Geological Implications of Unconformity between Upper and Middle Devonian, and 346.8 Ma Post-Collision Volcanic Rocks in Karamaili, Xinjiang
-
摘要: 在东准噶尔卡拉麦里地区的五彩湾一带出露一套具磨拉石特征的火山沉积建造, 下部为具磨拉石特征的砾岩、砂岩, 上部为一套中基性的火山熔岩夹中酸性的火山凝灰岩.1:20万卡拉麦里山幅将其归入下石炭统松喀尔苏组.通过1:5万地质调查研究发现, 该火山沉积建造底部以一套粗砾岩高角度不整合于下-中泥盆统卡拉麦里组之上, 含晚泥盆世植物化石Prelepidodendron sp.(先鳞木), 中上部火山岩LA-ICP-MS锆石U-Pb年龄为346.8±3.3 Ma, 且被年龄为341.1±4.0 Ma~340.9±5.1 Ma后碰撞花岗岩侵入, 表明其形成时代为晚泥盆世-早石炭世, 时代上对应于北准噶尔地层分区的上泥盆统克安库都克组.该套地层中上部的火山岩的岩石组合为玄武岩、玄武安山岩、夹少量的流纹质凝灰岩, 岩石化学特征上属钙碱性-高钾钙碱性系列, (La/Yb)N=2.97~6.66, Nb、Ta亏损, 部分样品Zr、Ti弱显亏损, Nb/U、Ce/Pb比值分别为7.43~20.88、3.17~12.45.地球化学特征表明其兼具板内火山岩和弧火山岩的某些特点, 形成于后碰撞伸展环境, 是卡拉麦里洋盆于晚泥盆世之前闭合后后碰撞岩浆活动的产物.这一研究成果对广为关注的卡拉麦里洋盆的闭合时间进行了很好的限定.Abstract: A set of volcanic sedimentary formation outcrops in Wucaiwan, Karamaili area, eastern Junggar, composed of conglomerate, sandstone characterized by molasse in its lower part, and intermediate-basic lava interbedded with intermediate-acidic tuff in its upper part. The volcanic sedimentary formation is categorized into the Lower Carboniferous Songkaersu Formation in 1:200 000 Karamaili Mountain report. The 1:50 000 geological survey finds that a set of coarse conglomerate in the bottom high angle unconformably overlies the Early-Middle Devonian Karamaili Formation and contains plant fossil Prelepidodendron sp. of Late Devonian to Early Carboniferous. The volcanic rocks in the middle-upper part are intruded by post-collision granite of 341.1±4.0 Ma to 340.9±5.1 Ma, and its zircon U-Pb age is 346.8±3.3 Ma obtained by LA-ICP-MS. It indicates that the age of the volcanic sedimentary formation is Late Devonian-Early Carboniferous which might correspond to the Upper Devonian Keankuduke Formation in northern Junggar stratigraphic group. The volcanic rocks consist of basalt, basaltic andesite, and a handful of rhyolitic tuff, belonging to calc-alkaline and high K calc-alkaline series; and they are enriched in LILE and LREE ((La/Yb)N=2.97-6.66), depleted slightly in Nb, Ta, and depleted weakly in Zr, Ti in some samples, with Nb/U=7.43-20.88, Ce/Pb=3.17-12.45. These volcanic rocks show both intraplate and arc volcanic rock geochemistry characteristics, formed in post-collision extensional period after the closure of Karamaili Ocean before the Upper Devonian. This study determines the final amalgamation time of Karamali Ocean, an issue of wide concern.
-
Key words:
- eastern Junggar /
- Karamaili /
- angular unconformity /
- post-collision /
- volcanic rock /
- Keankuduke Formation
-
0. 引言
衔接阿尔泰和天山造山带的东准噶尔造山带是中亚显生宙巨型俯冲-增生造山带(Wang et al., 2003, 2006; Jahn 2004; Windley et al., 2007)的一部分,在东准噶尔造山带内分布着与俯冲-增生过程密切相关的2条重要的蛇绿岩带,即: 北部的阿尔曼太蛇绿岩带和南侧的卡拉麦里蛇绿岩带(图 1).一般认为卡拉麦里蛇绿岩代表的洋盆形成于早泥盆世(李锦轶等,2009)或者更早(何国琦等,2001;赵恒乐等,2012).对于洋盆闭合的时限则存在泥盆纪、早石炭世、晚石炭世、二叠纪的不同看法: 赵恒乐等(2012)发现苦水一带蛇绿岩被晚泥盆世克安库都克组不整合覆盖,认为洋盆西段可能闭合于中泥盆世.王道永和邓江红(1995)认为蛇绿岩就位于晚泥盆世,可能延续于早石炭世早期.蔡文俊和李春昱(1983)认为洋盆闭合于石炭纪.李锦轶等(1988)发现原早石炭世南明水组不整合于蛇绿岩之上,推测洋盆闭合时代在早石炭世维宪阶之前.Zhang et al.(2013)据具磨拉石特征地层的碎屑锆石年龄也持相同看法,一些同位素测年资料(吴润江等,2009;黄岗等,2012;吴琪等,2012)也支持这一观点.舒良树和王玉净(2003)发现蛇绿岩套硅质岩中含晚泥盆-早石炭世的放射虫,认为其代表了洋盆形成的晚期年龄.汪帮耀等(2009)则据蛇绿岩中辉长岩的年龄(329.9±1.6 Ma)认为洋盆最终闭合于早石炭世谢尔普霍夫期;Long et al.(2012)据东准噶尔和哈尔里克地区早石炭世晚期砂岩碎屑锆石年龄谱的差异认为蛇绿岩于早石炭世晚期之后就位.还有部分学者认为三塘湖地区的火山岩具有俯冲带火山岩的特征,洋盆闭合于晚石炭世(赵泽辉等,2006;李玮等2012).甚至有学者认为准噶尔洋在二叠纪还存在俯冲作用(肖文交等,2006; Xiao et al., 2009).
通常洋盆闭合之后的造山作用形成的磨拉石可以作为碰撞事件上限的标志之一(李继亮等,1999).作者在东准噶尔卡拉麦里地区1:5万区域地质调查中发现,原1:20万卡拉麦里幅所圈定的下石炭统松喀尔苏组地层以高角度不整合于下伏的早-中泥盆世卡拉麦里地层之上,其底部碎屑岩建造具磨拉石的特征,含晚泥盆世植物化石Prelepidodendron sp.(先鳞木),中上部的火山岩具后碰撞火山岩的特征,锆石U-Pb年龄为346.8±3.3 Ma,且被年龄为341.1±4.0 Ma~340.9±5.1 Ma后碰撞花岗岩侵入,可以肯定其地层时代不能和传统上的松喀尔苏组对应,而可与区域上的上泥盆统克安库都克组对比,其与下中泥盆统高角度不整合的拟定、底部碎屑岩的磨拉石建造的特征和中上部火山岩的后碰撞火山岩的特征,均表明其是卡拉麦里洋盆于晚泥盆世之前(中泥盆世)闭合后后碰撞岩浆活动的产物,为卡拉麦里洋盆的闭合时限提供了依据.
