Study on Particle Phase Analysis Method of Energy Disperse Spectroscopy: A Case Study of Cenozoic Basalts from Datong, Shanxi Province
-
摘要: 以山西大同新生代玄武岩样品为例, 利用Quanta 200扫描电镜、GENESIS能谱仪对能谱仪PPA分析方法进行了实验研究, 该方法为粒度和物相自动分析方法.笔者首次把能谱仪PPA分析方法应用到地质学领域的岩石光薄片研究中, 快速得出了一系列不同物相的形态学数据及化学成分分析结果: 物相种类、每一种物相的颗粒数、每一个颗粒的平均直径、面积、周长、圆度、长宽比及化学成分等, 并得出了不同物相在该视域所占的面积百分比及每种物相颗粒的平均直径, 克服了传统光薄片粒度分析方法的所有缺点, 为矿物学、岩石学及矿床学研究提供了一套非常有意义的数据.Abstract: The Particle Phase Analysis (PPA) method by means of Quanta 200 scanning electron microscope (SEM), GENESIS energy disperse spectroscopy (EDS) can analyze particle size and phase automatically. A systematic experimental is carried out to verify the PPA method in this study, using samples of Cenozoic basalts from Datong. We apply the PPA method of EDS to study the thin section and polished section in the geological field for the first time, which yield a series of morphology and chemical composition data of different phases such as phase types, particle number of each phase, average diameter, area, roundness, length-width ratio, chemical composition. The proportion and average particle diameter of each phase can also be obtained as well, overcoming the shortages of traditional method in thin section and polished section. It proves that PPA guarantees significant data for the study of mineralogy, petrology and ore deposit geology.
-
Key words:
- energy disperse spectroscopy /
- PPA method /
- polished thin rock section /
- phase /
- particle /
- chemical composition
-
颗粒 物相 平均直径(μm) 面积(μm2) 周长(μm) 圆度 长宽比 各相平均直径(μm) 面积百分比 1 1 5.35 22.11 21.18 1.61 1.68 6.43 3.10 2 1 7.51 43.53 39.43 2.84 1.58 3 2 6.19 29.60 53.46 7.68 2.10 6.19 1.40 4 3 5.59 24.09 43.59 6.28 1.90 5 3 5.32 21.80 39.63 5.73 2.26 6 3 6.95 37.27 61.17 7.99 1.61 7 3 7.60 44.57 83.64 12.49 2.06 8 3 2.87 6.34 9.05 1.03 1.28 6.05 13.70 9 3 3.17 7.76 22.77 5.32 1.88 10 3 4.23 13.79 24.47 3.46 1.61 11 3 8.97 62.13 93.66 11.24 1.91 12 3 9.76 73.50 222.80 53.74 2.03 表 2 所选颗粒的化学成分分析结果
Table 2. The chemical composition of the selected particles analysis
颗粒 物相 MgO(%) Al2O3(%) SiO2(%) CaO(%) TiO2(%) MnO(%) Fe2O3(%) 分类 相似度(%) 1 1 2.18 2.33 2.69 1.23 20.10 1.25 70.22 1 89.80 2 1 2.52 3.01 1.77 0.99 20.39 0.95 70.37 1 90.60 3 2 23.39 2.80 35.05 0.92 0.77 0.75 36.32 2 88.90 4 3 11.84 6.86 53.86 17.73 1.40 0.42 7.89 3 92.20 5 3 12.57 3.89 50.70 19.72 2.11 0.33 10.68 3 97.50 6 3 14.14 4.60 53.20 19.82 0.65 0.60 7.00 3 91.00 7 3 10.37 8.28 55.24 16.21 1.35 0.00 8.56 3 88.50 8 3 13.39 6.25 51.98 17.31 2.27 0.73 8.07 3 93.80 9 3 12.42 5.97 49.77 19.63 1.87 0.27 10.07 3 96.70 10 3 13.43 6.92 47.91 18.95 2.79 0.00 10.01 3 93.20 11 3 12.46 4.87 49.50 19.14 2.95 0.59 10.49 3 97.00 12 3 13.50 3.04 51.35 20.78 2.19 0.64 8.50 3 94.30 表 3 自动多视域分析各种物相的颗粒个数
Table 3. Numbers of varous phases by multiple fields auto analysis
视域 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 合计 物相 1 11 7 5 7 8 6 5 8 6 7 7 1 6 5 10 99 2 12 6 6 2 12 7 4 4 6 9 3 9 5 6 13 104 3 51 30 23 25 29 29 10 32 25 32 13 15 15 15 26 370 合计 573 表 4 自动多视域分析每个视域、每种物相的平均直径及所占的面积百分比
Table 4. Average diameter and area percentage of each phase in each field by multiple fields analysis
视域 物相1(磁铁矿)粉色 物相2(橄榄石)黄色 物相3(单斜辉石)兰色 平均直径(μm) 面积百分比 平均直径(μm) 面积百分比 平均直径(μm) 面积百分比 1 5.21 8.70 2.00 1.30 2.26 8.00 2 3.42 2.28 1.31 0.28 1.83 2.91 3 5.11 3.57 1.31 0.27 2.40 3.85 4 3.09 1.80 0.86 0.04 1.96 3.29 5 3.40 2.71 1.51 0.83 1.87 3.20 6 7.76 10.81 1.60 0.54 1.92 3.19 7 4.06 3.20 1.08 0.13 1.76 0.87 8 4.30 4.55 1.32 0.20 1.74 2.67 9 5.01 4.70 1.10 0.22 1.96 2.80 10 4.10 3.61 1.42 0.68 1.90 3.79 11 2.99 1.99 1.39 0.15 2.98 4.07 12 6.45 0.10 2.23 1.25 4.10 15.31 13 3.90 2.61 1.38 0.30 2.66 5.09 14 4.06 3.07 1.50 0.36 1.87 1.42 15 6.14 13.62 1.16 0.51 2.25 3.89 平均值 4.60 4.49 1.41 0.47 2.23 4.29 -
