Metamorphic P-T-t Path of Eclogites from Qianliyan Island in the South Yellow Sea and Its Tectonic Implications
-
摘要: 南黄海千里岩岛榴辉岩对进一步深入完善大别-苏鲁造山带的研究具有重要意义.岩相学和矿物学研究显示榴辉岩主要经历了俯冲进变质(Ⅰ)、峰期榴辉岩相变质(Ⅱ)、角闪岩相退变质(Ⅲ)和绿片岩相退变质(Ⅳ)阶段.各阶段的温压条件分别为: Ⅱ阶段T=806.3 ℃, P=3.32 GPa; Ⅲ阶段T=658.68 ℃, P=0.78 GPa; Ⅳ阶段T<550 ℃, P<0.3 GPa.锆石SHRIMP U-Pb测年指示千里岩榴辉岩的原岩形成于新元古代(约747±19 Ma), 超高压变质作用发生在早三叠世(约241.1±1.5 Ma), 角闪岩相退变质发生在三叠纪末(约205.8 Ma).在此基础上, 建立了千里岩岛榴辉岩的P-T-t演化轨迹, 反映出榴辉岩经历了2个折返阶段.这一P-T-t轨迹整体上与苏鲁地区榴辉岩类似, 指示该区所在的千里岩隆起区是苏鲁造山带在海区的延伸.Abstract: The eclogites in Qianliyan Island, the South Yellow Sea, is important for conducting further research of Dabie-Sulu Orogen. Petrographic and mineralogic studies reveal four main metamorphic stages, including prograde (Stage Ⅰ), eclogite-facies (Stage Ⅱ) metamorphism, and amphibolite-(Stage Ⅲ), greenschist-facies (Stage Ⅳ) retrograde metamorphisms. The metamorphic P-T conditions are estimated as follows: Stage Ⅱ, T=806.3 ℃, P=3.32 GPa; Stage Ⅲ, T=658.68 ℃, P=0.78 GPa; Stage Ⅳ, T < 550 ℃, P < 0.3 GPa. The SHRIMP U-Pb datings of the zircons from eclogites show that the protoliths were formed in Neoproterozoic (about 747±19 Ma), the UHP metamorphism happened in Early Triassic (about 241.1±1.5 Ma), and the amphibolite-facies retrograde metamorphism happened in the end of Triassic (about 205.8 Ma). Using the data mentioned above, metamorphic PTt path of eclogites is constructed. The PTt path shows that the eclogites experienced 2 stages of exhumation and reveals that the Qianliyan uplift is the extension of Sulu Orogen in the South Yellow Sea.
-
Key words:
- the South Yellow Sea /
- eclogite /
- mineral chemistry /
- P-T-t path /
- Sulu orogen /
- tectontics /
- Metamorphic rocks
-
图 1 南黄海千里岩岛地质略图(据韩宗珠等, 2007; Li et al., 2011;廖晶等, 2013)
①郯庐断裂;②青岛-烟台断裂;③青岛-荣成断裂;④五莲-青岛断裂;⑤千里岩断裂;⑥泗阳-连云港断裂;⑦千里岩隆起南缘断裂;⑧嘉山-响水断裂;⑨黄海东缘断裂;⑩青岛-荣成断裂、千里岩断裂、千里岩南缘断裂东延推测
Fig. 1. Geological sketch map of Qianliyan island in the South Yellow Sea
图 4 角闪石分类(Leake et al., 1997)
Fig. 4. Amphibole composition classification
表 1 千里岩榴辉岩各变质阶段代表性矿物化学成分(%)
Table 1. The representative mineral compositions for eclogites from Qianliyan
变质阶段 Ⅰ阶段 Ⅱ阶段 Ⅲ阶段 Ⅵ阶段 Grt Omp Ep Grt Omp Phe Amp Ab Di Ep Chl Bt SiO2 38.746 55.460 38.150 39.010 56.540 56.810 43.280 67.920 52.980 37.710 26.210 36.940 TiO2 0.024 0.050 22.960 0.020 0.010 0.270 0.120 0.010 0.050 22.340 0.060 0.140 Al2O3 20.556 9.080 12.560 20.980 10.690 24.830 13.100 20.120 2.610 12.630 18.930 18.600 FeO 25.89 6.85 - 24.14 5.39 0.03 17.15 0.48 9.56 - 30.68 18.62 Cr2O3 0.042 0.030 - 0.040 0.030 3.160 0.040 - 0.040 - 0.030 0.070 MnO 0.42 0.04 - 0.48 0.02 0.01 0.10 0.01 0.11 - 0.25 0.15 MgO 3.889 8.210 0 5.230 7.490 4.160 10.090 0.110 11.690 0.080 13.930 11.550 CaO 10.048 13.780 24.550 10.230 12.430 0 11.730 1.530 21.840 24.250 0.060 0 Na2O 0.023 6.560 - 0.020 7.200 0.060 2.600 9.830 1.570 - 0.030 0.060 K2O 0.012 