1. 地质特征
研究区位于卡拉麦里蛇绿岩带的南侧,区内出露了从古生代志留纪以来的地层.中志留统白山包组(S2b)、上志留统-下泥盆统红柳沟组(S3D1h)、下-中泥盆统卡拉麦里组(D1-2k)为连续沉积的正常碎屑岩,部分含凝灰质细碎屑岩,具被动陆缘的沉积特征(李锦轶等,2009).本文研究的后碰撞火山岩沉积建造不整合于卡拉麦里组(D1-2k)之上,上覆地层为下石炭统塔木岗组(C1t)和上石炭统巴塔玛依内山组(C2b).新疆地质局区域地质大队在1966年1:20万卡拉麦里山幅区域地质调查报告中曾将该套地层划为下石炭统松喀尔苏组.
野外实测剖面显示该套地层底部为一套砾岩(图 2a),角度不整合于早-中泥盆世卡拉麦里组(含早-中泥盆世珊瑚化石)之上(图 2b, 2e),被早石炭世(341.1±4.0 Ma~340.9±5.1 Ma,田健等,2013)花岗质岩体侵入(图 2c).依据岩性组合的特点大致可以将克安库都克组分为3段(图 3): 第1段(D3C1ka1)下部以正常沉积的砾岩为主,往上逐渐过渡为含砾砂岩、细砂岩,上部为爆发沉积相凝灰质含砾长石砂岩.凝灰质成分为中酸性;第2段(D3C1ka3)下部为火山沉积相的凝灰质砾岩、砂岩,中部为正常沉积的砾岩、细砂岩,上部也为火山沉积相凝灰质砾岩、凝灰质砂岩夹爆发相的流纹质凝灰岩;第3段(D3C1ka3)为溢流相玄武岩和玄武安山岩.由下向上,火山活动具由弱变强的趋势,从爆发沉积相的凝灰质碎屑岩逐渐变为溢流相熔岩,火山物质的成分有从中酸性向中基性演化的趋势.
图 2 克安库都克组野外露头、植物化石及火山岩显微照片a.克安库都克组底部砾岩;b.克安库都克组不整合于卡拉麦里组之上;c.早石炭世花岗质岩体侵入克安库都克组玄武岩当中;d.克安库都克组底部先鳞木化石;e.克安库都克组不整合于卡拉麦里组之上;f.玄武岩(-);g.玄武安山岩(+);h.玄武安山岩(+);i.流纹质凝灰岩(+);Pl.斜长石;Px.辉石;Mt.磁铁矿;Ilm.钛铁矿;Chl.绿泥石;Q.石英;Pyr.岩屑Fig. 2. Outcrop photos, plant fossil photos of the Keankuduke Formation and Photomicrographs of volcanic rocks底部砾岩沉积具磨拉石特征,砾石大小一般在2~15 cm不等,砾石呈圆状、次圆状,分选较差,略具定向性,砾石成分主要为硅质岩、粉砂岩、凝灰岩、少量为砂岩,从砾石的成分来看,其应该主要来自于本区志留系地层,应为洋盆闭合之后隆升期的产物.笔者在砾岩内砂岩夹层中采到了晚泥盆世-早石炭世的植物化石Prelepidodendron sp.(先鳞木)(图 2d).并在中上部火山岩中获得锆石U-Pb年龄为346.8±3.3 Ma.考虑到2008年《新疆维吾尔自治区岩石地层》已弃用松喀尔苏组一名,而将其归入晚泥盆世克安库都克组(D3ka),因此本文暂用克安库都克组一名.
2. 样品采集及分析方法
在剖面测制的基础上,系统采集了13件化学分析样品,7件采自PM066,6件采自PM067.锆石U-Pb年龄样2件,一件样品岩性为玄武安山岩,另一件为流纹质凝灰岩,均采自PM066.
用于化学分析的样品,其气孔杏仁都非常少,全部经过仔细地清洗.全岩主量、微量及稀土元素分析测试由湖北省地质实验研究所完成.主量元素用X射线荧光光谱仪测定,分析精度(RSD)小于0.9%(除H2O+、CO2);微量及稀土元素由电感耦合等离子质谱仪(ICP-MS)测定.锆石的分离挑选由河北省廊坊市诚信地质服务有限公司完成.锆石制靶和阴极发光(CL)显微照相,锆石LA-ICP-MS测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行.用于分析测试的锆石无包体、无裂纹,岩浆环带清楚.激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a,激光斑束直径32 μm.样品分析流程为在开始测量和测定结束后分别测定Nist610、91500、GJ-1标样,每隔5个样品测定2次锆石标样91500.测试结果由ICPMSDataCal软件处理.详细的处理流程和数据的处理方法见相关文献(Liu et al., 2008, 2010).样品的锆石U-Pb同位素年龄谐和图的绘制和年龄权重平均计算均采用Isoplot 3.0(Ludwig, 2003)完成.
3. 岩相学特征
结合火山岩野外、镜下特征和岩石化学分析结果,克安库都克组火山岩类型有玄武岩、玄武安山岩、及中酸性的凝灰岩.
玄武岩(图 2f): 斑状结构,基质为间粒结构.斑晶(3%)为基性斜长石,长柱状,Ⅰ级灰白干涉色,部分碳酸盐化.基质由微晶斜长石(54%,测得Np′∧a夹角最大为39°,为An64拉长石)和辉石(37%,正中突起,最高干涉色为Ⅱ级蓝,大部分发生碳酸盐化石,绿泥石化)、磁铁矿(3%,粒状,不透明)、钛铁矿(3%,针状、不透明)组成.
玄武安山岩(图 2g, 2h): 无斑,间粒结构,由微晶斜长石(70%,Ⅰ级灰白干涉色,可见聚片双晶,测得Np′∧a夹角最大为24°,为An49拉长石,多绢云母化)、辉石(29%,正中突起,最高干涉色为Ⅱ级黄,部分发生绿泥石化)、磁铁矿(1%,呈粒状,不透明)组成.
流纹质凝灰岩(图 2i): 凝灰质结构,由石英晶屑(5%)、长石晶屑(6%)、流纹质岩屑(15%)、脱玻化的玻屑(74%)组成,其中石英、长石晶屑、岩屑多呈棱角状或不规则状.
4. 锆石U-Pb测年结果
本文分别采集了克安库都克组中段的流纹质凝灰岩和上段玄武安山岩2件锆石样品,玄武安山岩的样品中的锆石均为捕获的老锆石,锆石206Pb/238U年龄在402~947 Ma之间(表 1),变化较大,对应的时代为早泥盆世-新元古代.其中大量的早-中泥盆世的锆石与本课题组在滴水泉一带新发现的蛇绿岩(待发表)及研究区北侧的中泥盆统巴尔雷组岛弧火山-沉积建造的时代一致.
