6 [18] Hurst, A., Scott, A., Vigorito, M., 2011. Physical Characteristics of Sand Injectites. Earth-Science Reviews, 106(3): 215-246. doi: 10.1016/j.earscirev.2011.02.004 [19] Hustoft, S., Mienert, J., Bünz, S., et al, 2007. High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1): 89-106. doi: 10.1016/j.margeo.2007.07.004 [20] Luo, X., Dong, W., Yang, J., et al., 2003. Overpressuring Mechanisms in the Yinggehai Basin, South China Sea. AAPG Bulletin, 87(4): 629-645. doi: 10.1306/10170201045 [21] Luo, X., Vasseur, G., 1992. Contributions of Compaction and Aquathermal Pressuring to Geopressure and the Influence of Environmental Conditions (1). AAPG Bulletin, 76(10): 1550-1559. doi: 10.1306/bdff8a42-1718-11d7-8645000102c1865d [22] Luo, X., Vasseur, G., 1996. Geopressuring Mechanism of Organic Matter Cracking: Numerical Modeling. AAPG Bulletin, 80(6): 856-874. http://aapgbull.geoscienceworld.org/content/80/6/856 [23] Lü, M., 2002. A New Discussion on Lowstand Deposition Models in Ying-Qiong Basin. China Offshore Oil and Gas (Geology), 16(4): 221-230 (in Chinese with English abstract). http://www.researchgate.net/publication/284579885_A_new_discussion_on_lowstand_deposition_models_in_Ying-Qiong_Basin [24] Prior, D.B., Doyle, E.H., Kaluza, M.J., 1989. Evidence for Sediment Eruption on Deep Sea Floor, Gulf of Mexico. Science, 243(4890): 517-519. doi: 10.1126/science.243.4890.517 [25] Ren, J.Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). http://europepmc.org/abstract/MED/13666374 [26] Roberts, S.J., Nunn, J.A., 1995. Episodic Fluid Expulsion from Geopressured Sediments. Marine and Petroleum Geology, 12(2): 195-204. doi: 10.1016/0264-8172(95)92839-O [27] Sagy, A., Reches, Z., Roman, I., 2001. Dynamic Fracturing: Field and Experimental Observations. Journal of Structural Geology, 23(8): 1223-1239. doi: 10.1016/S0191-8141(00)00190-5 [28] Seth, L.H., Gading, M., Wensaas, L., 2009. Hydrocarbon Leakage Interpreted on Seismic Data. Marine and Petroleum Geology, 26(7): 1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008 [29] Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. In: Hoffmann, A.R., Bowers, G.L., eds., Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir, 76: 1-12. [30] Walderhaug, O., Bjørkum, P.A., Nadeau, P.H., et al., 2001. Quantitative Modelling of Basin Subsidence Caused by Temperature-Driven Silicia Dissolution and Reprecipitation. Petroleum Geoscience, 7(2): 107-113. doi: 10.1144/petgeo.7.2.107 [31] Wang, Z.F., Hu, D.S., 1999. Prospecting for Giant Gas Fields in the Central Mud Diapir Structure Belt in Yinggehai Basin. Natural Gas Industry, 19(1): 28-30 (in Chinese with English abstract). http://www.researchgate.net/publication/291979723_Prospecting_for_giant_gas_fields_in_the_central_mud_diapir_structure_belt_in_Yinggehai_Basin [32] Wang, Z.F., Huang, B.J., 2008. Dongfang 1-1 Gas Field in the Mud Diapir Belt of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 25(4): 445-455. doi: 10.1016/j.marpetgeo.2008.01.004 [33] Weinberger, R., Lyakhovsky, V., Baer, G., et al., 2000. Damage Zones around En Echelon Dike Segments in Porous Sandstone. Journal of Geophysical Research: Solid Earth (1978-2012), 105(B2): 3115-3133. doi: 10.1029/1999JB900361 [34] Xie, X., Li, S., He, H., et al., 2003. Seismic Evidence for Fluid Migration Pathways from an Overpressured System in the South China Sea. Geofluids, 3(4): 245-253. doi: 10.1046/j.1468-8123.2003.00070.x [35] Xie, X.N., Li, S.T., Dong, W.L., et al., 2001. Evidence for Episodic Expulsion of Hot Fluids along Faults near Diapiric Structures of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 18(6): 715-728. doi: 10.1016/S0264-8172(01)00024-1 [36] Xie, X.N., Li, S.T., Liu, X.F., 2006. The