0.020 - - 0.010 7.980 0.460 0.050 0.020 - 0.040 8.310 总量 99.65 100.08 98.22 100.14 99.81 97.34 98.68 100.06 100.47 97.02 90.22 94.44 O 12 6 25 12 6 11 23 8 6 25 14 22 Si 3.05 1.99 6.00 3.02 2.02 3.63 6.37 2.97 1.96 6.01 2.76 5.59 Al 1.906 0.380 4.250 1.920 0.450 1.870 2.270 1.040 0.110 4.190 2.35 - Fe3+ 0 0.09 1.65 0.05 0.02 - 0.43 - 0.07 1.68 - - Ti 0.001 0 - 0 0 0.010 0.010 0 0 - 0.010 0.020 Fe2+ 1.705 0.120 - 1.520 0.140 0.170 1.690 0.020 0.220 - 2.710 2.360 Cr 0.003 0 - 0 0 0 0 - 0 - 0 0.01 Mn 0.028 0 - 0.03 0 0 0.01 0 0 - 0.02 0.02 Mg 0.456 0.44 0 0.60 0.40 0.40 2.21 0.01 0.64 0.02 2.19 2.61 Ca 0.848 0.530 4.140 0.850 0.480 0 1.850 0.070 0.870 4.140 0.010 0 Na 0.004 0.450 - 0 0.500 0.010 0.740 0.830 0.110 - 0.010 0.020 K 3.040 0 - - 0 0.650 0.090 0 0 - 0 1.61 离子数 8 4 16 8 4 6.74 15.68 4.93 4 16.04 10.06 15.54 表 2 榴辉岩单颗粒锆石SHRIMP U-P定年结果
Table 2. SHRIMP U-Pb dating of single zircons of eclogites
点号 U(10-6) Th(10-6) 232Th/238U 206Pb(10-6) 238Pb/206Pb 误差(%) 207Pb/206Pb 误差(%) 207Pb/235Pb 误差(%) 206Pb/238U Age(Ma) 误差(%) QLY-1-1.1 210 11 0.05 6.7 26.87 1.4 0.058 3 2.7 0.28 3.4 234.6 3.3 QLY-1-2.1 312 217 0.72 19.7 13.60 1.1 0.063 5 1.4 0.61 2.7 455.5 5.0 QLY-1-3.1 479 375 0.81 52.0 7.92 1.1 0.066 3 0.9 1.15 1.4 766.5 7.9 QLY-1-3.2 436 19 0.04 14.7 25.42 1.2 0.071 7 2.6 0.27 8.0 242.8 3.1 QLY-1-4.1 148 148 1.03 15.8 8.05 1.3 0.068 4 1.6 1.11 2.9 751.9 9.0 QLY-1-4.2 812 976 1.24 83.2 8.38 1.1 0.064 1 0.7 1.05 1.3 726.8 7.3 QLY-1-5.1 306 5 0.02 10.2 25.89 1.2 0.059 1 2.5 0.29 3.8 243.2 2.8 QLY-1-6.1 350 12 0.04 11.3 26.65 1.2 0.057 1 2.0 0.26 4.9 235.5 2.8 QLY-1-7.1 513 11 0.02 17.6 25.10 1.6 0.055 6 1.7 0.29 3.5 250.8 4.0 QLY-1-8.1 597 49 0.08 19.6 26.18 1.1 0.055 5 1.5 0.29 2.2 241.3 2.7 QLY-1-9.1 349 413 1.22 38.0 7.89 1.1 0.066 6 1.0 1.15 1.6 768.3 8.2 QLY-1-10.1 327 17 0.05 10.6 26.54 1.2 0.057 6 3.0 0.28 4.7 237.2 2.8 QLY-1-11.1 431 17 0.04 14.3 25.94 1.3 0.057 5 2.5 0.27 4.7 242.0 3.1 QLY-1-12.1 215 6 0.03 7.2 25.56 1.2 0.059 8 5.2 0.28 8.1 245.4 3.1 QLY-1-13.1 320 404 1.30 33.3 8.26 1.1 0.063 8 1.1 1.04 1.8 736.0 7.7 QLY-1-14.1 278 4 0.02 9.2 25.98 1.2 0.057 2 3.8 0.27 5.9 241.8 2.9 QLY-1-15.1 192 115 0.62 11.6 14.17 1.2 0.066 0 1.8 0.58 4.4 436.4 5.3 QLY-1-16.1 242 4 0.02 8.1 25.64 1.8 0.059 8 3.8 0.27 7.2 244.2 4.5 QLY-1-17.1 305 88 0.30 11.7 22.45 1.2 0.060 1 2.0 0.35 3.2 280.0 3.3 QLY-1-18.1 276 20 0.07 10.1 23.44 1.2 0.058 2 2.1 0.32 3.6 268.4 3.1 QLY-1-19.1 218 1 213 2 1.01 125.3 14.95 1.0 0.061 0 0.6 0.55 1.6 416.7 4.2 QLY-1-20.1 343 19 0.06 11.2 26.42 1.3 0.056 3 2.3 0.27 4.0 238.5 3.0 QLY-1-21.1 347 23 0.07 11.2 26.58 1.2 0.059 2 3.2 0.28 4.9 236.7 2.8 QLY-1-22.1 254 13 0.05 7.1 30.52 1.2 0.055 3 2.4 0.21 6.5 205.8 2.5 QLY-1-23.1 430 27 0.06 14.3 25.86 1.1 0.055 2 2.1 0.26 2.8 242.7 2.7 QLY-1-24.1 487 26 0.05 16.4 25.54 1.1 0.056 0 1.7 0.27 4.1 245.8 2.8 QLY-1-25.1 267 5 0.02 8.8 26.20 1.2 0.055 0 2.2 0.27 4.2 240.3 2.8 QLY-1-26.1 196 79 0.41 15.2 11.05 1.3 0.067 9 1.8 0.81 2.8 556.7 7.1 QLY-1-27.1 295 4 0.01 9.6 26.37 1.3 0.059 2 3.0 0.27 5.3 238.1 3.0 QLY-1-28.1 255 7 0.03 8.3 26.31 1.6 0.057 2 3.1 0.26 6.1 238.6 3.8 QLY-1-29.1 384 535 1.44 40.1 8.24 1.1 0.067 1 1.0 1.07 1.9 736.2 7.8 QLY-1-30.1 340 453 1.38 33.4 8.77 1.5 0.065 0 1.1 0.98 2.2 694.4 10.2 注: 锆石SHRIMP U-Pb测试在北京离子探针中心完成. 表 3 苏鲁超高压变质带榴辉岩中锆石SHRIMP U-Pb定年结果