表 1 玄武安山岩锆石U-Pb同位素分析结果Table Supplementary Table Zircon U-Pb Isotopic analysis composition of basaltic andesite分析点 Th/U 元素含量(10-6) 同位素比值 同位素年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 0.9 1 459 1 594 0.065 8 0.001 7 1.172 0 0.030 7 0.128 4 0.001 2 1 200 54 788 14 779 7 02 1.0 750 787 0.058 1 0.002 7 0.528 2 0.024 3 0.066 2 0.000 9 532 99 431 16 413 5 03 1.3 555 423 0.064 2 0.002 9 1.239 9 0.052 9 0.141 9 0.001 9 750 96 819 24 855 10 04 0.8 228 278 0.066 7 0.003 6 0.819 2 0.047 4 0.088 8 0.002 0 828 107 608 26 549 12 05 1.8 1 658 935 0.083 0 0.002 9 0.868 5 0.033 2 0.074 5 0.000 9 1 278 100 635 18 463 6 06 0.9 1 498 1 723 0.069 7 0.001 8 1.530 7 0.039 3 0.158 2 0.001 6 920 54 943 16 947 9 07 1.3 1 455 1 127 0.055 5 0.002 2 0.493 1 0.019 1 0.064 3 0.000 9 435 89 407 13 402 5 08 0.5 990 1 862 0.059 1 0.002 0 0.669 3 0.022 3 0.081 4 0.000 9 569 72 520 14 505 5 09 0.5 798 1 742 0.061 4 0.001 8 0.701 1 0.020 8 0.082 0 0.000 9 654 63 539 12 508 5 10 1.0 763 795 0.063 0 0.003 0 0.591 0 0.029 0 0.067 2 0.000 8 709 100 472 19 419 5 11 0.7 893 1 285 0.052 4 0.001 4 0.513 6 0.014 4 0.070 4 0.000 7 302 63 421 10 438 4 12 0.7 1 719 2 592 0.054 4 0.001 1 0.541 7 0.012 1 0.071 4 0.000 6 387 46 440 8 445 4 13 1.8 1 490 851 0.065 4 0.002 4 0.629 5 0.023 6 0.069 2 0.000 8 787 77 496 15 431 5 14 1.3 3 486 2 656 0.066 3 0.001 1 1.032 4 0.018 4 0.111 5 0.000 7 817 33 720 9 681 4 15 0.8 461 596 0.058 6 0.001 1 0.565 1 0.010 6 0.069 1 0.000 5 554 36 455 7 431 3 16 0.9 2 036 2 163 0.060 3 0.001 5 0.607 0 0.014 9 0.072 3 0.000 6 613 52 482 9 450 4 17 2.4 1 879 773 0.064 2 0.002 8 0.575 5 0.023 5 0.065 2 0.000 7 746 91 462 15 407 4 18 0.3 760 2 239 0.063 6 0.001 6 0.708 2 0.018 1 0.079 8 0.000 7 728 56 544 11 495 4 流纹质凝灰岩中的25颗单颗粒锆石的Th、U含量(表 1)较高,Th/U比值大于0.5(表 2),具典型岩浆锆石的特征(Wu and Zheng, 2004).锆石微量元素Lu(>90×10-6),U(>359×10-6),Ta(>1.01×10-6),Hf(>1.7×10-6)也显示出具中酸性岩浆锆石的性质(Belousova et al., 2002),锆石均无色、透明,晶形较好,粒径约在50~200 μm之间,阴极发光显示这些锆石无继承核,震荡环带清楚(图 4a),具岩浆锆石的特点.
表 2 凝灰岩锆石U-Pb同位素分析结果Table Supplementary Table Zircon U-Pb Isotopic analysis composition of tuff分析点 Th/U 元素含量(10-6) 同位素比值 同位素年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 0.5 302 572 0.048 0 0.003 6 0.380 8 0.029 1 0.056 9 0.000 9 102 231 328 21 357 6 02 0.9 377 441 0.042 8 0.003 2 0.335 6 0.024 5 0.057 1 0.001 1 error error 294 19 358 7 03 0.6 441 773 0.060 4 0.003 8 0.445 4 0.028 1 0.053 1 0.000 8 617 137 374 20 334 5 04 0.8 1 056 1 362 0.048 1 0.002 6 0.366 1 0.019 4 0.054 7 0.000 8 106 128 317 14 343 5 05 0.6 475 768 0.062 7 0.004 1 0.468 8 0.029 9 0.054 1 0.000 9 698 140 390 21 340 5 06 0.5 370 679 0.060 2 0.004 5 0.464 1 0.034 6 0.055 3 0.000 9 613 161 387 24 347 6 07 0.6 510 793 0.055 3 0.003 6 0.417 6 0.025 9 0.055 1 0.000 9 433 144 354 19 346 6 08 0.6 325 509 0.052 9 0.003 8 0.424 0 0.031 3 0.057 6 0.000 9 324 165 359 22 361 5 09 0.5 365 675 0.064 1 0.004 3 0.487 6 0.030 8 0.055 8 0.000 9 746 141 403 21 350 6 10 0.7 580 868 0.055 5 0.003 6 0.425 6 0.026 3 0.055 9 0.000 9 432 144 360 19 350 6 11 0.7 608 881 0.054 4 0.003 5 0.410 4 0.026 3 0.054 5 0.000 9 391 144 349 19 342 5 12 0.6 373 624 0.058 8 0.003 9 0.422 9 0.027 7 0.052 4 0.000 9 561 146 358 20 329 6 13 0.5 315 583 0.053 7 0.004 4 0.404 9 0.032 1 0.055 3 0.001 0 367 185 345 23 347 6 14 0.7 763 1 159 0.055 6 0.003 0 0.432 2 0.023 6 0.056 4 0.000 9 439 116 365 17 354 5 15 0.7 559 858 0.048 4 0.002 9 0.361 7 0.021 2 0.054 6 0.000 9 120 133 314 16 343 5 16 0.5 302 630 0.056 6 0.003 7 0.423 5 0.027 7 0.054 6 0.001 0 476 143 359 20 343 6 17 0.7 1 108 1 508 0.055 9 0.002 7 0.421 1 0.020 4 0.054 7 0.000 7 456 103 357 15 344 4 18 0.5 323 606 0.060 4 0.003 6 0.460 0 0.026 4 0.056 3 0.001 0 618 130 384 18 353 6 19 0.7 704 1 018 0.054 6 0.003 4 0.401 5 0.024 0 0.053 7 0.000 8 394 136 343 17 337 5 20 0.6 510 888 0.051 3 0.003 8 0.368 4 0.024 3 0.053 5 0.000 9 257 170 318 18 336 6 21 0.5 163 359 0.064 1 0.005 3 0.487 3 0.037 4 0.056 5 0.001 0 746 181 403 26 354 6 22 0.5 219 417 0.073 0 0.004 8 0.580 0 0.036 9 0.058 2 0.001 1 1 013 132 464 24 365 7 23 0.7 457 673 0.051 4 0.003 4 0.396 0 0.025 7 0.056 5 0.001 0 257 186 339 19 354 6 24 0.9 897 1 015 0.061 6 0.003 4 0.468 7 0.026 1 0.054 8 0.000 8 661 119 390 18 344 5 25 0.6 398 686 0.058 4 0.004 2 0.438 8 0.030 6 0.054 9 0.000 9 546 153 369 22 344 6 25颗锆石的U-Pb谐和年龄非常集中(图 4b),其206Pb/238U加权平均年龄为346.8±3.3 Ma(MSWD=2.0),对应的时代为早石炭世(图 4c).由于克安库都克组不整合于卡拉麦里组(D1-2k)之上,在侵入于该组地层的花岗质岩石中获得锆石U-Pb年龄为341.1±4.0 Ma~340.9±5.1 Ma(田健等,2013).因此346.8±3.3 Ma的年龄是可靠的.