Hydrodynamics of Abnormal Pressure Basins. China University of Geosciences Press, Wuhan (in Chinese). [37] Xie, Y.H., Liu, P., Huang, Z.L., 2012. Geological Conditions and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Basin. Natural Gas Industry, 32(4): 19-23 (in Chinese with English abstract). http://www.researchgate.net/publication/288393586_Geological_conditions_and_pooling_process_of_high-temperature_and_overpressure_natural_gas_reservoirs_in_the_Yinggehai_Basin [38] Ye, J.R., Wang, L.J., Shao, R., 1999. Fluid Dynamic Fields in Pool-Forming Dynamics of Oil and Gas. Oil & Gas Geology, 20(2): 86-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT902.021.htm [39] Yin, X.L., Ma, Y.S., Feng, X.Y., et al., 2005. Thermal Stresses and Their Effects during the Deep Hot Fluids Penetrating upward in DF 1-1 Diapiric Area, Yinggehai Basin. Earth Science- Journal of China University of Geosciences, 30(1): 83-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501011.htm [40] Yun, J.W., Orange, D.L., Field, M.E., 1999. Subsurface Gas Offshore of Northern California and Its Link to Submarine Geomorphology. Marine Geology, 154: 357-368. doi: 10.1016/S0025-3227(98)00123-6 [41] Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013. Overpressure Reservoirs in the Mid-Deep Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 40(3): 284-293 (in Chinese with English abstract). http://www.researchgate.net/publication/281560509_Overpressure_reservoirs_in_the_mid-deep_Huangliu_Formation_of_the_Dongfang_area_Yinggehai_Basin_South_China_Sea [42] Zhang, Q.M., Hao, F., 1997. Evolution and Hydrocarbon System in Ying-Qiong Basin. Science in China (Series D), 27(2): 149-154 (in Chinese). http://www.researchgate.net/publication/283432337_Evolution_and_hydrocarbon_system_in_Ying-Qiong_basin [43] Zhang, Q.M., Liu, F.N., Yang, J.H., 1996. Overpressure System and Hydrocarbon Accumulation in the Yinggehai Basin. China Ofshore Oil and Gas (Geology), 10(2): 65-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199602000.htm [44] 董伟良, 黄保家, 1999. 东方1-1气田天然气组成的不均一性与幕式充注. 石油勘探与开发, 26(2): 35-38. doi: 10.3321/j.issn:1000-0747.1999.02.010 [45] 龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社. [46] 郝芳, 董伟良, 邹华耀, 等, 2003. 莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏. 石油学报, 24(6): 7-12. doi: 10.3321/j.issn:0253-2697.2003.06.002 [47] 何家雄, 姚永坚, 刘海龄, 等, 2007. 南海北部莺歌海盆地壳源型非生物CO2运聚成藏特征与资源潜力. 中国地质, 34(5): 887-893. doi: 10.3969/j.issn.1000-3657.2007.05.016 [48] 何丽娟, 熊亮萍, 汪集旸, 等, 2000. 莺歌海盆地构造热演化模拟研究. 中国科学(D辑), 30(4): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004010.htm [49] 吕明, 2002. 莺-琼盆地低位沉积模式的新探讨. 中国海上油气(地质), 16(4): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200204000.htm [50] 任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028 [51] 王振峰, 胡代圣, 1999. 莺歌海盆地中央泥拱构造带大气田勘探方向. 天然气工业, 19(1): 28-30. doi: 10.3321/j.issn:1000-0976.1999.01.008 [52] 解习农, 李思田, 刘晓峰, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社. [53] 谢玉洪, 刘平, 黄志龙, 2012. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程. 天然气工业, 32(4): 19-23. doi: 10.3787/j.issn.1000-0976.2012.04.005 [54] 叶加仁, 王连进, 邵荣, 1999. 油气成藏动力学中的流体动力场. 石油与天然气地质, 20(2): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT902.021.htm [55] 殷秀兰, 马寅生, 冯向阳, 等, 2005. 莺歌海盆地东方1-1底辟区深部热流体穿层的热应力及其效应. 地球科学—中国地质大学学报, 30(1): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501011.htm [56] 张伙兰, 裴健翔, 张迎朝, 等, 2013. 莺歌海盆地东方区中深层黄流组超压储集层特征. 石油勘探与开发, 40(3): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm [57] 张启明, 郝芳, 1997. 莺-琼盆地演化与含油气系统. 中国科学(D辑), 27(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702009.htm [58] 张启明, 刘福宁, 杨计海, 1996. 莺歌海盆地超压体系与油气聚集. 中国海上油气(地质), 10(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199602000.htm