Table 3. SHRIMP U-Pb dating for zircons from UHP metamorphic rocks in Sulu terrane
样品号 地点 围岩类型 岩浆锆石年龄(Ma) 超高压变质年龄(Ma) 角闪岩相退变质年龄(Ma) 参考文献 H2 三清阁 大理岩 - 231~238 234±4 210~220 214±4 Liu et al., 2007 CT1 池塘 正片麻岩 650~795 226~236 231±3 - ZC 诸城 正片麻岩 710~812 223~229 227±2 - LSD-1 岚山头 正片麻岩 682~810 227~238 233±4 205~217 209±3 刘福来和薛怀民, 2007 YK01 仰口 正片麻岩 652~796 222~230 226±3 201~214 207±2 B42 钻孔MH 正片麻岩 682~820 224~238 232±3 211~217 214±5 QLY-1 千里岩岛 副片麻岩 416~770 241.1±1.5 205.8 本文 -
[1] Carswell, D.A., O'Brien, P.J., Wilson, R.N., et al., 1997. Thermobarometry of Phengite-Bearing Eclogites in the Dabie Mountains of Central China. J. Metamorphic Geol., 15: 239-252. doi: 10.1111/j.1525-1314.1997.00014.x [2] Carswell, D.A., Wilson, R.N., Zhai, M.G., 2000. Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneiss Hosting Ultra-High Pressure Eclogites in the Dabieshan of Central China. Lithos, 52(1-4): 121-155. doi: 10.1016/S0024-4937(99)00088-2 [3] Chen, Y., Ye, K., Wu, C.M., 2005. Reviews on Applying Common-Used Geothermobarometers for Eclogites. Acta Petrologica Sinica, 21(4): 1067-1080 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252032481.html [4] Hacker, B.R., Wallis, S.R., Ratschbacher, L., et al., 2006. High-Temperature Geochronology Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Dabie-Sulu Orogen. Tectonics, 25(5): 1-17. doi: 10.1029/2005TC001937 [5] Han, Z.Z., Xiao, Y., Yu, H., et al., 2007. A Study on the Mineral Chemistry and Genesis of the Eclogite from Qianliyan Island, the Southwestern Huanghai Sea. Transactions of Oceanology and Limnology, (1): 83-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFB200701011.htm [6] Holland, T., 1980. The Reaction Albite=Jadeite+Quartz Determined Experimentally in the Range 600-1 200 ℃. American Mineralogist, 65: 239-134. http://www.researchgate.net/publication/302994188_The_reaction_albite_jadeite_quartz_determined_experimentally_in_the_range_600-1200_degrees_C [7] Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contrib. Mineral. Petrol., 116: 433-447. doi: 10.1007/BF00310910 [8] Hou, Q.L., Wu, Y.D., Wu, F.Y., et al., 2008. Possible Tectonic Manifestations of the Dabie-Sulu Orogenic Belt on the Korean Peninsula. Geological Bulletin of China, 27(10): 1659-1666 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810009.htm [9] Jamtveit, B., 1987. Metamorphic Evolution of the Eiksunddal Eclogite Complex, Western Norway, and Some Tectonic