5. 地球化学特征
13件样品的主量元素、微量元素及稀土元素分析结果见表 3.总的来看,部分样品的分析结果具较高的CO2值(2.26%~4.34%)和烧失量(1.61%~6.68%),显示了较强的后期蚀变的影响.因此,在岩石分类命名及源区特征和构造环境的讨论中,本文尽量使用不活泼的微量元素和蚀变影响较小的元素比值来讨论.
表 3 样品全岩主量(%)及微量元素(10-6)分析结果Table Supplementary Table Major elements (%) and trace elements (10-6) analysis data样品编号 066-18-1 066-18-2 066-22-1 067-9-5 066-25-1 D5462-1 067-9-4 067-16-1 067-16-2 067-16-4 067-18-2 066-24-1 066-24-3 岩性 玄武岩 玄武安山岩 SiO2 50.40 43.62 51.52 51.73 49.16 46.86 55.01 52.92 52.91 53.32 52.30 53.42 55.56 TiO2 2.48 2.40 1.46 2.73 1.83 2.27 1.20 1.29 1.27 1.10 1.14 1.46 1.35 Al2O3 16.18 16.07 16.09 13.77 16.19 16.82 16.75 17.31 16.73 16.97 16.87 16.20 15.70 FeO 8.42 10.02 6.35 5.98 5.12 7.52 4.48 3.25 5.12 4.75 4.48 5.35 5.38 Fe2O3 1.29 1.84 1.70 6.09 4.79 4.36 3.16 3.51 2.99 3.36 3.64 2.99 2.28 Fe2O3T 10.65 12.97 8.76 12.73 10.48 12.72 8.14 7.12 8.68 8.64 8.62 8.93 8.26 FeOT 9.58 11.67 7.88 11.46 9.43 11.44 7.32 6.41 7.81 7.77 7.75 8.04 7.43 MnO 0.21 0.23 0.14 0.24 0.17 0.20 0.13 0.16 0.14 0.12 0.12 0.16 0.17 MgO 3.27 3.24 4.19 3.65 5.00 6.71 4.03 2.15 3.77 3.63 4.15 4.39 3.59 CaO 9.34 11.62 6.95 5.93 8.26 8.54 6.85 9.90 7.94 6.24 8.16 5.59 5.84 Na2O 2.72 2.61 2.84 4.49 3.02 3.02 3.50 3.31 3.55 3.33 2.46 4.28 3.98 K2O 2.52 0.18 1.90 1.83 0.81 0.82 1.57 1.15 1.26 1.43 0.74 2.35 2.53 P2O5 0.40 0.40 0.51 1.13 0.30 0.45 0.39 0.47 0.45 0.35 0.35 0.51 0.47 H2O+ 2.36 3.23 3.19 2.09 3.15 2.02 2.49 1.41 1.24 2.88 2.96 2.59 2.10 CO2 0.19 4.34 2.95 0.16 2.00 0.17 0.22 2.95 2.43 2.26 2.43 0.49 0.46 LOI 1.64 6.68 5.54 1.61 4.74 1.65 2.26 3.97 3.17 4.58 4.68 2.46 2.02 Mg# 41.72 36.79 52.72 40.05 52.65 55.15 53.58 41.30 50.31 49.48 52.88 53.38 50.33 Cr 107.00 106.00 77.80 31.40 139.0 78.40 70.10 66.00 69.10 120.00 97.00 77.60 67.20 Ni 51.10 53.10 40.00 5.66 84.30 66.60 38.80 39.30 35.00 48.40 48.30 40.80 34.00 Rb 48.80 4.18 37.70 38.20 23.10 24.40 38.90 17.90 23.60 28.20 13.10 55.20 37.60 Ba 368.00 103.00 402.00 263.00 156.00 162.00 444.00 323.00 341.00 719.00 279.00 560.00 576.00 Th 1.32 1.10 2.58 3.02 1.79 1.85 3.52 3.99 3.69 2.93 3.15 2.51 2.58 U 0.34 0.35 0.80 1.15 0.64 0.51 0.87 1.15 1.05 0.82 0.95 0.71 0.73 Nb 5.59 6.39 9.29 8.56 5.55 10.70 8.41 10.80 9.18 6.95 7.40 8.49 9.36 Ta 0.36 0.45 0.58 0.54 0.40 0.83 0.56 0.84 0.62 0.47 0.57 0.51 0.67 La 13.70 13.20 23.20 23.00 13.80 14.60 26.50 27.80 27.80 19.70 20.10 20.80 22.40 Ce 34.30 33.30 53.70 57.20 31.90 34.60 57.30 59.20 59.70 42.10 42.60 48.00 52.50 Pr 5.04 5.06 7.34 8.31 4.73 4.91 7.31 7.58 7.58 5.53 5.57 6.54 7.21 Sr 346.00 406.00 445.00 351.00 443.00 463.00 529.00 504.00 457.00 493.00 436.00 416.00 364.00 Nd 22.40 22.40 29.80 36.80 20.20 23.00 28.00 29.20 28.60 21.90 21.50 26.80 29.70 Zr 191.00 190.00 240.00 242.00 203.00 200.00 239.00 267.00 265.00 187.00 190.00 238.00 236.00 Hf 5.05 4.79 5.67 6.04 4.57 7.28 5.50 5.75 5.52 4.42 4.41 5.69 5.65 Sm 6.63 6.82 7.71 10.48 5.86 5.84 6.74 7.12 6.95 5.46 5.29 7.03 7.64 Eu 2.17 2.08 2.41 3.22 1.85 1.81 1.86 1.95 1.90 1.53 1.50 2.15 2.60 Gd 6.90 7.17 7.27 10.9 6.12 6.01 6.04 6.61 6.38 5.05 4.99 6.83 7.31 Tb 1.14 1.16 1.18 1.74 1.01 0.97 0.90 1.02 1.07 0.79 0.79 1.07 1.19 Dy 6.71 6.91 6.79 9.94 6.17 5.65 5.27 6.01 5.70 4.62 4.54 6.17 6.93 Y 32.70 32.60 33.20 48.90 30.80 28.30 26.70 