[1] EDAX Inc., 2003. Genesis Spectrum User's Manual. [2] FEI Company, 2002. The Quanta 200 User's Operation Manual, 1-22. [3] Goldstein, J.I., Newbury, D.E., Joy, D.C., et al., 2003. Scanning Electron Microscopy and X-Ray Microanalysis. Springer. [4] Gottlieb, P., Wilkie, G., Sutherland, D., et al., 2000. Using Quantitative Electron Microscopy for Process Mineralogy Applications. Journal of Metals, 52(4): 24-25. doi: 10.1007/s11837-000-0126-9 [5] Hoal, K.O., Appleby, S.K., Stammer, J.G., et al., 2009. SEM-Based Quantitative Mineralogical Analysis of Peridotite, Kimberlite, and Concentrate. Lithos, 112: 41-46. doi: 10.1016/j.lithos.2009.06.009 [6] Jiang, M.L., 2009. Particle Size Analysis and Its Geological Applications. Journal of Oil and Gas Technology, 31(1): 161-163 (in Chinese). [7] Kong, M.G., 2004. Simple Discussion of the Analytic Technology of Energy Spectrum in Kevex SIGMATM X-Ray Energy Dispersive Spectrometer. Modern Scientific Instruments, (1): 58-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDYQ200401019.htm [8] Li, X.T., 2006. EDS Analysis Methods and Characteristics. 2006 Oxford Instruments Microanalysis Seminar Handouts, 1-40 (in Chinese). [9] Liao, Q.C., Lan, F.L., 1990. SEM Principles and Application Technology. Metallurgical Industry Press, Beijing, 285-287 (in Chinese). [10] Liu, X.H., Feng, M.Y., Luo, J.L., et al., 2009. Analysis of Influence Factors on Sandstone Reservoirs of the Chang 8 and Chang 6 Members in Xifeng Oil Field, Southwestern Ordos Basin. Journal of Northwest University (Natural Science Edition), 39(1): 102-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200901033.htm [11] Liu, X.F., 1982a. Particle Size Analysis Lectures (Four). Minerals and Rocks, (3): 96-110 (in Chinese). [12] Liu, X.F., 1982b. Particle Size Analysis Lectures (Three). Minerals and Rocks, (2): 123-132 (in Chinese). [13] Lyman, C.E., 1990. Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy: A Laboratory Workbook. Springer. [14] Pan, Z., L., Zhao, A.X., Pan, T.H., 2004. Crystallography and Mineralogy (Volume Two). Geological Publishing House, Beijing, 245-263 (in Chinese). [15] Pownceby, M., MacRae, C., Wilson, N., 2007. Mineral Characterisation by EPMA Mapping. Minerals Engineering, 20(5): 444-451. doi: 10.1016/j.mineng.2006.10.014 [16] Ran, J., Du, G., Pan, Z.X., 2011. Study on Methods for Particle Size Analysis of Sediment Samples. Rock and Mineral Analysis, 30(6): 669-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201106006.htm [17] Yang, Y.Z., He, J.S., 1982. An Application of the Data Concerning Grain-Size Analysis of Thin Section in Discriminating Sedimentary Environment of the Late Precambrian in the Qinling Range. Geology of Shaanxi, 2(2): 95-100 (in Chinese with English abstract). [18] Zhang, D.T., 2009. Scanning Electron Microscopy and Energy Dispersive Analysis Techniques. South China University of Technology Press, Guangzhou (in Chinese). [19] 蒋明丽, 2009. 粒度分析及其地质应用. 石油天然气学报, 31(1): 161-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200901042.htm [20] 孔明光, 2004. 浅谈Kevex SIGMATMX射线能谱仪中的能谱分析技术. 现代科学仪器, (1): 58-59. doi: 10.3969/j.issn.1003-8892.2004.01.020 [21] 李香庭, 2006. EDS的分析方法与特点. 2006牛津仪器显微分析研讨会讲义, 1-40. [22] 廖乾初, 蓝芬兰, 1990. 扫描电镜原理及应用技术. 北京: 冶金工业出版社, 285-287. [23] 刘小洪, 冯明友, 罗静兰, 等, 2009. 西峰油田长8和长6储层物性影响因素分析. 西北大学学报(自然科学版), 39(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200901033.htm [24] 刘岫峰, 1982a. 粒度分析讲座(四). 矿物岩石, (3): 96-110. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198106014.htm [25] 刘岫峰, 1982b. 粒度分析讲座(三). 矿物岩石, (2): 123-132. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198202014.htm [26] 潘兆橹, 赵爱醒, 潘铁虹, 2004. 结晶学及矿物学(下册). 北京: 地质出版社, 245-263. [27] 冉敬, 杜谷, 潘忠习, 2011. 沉积物粒度分析方法的比较. 岩矿测试, 30(6): 669-676. doi: 10.3969/j.issn.0254-5357.2011.06.004 [28] 杨应章, 何建社, 1984. 利用薄片粒度资料判别高山河组及罗圈组岩相的探讨. 陕西地质, 2(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY198402009.htm [29] 张大同, 2009. 扫描电镜与能谱仪分析技术. 广州: 华南理工大学出版社.