Implications. Contributions to Mineralogy and Petrology, 95: 82-99. doi: 10.1007/BF00518032 [10] Ji, Z.Y., Zhao, H.J., Zhao, G.H., 1992. Eclogite Growth in Qianliyan Island, Yellow Sea. Geology of Shandong, 8(2): 1 (in Chinese). [11] Katsube, A., Hayasaka, Y., Santosh, M., et al., 2009. SHRIMP Zircon U-Pb Ages of Eclogite and Orthogneiss from Sulu Ultrahigh-Pressure Zone in Yangkou Area, Eastern China. Gondwana Research, 15: 168-177. doi: 10.1016/j.gr.2008.08.002 [12] Leake, B.E., Woolley, A.R., Birch, W.D., et al., 1997. Nomenclature of Amphiboles, Report of Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gseurjmin&resid=9/3/623 [13] Li, G.B., Liu, B.H., Zhao, Y.X., et al., 2011. Quaternary Tectonic Activity near the Qianliyan Island of Southern Yellow Sea. Earth Science-Journal of China University of Geosciences, 36(6): 977-984 (in Chinese with English abstract). http://www.researchgate.net/publication/287581040_Quaternary_tectonic_activity_near_the_Qianliyan_Island_of_Southern_Yellow_Sea [14] Li, M., 2011. The Basement Features and Dynamic Evolution Mechanism of the Qianliyan Uplift, South Yellow Sea-Evidence from Petrology and Geochemistry of Eclogites (Dissertation). Ocean Univeristy of China, Qingdao (in Chinese with English abstract). [15] Li, S.G., Li, Q.L., Hou, Z.H., et al., 2005. Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 21(4): 1117-1124 (in Chinese with English abstract). [16] Li, S.Z., Kusky, T.M., Zhao, G.C., et al., 2011. Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie-Sulu Orogen, Eastern-Central China. Tectonophysics, 504: 25-42. doi: 10.1016/j.tecto.2011.01.017 [17] Liao, J., Yue, B.J., Shi, J., 2013. Extension of Qianliyan Uplift in the South Yellow Sea. Marine Geology & Quaternary Geology, 33(2): 153-162 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2014MGQG...33..153L [18] Liou, J.G., Zhang, R.Y., Jahn, B., et al., 1997. Petrology, Geochemistry and Isotope Data on a Ultrahigh-Pressure Jadeite Quartzite from Shuanghe, Dabie Mountains, East-Central China. Lithos, 41: 59-78. doi: 10.1016/S0024-4937(97)82005-1 [19] Liu, F.L., Liou, J.G., Xu, Z.Q., et al., 2005. U-Pb SHRIMP Ages Recorded in the Coesite-Bearing Zircon Domains of Paragneisses in the Southwestern Sulu Terrane, Eastern China, New Interpretation. American Mineralogist, 90: 790-800. doi: 10.2138/am.2005.1677 [20] Liu, F.L., Xu, Z.Q., Liou, J.G., et al., 2004a. SHRIMP U-Pb Ages of Ultrahigh-Pressure and Retrograde Metamorphism of Gneisses, Southwestern Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 22: 315-326. doi: 10.1111/j.1525-1314.2004.00516.x [21] Liu, F.L., Xu, Z.Q., Xue, H.M., 2004b. Tracing the Protolith, UHP Metamorphism and Exhumation Ages of Orthogneiss from the SW Sulu Terrane (Eastern China), SHRIMP U-Pb Dating of Mineral Inclusion-Bearing Zircons. Lithos, 78: 411-429. doi: 10.1016/j.lithos.2004.08.001 [22] Liu, F.L., Gerdes, A., Robinson, P.T., et al., 2007. Zoned Zircon from Eclogite Lenses in Marbles from the Dabie-Sulu UHP Terrane, China, A Clear Record of Ultra-Deep Subduction and Fast Exhumation. Acta Geologica Sinica, 81(2): 204-225. doi: 10.1111/j.1755-6724.2007.tb00945.x [23] Liu, F.L., Gerdes, A., Xue, H.M., 2009. Differential Subduction and Exhumation of Crustal Slices in the Sulu HP-UHP Metamorphic Terrane: Insights from Mineral Inclusions, Trace Elements, U-Pb and Lu-Hf Isotope Analyses of Zircon in Ortho-Gneiss. J. Metamorphic Geol., 27: 805-825. doi: 10.1111/j.1525-1314.2009.00833.x [24] Liu, F.L., Xue, H.M., 2007. Review and Prospect of SHRIMP U-Pb Dating on Zircons from Sulu-Dabie UHP Metamorphic Rocks. Acta Petrologica Sinica, 23(11): 2737-2756 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711007.htm [25] Liu, F.L., Xue, H.M., Xu, Z.Q., et al., 2006. SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane: Restriction on the Prograde, UHP and Retrograde Metamorphic Ages. Acta Petrologica Sinica, 22(7): 1761-1778 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2006AGUFM.V31A0564L [26] Lovering, J.F., White, A.J.R., 1969. Granulitic and Eclogite Inclusions from Basic Pipes at Delegate, Australia. Contrib. Mineral. Petrol., 21(1): 9-52. doi: 10.1007/BF00377416 [27] Massone, H.J., Schreyer, W., 1987. Phengite Geobarometry Based on the Limiting Assemblage with K-Feldspar, Phlogopite, and Quartz. Contrib. Mineral. Petrol., 96: 212-224. doi: 10.1007/BF00375235 [28] Ravna, E.J., 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. J. Metamorphic Geol., 18: 211-219. doi: 10.1046/j.1525-1314.2000.00247.x [29] Ren, J.S., Jiang, C.F., Zhang, Z.K., et al., 1980. The Geotectonic Evolution of China. Science Press, Beijing, 108-110 (in Chinese). [30] Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-In-Hornblende Barometer. Contrib. Mineral. Petrol., 110: 304-310. doi: 10.1007/BF00310745 [31] Shi, Y.H., Lin, W., Wang, Q.C., 2008. The P-T Path with Increasing Temperature during Retrograde Metamorphism for the Low-Temperature and High-Pressure Eclogites from Leizhuang across Tongcheng Area in Dabie Mountains and Its Tectonic Significance. Acta Petrologica Sinica, 24(8): 1759-1770 (in Chinese with English abstract). [32] Shi, Y.H., Wang, Q.C., 2006. Pricise P-T Path and Multi-Stage Exhumation of the Jinheqiao Eclogite, Dabie Mountains, China. Acta Petrologica Sinica, 22(12): 2850-2860 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200612003.htm [33] Shi, Y.H., Wang, Q.C., Lin, W., 2006. The Characteristic of Petrology, Minerals Chemistry and P-T Conditions of Eclogites from Taihu Area in Dabie Mountains, and Its Tectonic Significance. Acta Petrologica Sinica, 22(2): 414-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602014.htm [34] Wang, L., Kusky, T.M., Li, S.Z., 