30.40 29.00 23.00 23.00 31.50 34.70 Ho 1.30 1.28 1.31 1.93 1.19 1.10 1.00 1.15 1.14 0.90 0.88 1.20 1.37 Er 3.56 3.63 3.84 5.45 3.48 3.16 2.92 3.36 3.31 2.63 2.57 3.48 3.94 Tm 0.48 0.48 0.54 0.74 0.49 0.45 0.41 0.48 0.48 0.39 0.37 0.48 0.56 Yb 3.03 3.01 3.74 5.01 3.33 2.95 2.85 3.34 3.27 2.61 2.65 3.39 3.88 Lu 0.39 0.39 0.54 0.72 0.49 0.42 0.42 0.49 0.50 0.40 0.39 0.50 0.57 Pb 2.76 0.92 16.90 6.70 7.19 5.75 6.56 10.30 6.84 5.99 8.60 4.58 14.70 Cs 346.00 406.00 445.00 351.00 443.00 463.00 529.00 504.00 457.00 493.00 436.00 416.00 364.00 全部样品的SiO2含量在43.62%~55.56%之间,在玄武岩和玄武安山岩范围内.MgO含量为2.15%~6.71%,Mg#值在36.79~55.15之间;TiO2含量为1.10%~2.73%;Al2O3含量为13.77%~17.71%;Fe2O3T含量在7.12%~12.97%之间;CaO含量为5.59%~11.62%;Na2O的含量(2.46%~4.49%)大于K2O的含量(0.18%~2.53%),Na2O/K2O比值在1.1~3.7之间(除一个LOI最大的为14.5).在TAS分类图中(图 5a)落在玄武岩、玄武安山岩、玄武质粗面安山岩、粗面安山岩区,主体属亚碱性系列,偏碱性(落在分界线附近,这些样品的H2O+和CO2含量都较低)的特点.在Nb/Y-Zr/TiO2分类图解图中(图 5b)则全部位于亚碱性系列区域内.在SiO2-K2O图中(图 6)主要位于钙碱性-高钾钙碱性系列区(为避免蚀变作用影响,剔除LOI大于2.5%的样品),个别具明显富钾的特征,落入钾玄岩系列范围.
图 6 火山岩SiO2-K2O关系(据Peccerillo and Taylor, 1976)Fig. 6. Relation of SiO2-K2O of volcanic rocks样品微量元素分配型式如图所示(图 7a),总体上大离子亲石元素(LILE)和轻稀土(LREE)富集,一个LOI最大的样品,K、Rb亏损明显,应和后期蚀变作用较强有关,其Pb含量也明显低于别的样品(后面讨论中去除该数据);高场强元素(HFSE)Nb、Ta亏损,部分样品Zr、Ti弱显亏损.
稀土分配型式如图所示(图 7b),所有样品的稀土分配型式都为右倾型.轻稀土(LREE)富集,轻重稀土分馏明显,(La/Yb)N比值为2.97~6.66;同时具轻微的重稀土分馏,(Gd/Yb)N比值为1.52~1.97.稀土总量(∑REE)为100×10-6~175× 10-6.Eu异常不明显,δEu=0.86~1.05,说明基本上没有斜长石的结晶分离,同时也无Ce异常,δCe=0.97~1.01.
6. 讨论
6.1 地层时代
克安库都克组不整合于早-中泥盆世地层卡拉麦里组之上,其底部砾岩中含晚泥盆世-早石炭世的植物化石Prelepidodendron sp.(先鳞木),中上部凝灰岩锆石U-Pb年龄为346.8±3.3 Ma,侵入其中的花岗质岩石锆石U-Pb年龄为341.1±4.0 Ma~340.9±5.1 Ma(田健等,2013),因此该地层的时代为晚泥盆-早石炭世,而玄武安山岩中锆石206Pb/238U谐和年龄最小的为402 Ma,不能代表火山岩的喷发年龄,这些较老的锆石是岩浆上升过程中捕获自围岩的锆石.
值的注意的是测区的克安库都克组上部还被巴塔玛依内山组的火山岩不整合覆盖,2008年《新疆维吾尔自治区岩石地层》将巴塔玛依内山组时代定为早石炭世晚期-晚石炭世早期,近年来所发表的该组火山岩的锆石U-Pb年龄集中在300.4±1.3 Ma~323.0±5.0 Ma(苏玉平等,2010; Xiao et al., 2011; Su et al., 2012),笔者在白碱沟以西也获得巴塔玛依内山组粗面岩锆石U-Pb年龄为318 Ma,因此本文中的火山岩不应属于巴塔玛依内山组.谭佳奕等(2009)曾报道过巴塔玛依内山组粗面安山岩锆石SHRIMP U-Pb年龄为350.0±6.3 Ma,显然不属巴塔玛依内山组,但350.0±6.3 Ma的年龄在误差范围内和本次的报道的火山岩年龄一致,这也说明了东准噶尔地区存在这一期火山活动.
6.2 岩浆源区
火山岩的MgO含量在2.15%~6.71%,含量较低,Mg#值在36.79~55.15之间,明显低于原始岩浆的参考值65,Cr(31.4×10-6~139×10-6)、Ni(5.66×10-6~84.3×10-6)含量也很低,说明岩浆经历了后期演化过程.火山岩LILE富集,Nb、Ta亏损,部分样品Zr、Ti亏损,在Nb/Yb-Th/Yb图上(图 8a)投点在MORB-OIB趋势范围外,显示出岩浆受到了地壳物质混染,或者具弧火山岩特点(Pearce, 2008).
图 8 火山岩Nb/Yb-Th/Yb(a)和Ta/Yb-Th/Yb关系(b)a.据Pearce, 2008;b.据Pearce, 1982Fig. 8. Nb/Yb-Th/Yb (a) and Ta/Yb-Th/Yb (b) plot for samples火山岩的Nb/U、Ce/Pb比值范围分别在7.43~20.88、3.17~12.45,低于OIB和MORB的Nb/U(47±10)和Ce/Pb比值(25±5)(Hofmann, 1986),表明岩浆在上升过程中存在地壳物质混染的可能性.但Th/Ce(<0.07)、Th/La(0.08~0.16)比值远小于地壳Th/Ce(约0.15)、Th/La(约0.30)比值,而与地幔来源的岩浆Th/Ce(0.02~0.05)、Th/La(约0.12)接近;同时少量地壳物质混染会造成轻微的Zr、Hf正异常,但火山岩基本无Zr、Hf正异常,表明受到地壳混染的程度较小(Su et al., 2012);另外火山岩La/Sm比值为1.94~3.99,小于4.5,也表明受到地壳物质混染的可能小(李涤等,2012).因此火山岩LILE相对富集、而Nb、Ta明显的亏损的特征应该主要继承自源区.火山岩(U/Pb)PM比值(0.16~0.58)小于1、(Nb/Th)PM比值(0.28~0.69)、(Ta/U)PM比值(0.24~0.84)都小于1,显示出弧玄武岩的特征(郑永飞等,2013).在Ya/Yb-Th/Yb图上(图 8b),投点落在活动大陆边缘和大洋岛弧的位置,表明类似于俯冲带流体交代过的岩石圈地幔参与了岩浆的形成过程.消减沉积物熔体Th含量较高,Ce/Th比值(约8)、Ba/Th比值(约111)较低(Plank and Langmuir, 1998),而克安库都克组火山岩Ce/Th、Ba/Th分别为13.5~30.3、80.9~279.3之间;且没有负Ce异常,不同于受消减沉积物熔体影响的岩浆(Hole et al., 1984).而低的Nb/U、Ce/Pb比值则说明了地幔源区受到了板片来源地流体的影响(Seghedi et al., 2004).
6.3 构造背景及意义
有学者认为卡拉麦里洋盆在早石炭世期间发生双向俯冲(Xiao et al., 2004, 2008;杨品荣等,2007; Su et al., 2012),分别形成西伯利亚板块南缘和准噶尔板块北缘2个岛弧带,松喀尔苏组是准噶尔板块北缘岛弧带地层序列(杨品荣等,2007),松喀尔苏组火山岩产于岛弧背景(Su et al., 2012).但也有学者根据蛇绿岩两侧地层岩性组合特点和构造变形特征认为洋盆只发生向北的单向俯冲(李锦轶等,2009).蛇绿岩带北侧泥盆纪地层具有弧-盆体系的形成背景(李锦轶等,2006),存在岛弧岩浆活动(李锦轶等,1990;李锦轶,1991;王道永和邓江红,1995),而南侧泥盆纪-早石炭世的碎屑岩沉积具被动陆缘特征(李锦轶,2004;李锦轶等, 2006, 2009),早石炭世地层是陆间残余海盆的沉积产物(张旺生和高怀忠,1999).
克安库都克组火山岩的Nb、Ta亏损、部分样品Ti也亏损,显示了岛弧火山岩的特点,但典型的岛弧火山岩通常其TiO2的含量较低(<1%)(Wilson, 1989),HFSE含量也较低,样品的TiO2含量(1.1%~2.73%)明显大于1%,同时其高场强元素(HFSE)的含量也较典型岛弧钙碱性火山岩高的多(图 7a).在Zr-Zr/Y和Ti/100-Zr-Y*3图中(未示出)火山岩也很少落在出岛弧火山岩的范围内,而绝大部分落在了板内火山岩的区域,这些都表明克安库都克组火山岩和典型的岛弧火山岩有明显的区别.蛇绿岩带北侧发育下中泥盆统白塔山组的岛弧火山-沉积建造,而南侧从志留纪-泥盆纪沉积岩系具被动陆缘的特征,不发育火山岩,同时地层的构造变形特征也不支持卡拉麦里洋盆发生过向南的俯冲(李锦轶等,2009).因而克安库都克组不是岛弧岩浆活动的产物.赵磊等(2012)认为卡拉麦里构造带在二叠纪时期的走滑活动性质,以及新疆北部后期叠加构造变形序次大区域上的共性,指示新疆北部在二叠纪进入基本统一的大陆内部构造演化阶段.因此克安库都克组火山岩也不是陆内期的产物,而是形成于洋盆闭合之后至板内期之间的后碰撞阶段.
后碰撞期岩浆活动强烈,岩浆类型主要为钾质、特别以高钾钙碱性系列为主、次为钾玄岩系列(Liégeois, 1998).东准噶尔地区报道了大量的石炭纪后碰撞火山岩,主要分布在三塘湖(319.6±9.8 Ma)(陈石等,2009)、准噶尔盆地内部(毛治国等,2010;李涤等,2012),陆东-五彩湾地区巴塔玛依内山组(C2b)(赵霞等,2008;吴小奇等,2009b),红柳沟以北黑山头组(339.0±4.0 Ma)(杨高学等,2011).这些火山岩既有碱性也有亚碱性系列,其中亚碱性系列以钙碱性和高钾钙碱性为主,少量为低钾拉斑系列和钾玄岩系列,具有LILE富集、HFSE亏损,87Sr/86Sr初始比值较低,εNd值较高的特点(吴小奇等,2009a;杨高学等,2010).克安库都克组火山岩和这些后碰撞火山岩有着相同的地球化学特征.韩宝福等(2006)根据准噶尔地区广泛分布的后碰撞型花岗岩认为东准噶尔地区后碰撞深成岩浆活动发生在330~265 Ma之间.本课题组最近发现侵入于克安库都克组地层的后碰撞型花岗岩中锆石206Pb/238U的加权平均年龄为341.1±4.0 Ma~340.9±5.1 Ma(田健等,2013).这些都表明346.8±3.3 Ma克安库都克组火山岩形成于后碰撞伸展背景.
如前所述,克安库都克组粗碎屑岩是对卡拉麦里造山事件的沉积响应.其角度不整合在泥盆纪卡拉麦里组之上(D1-2k),含晚泥盆世-早石炭世的植物化石,上部火山岩的年龄为346.8±3.3 Ma.又为341.1±4.0 Ma~340.9±5.1 Ma的后碰撞型花岗岩体侵入,其时代为晚泥盆-早石炭世,这表明卡拉麦里蛇绿岩所代表的洋盆至少于晚泥盆世之前就已经闭合,东准噶尔地区随后进入后碰撞演化阶段.古生物方面的证据也表明洋盆最晚在早石炭世就已经关闭(欧阳舒等,2004).巴斯德阔彦德地区蛇绿岩被343 Ma的凝灰岩覆盖(黄岗等,2012),红柳峡地区蛇绿岩被343 Ma韧性剪切带切穿(吴琪等,2012),这些具体的年龄数据也支持这一结论.研究区以东苦水一带晚泥盆世地层不整合于蛇绿岩带之上(赵恒乐等,2012)也证实了这一点.
7. 结论
克安库都克组不整合于早-中泥盆世卡拉麦里组之上,其底部砾岩中含晚泥盆世-早石炭世植物化石,中上部凝灰岩锆石206Pb/238U的加权平均年龄为346.8±3.3 Ma(MSWD=2.0),克安库都克组地层时代为晚泥盆世-早石炭世.
克安库都克组中基性火山岩富集大离子亲石元素LILE、亏损高场强(HFSE)Nb、Ta,部分亏损Zr、Ti,Nb/U比值为7.43~20.88、Ce/Pb比值为3.17~12.45,来源于受流体影响的地幔源区,是后碰撞岩浆活动的产物.