2010. Structural Geometry of an Exhumed UHP Terrane in the Eastern Sulu Orogen, China: Implications for Continental Collisional Processes. Journal of Structural Geology, 32: 423-444. doi: 10.1016/j.jsq.2010.01.012 [35] Wang, Q.C., Cong, B.L., 1996. Tectonic Implication of UHP Rocks from the Dabie Mountains. Science in China (Series D), 39(3): 311-318. [36] Wang, Q.C., Cong, B.L., 1999. Exhumation of UHP Terranes: A Case Study from the Dabie Mountains, Eastern China. International Geology Review, 41: 994-1004. doi: 10.1080/00206819909465185 [37] Waters, D.J., Martin, H.N., 1993. Geobarometry of Phengite-Bearing Eclogite. Terra Abstracts, 5: 410-411. http://ci.nii.ac.jp/naid/10019908647 [38] Whitney, D.L., Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95: 185-187. doi: 10.2138/am.2010.3371 [39] Wu, Y.B., Zheng, Y.F., Zhou, J., 2004. Neoproterozoic Granitoid in Northwest Sulu and Its Bearing on the North China-South China Blocks Boundary in East China. Geophysical Research Letters, 31: 1-4. doi: 10.1029/2004GL019785 [40] Xu, H.F., Yang, T.N., Liu, F.L., et al., 2001. Multi Age-Time Evolution of Granite Gneisses-Granite in the Southern Sulu HP-UHP Metamorphic Belt. Acta Geologica Sinica, 75(3): 371-378 (in Chinese with English abstract). http://www.researchgate.net/publication/284574401_Multi_age-time_evolution_of_granite_gneisses-granite_in_the_Southern_Sulu_HP-UHP_metamorphic_belt [41] Xu, Z.Q., Yang, W.C., Ji, S.C., et al., 2009. Deep Root of a Continent-Continent Collision Belt, Evidence from the Chinese Continental Scientific Drilling (CCSD) Deep Borehole in the Sulu Ultrahigh-Pressure (HP-UHP) Metamorphic Terrane, China. Tectonophysics, 475: 204-219. doi:10.1016 /j.tecto.2009.02.029 [42] Xu, Z.Q., Liu, F.L., Qi, X.X., et al., 2006. Record for Rodinia Supercontinent Breakup Event in the South Sulu Ultra-High Pressure Metamorphic Terrane. Acta Petrologica Sinica, 22(7): 1745-1760 (in Chinese with English abstract). http://www.researchgate.net/publication/286739287_Record_for_Rodinia_supercontinent_breakup_event_in_the_south_Sulu_ultra-high_pressure_metamorphic_terrane [43] Yao, Y.P., Ye, K., Liu, J.B., 2000. A Transitional Eclogite-to High Pressure Granulite-Facies Overprint on Coesite-Eclogite at Taohang in the Sulu Ultrahigh-Pressure Terrane, Eastern China. Lithos, 52: 109-120. doi: 10.1018/S0024-4937(99)00087-0 [44] Ye, J.G., 2008. Transformatin and P-T-t Path of Gabbro to Coesite-Bearing Eclogite from Yangkou in the Sulu UHP Terrane (Dissertation). Chinese Academy of Geological Sciences, Beijing, 42-64 (in Chinese with English abstract). [45] Ye, K., Cong, B.L., Ye, D.N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(12): 734-736. doi: 10.1038/35037566 [46] Ye, K., Cong, B.L., Takao, H., et al., 1999. Transformation from Granulite to Transitional Eclogite at Haiyangsuo, Rushan County, Eastern Shandong Peninsula: The Kinetic Process and Tectonic Implications. Acta Petrologica Sinica, 15(1): 21-36 (in Chinese with English abstract). http://www.researchgate.net/publication/287762025_Transformation_from_granulite_to_transitional_eclogite_at_Haiyangsuo_Rushan_County_eastern_Shandong_Peninsula_The_kinetic_process_and_tectonic_implications [47] Zhang, H., 2013. Dynamic Processes of the Foreland Basin of the South Yellow Sea and Bain-Range Coupling Relationship (Dissertation). Ocean University of China, Qingdao, 5-48 (in Chinese with English abstract). [48] Zhang, R.Y., Hirajima, T., Banno, S., et al., 1995. Petrology of Ultrahigh-Pressure Rocks from the Southern Su-Lu Region, Eastern China. J. Metamorphic Geol., 13: 659-675. doi:10.1111/ j.1525-1314.1995.tb00250.x [49] Zhang, R.Y., Liou, J.G., Zheng, Y.F., et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Amphibolite Facies during Exhumation, Evidence from the Dabie Terrane, Central China. Lithos, 70: 269-291. doi:10.1016/ S0024-4937(03)00102-6 [50] Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005. U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China, Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 237: 729-743. doi: 10.1016/j.epsl.2005.07.003 [51] Zhang, X.D., Wang, S.G., Liu, J.W., et al., 1999. PTt Path of Metamorphism of Lanshantou Eclogite in Southeastern Shandong and Its Geological Significance. Acta Petrologica Sinica, 15(1): 37-47 (in Chinese with English abstract). http://www.researchgate.net/publication/282542546_PTt_path_of_metamorphism_of_Lanshantou_eclogite_in_southeastern_Shandong_and_its_geological_significance [52] Zhang, Z.M., Xu, Z.Q., Zu, H.F., et al., 2000. Petrology of Ultrahigh Pressure Eclogite from the ZK703 Drillhole in the Donghai, Eastern China. Lithos, 52: 35-50. doi: 10.1016/S0024-4937(99)00083-3 [53] Zhang, Z.M., Xiao, Y.L., Liu, F.L., et al., 2005. Petrogenesis of UHP Metamorphic Rocks from Qinglongshan, Southern Sulu, East Central China. Lithos, 81: 189-207. doi: 10.1016/j.lithos.2004.10.002 [54] Zhang, Z.M., Zhang, J.F., You, Z.D., et al., 2005. Ultrahigh-Pressure Metamorphic P-T-t Path of the Sulu Orogenic Belt, Eastern-Central China. Acta Petrologica Sinica, 21(2): 257-270 (in Chinese with English abstract). http://www.oalib.com/paper/1472574 [55] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006. Zircon U-Pb, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231: 135-158. doi: 10.1016/j.chemgeo.2006.01.005 [56] Zheng, Y.F., Wu, Y.B., Chen, F. K, et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Deleption Event in Igneous Rocks during the Neoproterozoic. Geochim. Cosmochim. Acta, 68: 4145-4165. doi: 10.1016/j.gca.2004.01.007 [57] Zhou, K.F., 2004. Geochemical Characteristics and Genetic Mechanism of Gneiss in the Depth Interval 3 000-3 500 m from the Main Drill Hole of Chinese Continental Scientific Drilling Project (Dissertation). Chinese Academy of Geological Sciences, Beijing, 79-80 (in Chinese with English abstract). [58] Zong, K.Q., Liu, Y.S., Hu, Z.C., et al., 2010. Melting-Induced Fluid during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, (120): 490-510. doi: 10.3799/dqkx.2011.103 [59] 陈意, 叶凯, 吴春明, 2005. 