克安库都克组不整合于泥盆纪卡拉麦里组之上,底部沉积岩系具磨拉石特征,是对卡拉麦里造山事件的沉积响应,克安库都克组火山岩形成于后碰撞伸展背景,因而卡拉麦里蛇绿岩代表的洋盆应闭合于晚泥盆世之前.
致谢: 感谢匿名审稿专家对本文提出的宝贵修改意见! -
图 2 克安库都克组野外露头、植物化石及火山岩显微照片
a.克安库都克组底部砾岩;b.克安库都克组不整合于卡拉麦里组之上;c.早石炭世花岗质岩体侵入克安库都克组玄武岩当中;d.克安库都克组底部先鳞木化石;e.克安库都克组不整合于卡拉麦里组之上;f.玄武岩(-);g.玄武安山岩(+);h.玄武安山岩(+);i.流纹质凝灰岩(+);Pl.斜长石;Px.辉石;Mt.磁铁矿;Ilm.钛铁矿;Chl.绿泥石;Q.石英;Pyr.岩屑
Fig. 2. Outcrop photos, plant fossil photos of the Keankuduke Formation and Photomicrographs of volcanic rocks
图 5 火山岩TAS(a)和Nb/Y-Zr/TiO2图解(b)
a.据Le Maitre et al., 1989;b.据Winchester and Floyd, 1977
Fig. 5. TAS plot of volcanic rocks (a) and Nb/Y-Zr/TiO2 plot (b)
图 6 火山岩SiO2-K2O关系(据Peccerillo and Taylor, 1976)
Fig. 6. Relation of SiO2-K2O of volcanic rocks
图 7 样品微量元素蛛网图及稀土元素球粒陨石标准化图
a.MORB值据Pearce, 1983;OIB值据Sun and Mcdonough, 1989;CABI值据李昌年,1992;b.标准化值据Sun and Mcdonough, 1989
Fig. 7. Spider plot of trace element of samples and Chondrite-normalized REE patterns of samples
图 8 火山岩Nb/Yb-Th/Yb(a)和Ta/Yb-Th/Yb关系(b)
a.据Pearce, 2008;b.据Pearce, 1982
Fig. 8. Nb/Yb-Th/Yb (a) and Ta/Yb-Th/Yb (b) plot for samples
表 1 玄武安山岩锆石U-Pb同位素分析结果
Table 1. Zircon U-Pb Isotopic analysis composition of basaltic andesite
分析点 Th/U 元素含量(10-6) 同位素比值 同位素年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 0.9 1 459 1 594 0.065 8 0.001 7 1.172 0 0.030 7 0.128 4 0.001 2 1 200 54 788 14 779 7 02 1.0 750 787 0.058 1 0.002 7 0.528 2 0.024 3 0.066 2 0.000 9 532 99 431 16 413 5 03 1.3 555 423 0.064 2 0.002 9 1.239 9 0.052 9 0.141 9 0.001 9 750 96 819 24 855 10 04 0.8 228 278 0.066 7 0.003 6 0.819 2 0.047 4 0.088 8 0.002 0 828 107 608 26 549 12 05 1.8 1 658 935 0.083 0 0.002 9 0.868 5 0.033 2 0.074 5 0.000 9 1 278 100 635 18 463 6 06 0.9 1 498 1 723 0.069 7 0.001 8 1.530 7 0.039 3 0.158 2 0.001 6 920 54 943 16 947 9 07 1.3 1 455 1 127 0.055 5 0.002 2 0.493 1 0.019 1 0.064 3 0.000 9 435 89 407 13 402 5 08 0.5 990 1 862 0.059 1 0.002 0 0.669 3 0.022 3 0.081 4 0.000 9 569 72 520 14 505 5 09 0.5 798 1 742 0.061 4 0.001 8 0.701 1 0.020 8 0.082 0 0.000 9 654 63 539 12 508 5 10 1.0 763 795 0.063 0 0.003 0 0.591 0 0.029 0 0.067 2 0.000 8 709 100 472 19 419 5 11 0.7 893 1 285 0.052 4 0.001 4 0.513 6 0.014 4 0.070 4 0.000 7 302 63 421 10 438 4 12 0.7 1 719 2 592 0.054 4 0.001 1 0.541 7 0.012 1 0.071 4 0.000 6 387 46 440 8 445 4 13 1.8 1 490 851 0.065 4 0.002 4 0.629 5 0.023 6 0.069 2 0.000 8 787 77 496 15 431 5 14 1.3 3 486 2 656 0.066 3 0.001 1 1.032 4 0.018 4 0.111 5 0.000 7 817 33 720 9 681 4 15 0.8 461 596 0.058 6 0.001 1 0.565 1 0.010 6 0.069 1 0.000 5 554 36 455 7 431 3 16 0.9 2 036 2 163 0.060 3 0.001 5 0.607 0 0.014 9 0.072 3 0.000 6 613 52 482 9 450 4 17 2.4 1 879 773 0.064 2 0.002 8 0.575 5 0.023 5 0.065 2 0.000 7 746 91 462 15 407 4 18 0.3 760 2 239 0.063 6 0.001 6 0.708 2 0.018 1 0.079 8 0.000 7 728 56 544 11 495 4 表 2 凝灰岩锆石U-Pb同位素分析结果
Table 2. Zircon U-Pb Isotopic analysis composition of tuff
分析点 Th/U 元素含量(10-6) 同位素比值 同位素年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 0.5 302 572 0.048 0 0.003 6 0.380 8 0.029 1 0.056 9 0.000 9 102 231 328 21 357 6 02 0.9 377 441 0.042 8 0.003 2 0.335 6 0.024 5 0.057 1 0.001 1 error error 294 19 358 7 03 0.6 441 773 0.060 4 0.003 8 0.445 4 0.028 1 0.053 1 0.000 8 617 137 374 20 334 5 04 0.8 1 056 1 362 0.048 1 0.002 6 0.366 1 0.019 4 0.054 7 0.000 8 106 128 317 14 343 5 05 0.6 475 768 0.062 7 0.004 1 0.468 8 0.029 9 0.054 1 0.000 9 698 140 390 21 340 5 06 0.5 370 679 0.060 2 0.004 5 0.464 1 0.034 6 0.055 3 0.000 9 613 161 387 24 347 6 07 0.6 510 793 0.055 3 0.003 6 0.417 6 0.025 9 0.055 1 0.000 9 433 144 354 19 346 6 08 0.6 325 509 0.052 9 0.003 8 0.424 0 0.031 3 0.057 6 0.000 9 324 165 359 22 361 5 09 0.5 365 675 0.064 1 0.004 3 0.487 6 0.030 8 0.055 8 0.000 9 746 141 403 21 350 6 10 0.7 580 868 0.055 5 0.003 6 0.425 6 0.026 3 0.055 9 0.000 9 432 144 360 19 350 6 11 0.7 608 881 0.054 4 0.003 5 0.410 4 0.026 3 0.054 5 0.000 9 391 