榴辉岩常用温压计在应用中应注意的问题. 岩石学报, 21(4): 1067-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504004.htm [60] 韩宗珠, 肖莹, 于航, 等, 2007. 南黄海千里岩岛榴辉岩的矿物化学及成因探讨. 海洋湖沼通报, (1): 83-87. doi: 10.3969/j.issn.1003-6482.2007.01.012 [61] 侯泉林, 武昱东, 吴福元, 等, 2008. 大别-苏鲁造山带在朝鲜半岛可能的构造表现. 地质通报, 27(10): 1659-1666. doi: 10.3969/j.issn.1671-2552.2008.10.008 [62] 纪壮义, 赵环金, 赵光华, 1992. 黄海海域千里岩岛发育榴辉岩. 山东地质, 8(2): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI199202011.htm [63] 李官保, 刘保华, 赵月霞, 等, 2011. 南黄海千里岩附近海域第四纪构造活动特征. 地球科学—中国地质大学学报, 36(6): 977-984. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106003.htm [64] 李敏, 2011. 南黄海千里岩隆起基底性质及动力学演化机制—来自榴辉岩的岩石学和地球化学证据(硕士学位论文). 青岛: 中国海洋大学. [65] 李曙光, 李秋立, 侯振辉, 等, 2005. 大别山超高压变质岩的冷却史及折返机制. 岩石学报, 21(4): 1117-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504009.htm [66] 廖晶, 岳保静, 施剑, 2013. 千里岩隆起在海区延伸问题探讨. 海洋地质与第四纪地质, 33(2): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201302024.htm [67] 刘福来, 薛怀民, 2007. 苏鲁-大别超高压岩石中高师SHRIMP U-Pb定年研究-综述和最新进展. 岩石学报, 23(11): 2737-2756. doi: 10.3969/j.issn.1000-0569.2007.11.006 [68] 刘福来, 薛怀民, 许志琴, 等, 2006. 大别超高压变质带的进变质、超高压和退变质时代的准确限定, 以双河大理岩中榴辉岩锆石中SHRIMP U-Pb定年为例. 岩石学报, 22(7): 1761-1778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607002.htm [69] 任纪舜, 姜春发, 张正坤, 等, 1980. 中国大地构造及其演化. 北京: 科学出版社, 108-110. [70] 石永红, 林伟, 王清晨, 2008. 大别山桐城地区雷庄低温高压榴辉岩的增温退变P-T轨迹及其构造含义. 岩石学报, 24(8): 1759-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808009.htm [71] 石永红, 王清晨, 2006. 大别山金河桥榴辉岩的精细P-T轨迹与多阶段折返. 岩石学报, 22(12): 2850-2860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612003.htm [72] 石永红, 王清晨, 林伟, 2006. 大别山太湖地区榴辉岩岩石学、矿物成分和P-T条件特征及其所揭示的构造含义. 岩石学报, 22(2): 414-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602014.htm [73] 徐惠芬, 杨天南, 刘福来, 等, 2001. 苏鲁高压-超高压变质带南部花岗片麻岩-花岗岩的多时代演化. 地质学报, 75(3): 371-378. doi: 10.3321/j.issn:0001-5717.2001.03.010 [74] 许志琴, 刘福来, 戚学祥, 等, 2006. 南苏鲁超高压变质地体中罗地亚大陆裂解事件的记录. 岩石学报, 22(7): 1745-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607001.htm [75] 叶建国, 2008. 苏鲁仰口地区辉长岩深俯冲过程中的矿物相转变及变质演化P-T-t轨迹(硕士学位论文). 北京: 中国地质科学院, 42-64. [76] 叶凯, 丛柏林, 平岛崇男, 等, 1999. 山东海阳所麻粒岩向过渡榴辉岩转化的变质动力学过程及其构造意义. 岩石学报, 15(1): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.002.htm [77] 张贺, 2013. 南黄海前陆盆地动力过程与盆山耦合关系研究(硕士学位论文). 青岛: 中国海洋大学, 5-48. [78] 张希道, 王式洸, 刘建文, 等, 1999. 鲁东岚山头榴辉岩的变质作用演化P-T-t轨迹及地质意义. 岩石学报, 15(1): 37-47. [79] 张泽明, 张金凤, 游振东, 等, 2005. 苏鲁造山带超高压变质作用及其P-T-t轨迹. 岩石学报, 21(2): 257-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502001.htm [80] 周开富, 2004. 中国大陆科学钻探工程主孔3 000~3 500 m片麻岩的地球化学性质及其成因机制(博士学位论文). 北京: 中国地质科学院, 79-80.