144 349 19 342 5 12 0.6 373 624 0.058 8 0.003 9 0.422 9 0.027 7 0.052 4 0.000 9 561 146 358 20 329 6 13 0.5 315 583 0.053 7 0.004 4 0.404 9 0.032 1 0.055 3 0.001 0 367 185 345 23 347 6 14 0.7 763 1 159 0.055 6 0.003 0 0.432 2 0.023 6 0.056 4 0.000 9 439 116 365 17 354 5 15 0.7 559 858 0.048 4 0.002 9 0.361 7 0.021 2 0.054 6 0.000 9 120 133 314 16 343 5 16 0.5 302 630 0.056 6 0.003 7 0.423 5 0.027 7 0.054 6 0.001 0 476 143 359 20 343 6 17 0.7 1 108 1 508 0.055 9 0.002 7 0.421 1 0.020 4 0.054 7 0.000 7 456 103 357 15 344 4 18 0.5 323 606 0.060 4 0.003 6 0.460 0 0.026 4 0.056 3 0.001 0 618 130 384 18 353 6 19 0.7 704 1 018 0.054 6 0.003 4 0.401 5 0.024 0 0.053 7 0.000 8 394 136 343 17 337 5 20 0.6 510 888 0.051 3 0.003 8 0.368 4 0.024 3 0.053 5 0.000 9 257 170 318 18 336 6 21 0.5 163 359 0.064 1 0.005 3 0.487 3 0.037 4 0.056 5 0.001 0 746 181 403 26 354 6 22 0.5 219 417 0.073 0 0.004 8 0.580 0 0.036 9 0.058 2 0.001 1 1 013 132 464 24 365 7 23 0.7 457 673 0.051 4 0.003 4 0.396 0 0.025 7 0.056 5 0.001 0 257 186 339 19 354 6 24 0.9 897 1 015 0.061 6 0.003 4 0.468 7 0.026 1 0.054 8 0.000 8 661 119 390 18 344 5 25 0.6 398 686 0.058 4 0.004 2 0.438 8 0.030 6 0.054 9 0.000 9 546 153 369 22 344 6 表 3 样品全岩主量(%)及微量元素(10-6)分析结果
Table 3. Major elements (%) and trace elements (10-6) analysis data
样品编号 066-18-1 066-18-2 066-22-1 067-9-5 066-25-1 D5462-1 067-9-4 067-16-1 067-16-2 067-16-4 067-18-2 066-24-1 066-24-3 岩性 玄武岩 玄武安山岩 SiO2 50.40 43.62 51.52 51.73 49.16 46.86 55.01 52.92 52.91 53.32 52.30 53.42 55.56 TiO2 2.48 2.40 1.46 2.73 1.83 2.27 1.20 1.29 1.27 1.10 1.14 1.46 1.35 Al2O3 16.18 16.07 16.09 13.77 16.19 16.82 16.75 17.31 16.73 16.97 16.87 16.20 15.70 FeO 8.42 10.02 6.35 5.98 5.12 7.52 4.48 3.25 5.12 4.75 4.48 5.35 5.38 Fe2O3 1.29 1.84 1.70 6.09 4.79 4.36 3.16 3.51 2.99 3.36 3.64 2.99 2.28 Fe2O3T 10.65 12.97 8.76 12.73 10.48 12.72 8.14 7.12 8.68 8.64 8.62 8.93 8.26 FeOT 9.58 11.67 7.88 11.46 9.43 11.44 7.32 6.41 7.81 7.77 7.75 8.04 7.43 MnO 0.21 0.23 0.14 0.24 0.17 0.20 0.13 0.16 0.14 0.12 0.12 0.16 0.17 MgO 3.27 3.24 4.19 3.65 5.00 6.71 4.03 2.15 3.77 3.63 4.15 4.39 3.59 CaO 9.34 11.62 6.95 5.93 8.26 8.54 6.85 9.90 7.94 6.24 8.16 5.59 5.84 Na2O 2.72 2.61 2.84 4.49 3.02 3.02 3.50 3.31 3.55 3.33 2.46 4.28 3.98 K2O 2.52 0.18 1.90 1.83 0.81 0.82 1.57 1.15 1.26 1.43 0.74 2.35 2.53 P2O5 0.40 0.40 0.51 1.13 0.30 0.45 0.39 0.47 0.45 0.35 0.35 0.51 0.47 H2O+ 2.36 3.23 3.19 2.09 3.15 2.02 2.49 1.41 1.24 2.88 2.96 2.59 2.10 CO2 0.19 4.34 2.95 0.16 2.00 0.17 0.22 2.95 2.43 2.26 2.43 0.49 0.46 LOI 1.64 6.68 5.54 1.61 4.74 1.65 2.26 3.97 3.17 4.58 4.68 2.46 2.02 Mg# 41.72 36.79 52.72 40.05 52.65 55.15 53.58 41.30 50.31 49.48 52.88 53.38 50.33 Cr 107.00 106.00 77.80 31.40 139.0 78.40 70.10 66.00 69.10 120.00 97.00 77.60 67.20 Ni 51.10 53.10 40.00 5.66 84.30 66.60 38.80 39.30 35.00 48.40 48.30 40.80 34.00 Rb 48.80 4.18 37.70 38.20 23.10 24.40 38.90 17.90 23.60 28.20 13.10 55.20 37.60 Ba 368.00 103.00 402.00 263.00 156.00 162.00 444.00 323.00 341.00 719.00 279.00 560.00 576.00 Th 1.32 1.10 2.58 3.02 1.79 1.85 3.52 3.99 3.69 2.93 3.15 2.51 2.58 U 0.34 0.35 0.80 1.15 0.64 0.51 0.87 1.15 1.05 0.82 0.95 0.71 0.73 Nb 5.59 6.39 9.29 8.56 5.55 10.70 8.41 10.80 9.18 6.95 7.40 8.49 9.36 Ta 0.36 0.45 0.58 0.54 0.40 0.83 0.56 0.84 0.62 0.47 0.57 0.51 0.67 La 13.70 13.20 23.20 23.00 13.80 14.60 26.50 27.80 27.80 19.70 20.10 20.80 22.40 Ce 34.30 33.30 53.70 57.20 31.90 34.60 57.30 59.20 59.70 42.10 42.60 48.00 52.50 Pr 5.04 5.06 7.34 8.31 4.73 4.91 7.31 7.58 7.58 5.53 5.57 6.54 7.21 Sr 346.00 406.00 445.00 351.00 443.00 463.00 529.00 504.00 457.00 493.00 436.00 416.00 364.00 Nd 22.40 22.40 29.80 36.80 20.20 23.00 28.00 29.20 28.60 21.90 21.50 26.80 29.70 Zr 191.00 190.00 240.00 242.00 203.00 200.00 239.00 267.00 265.00 187.00 190.00 238.00 236.00 Hf 5.05 4.79 5.67 6.04 4.57 7.28 5.50 5.75 5.52 4.42 4.41 5.69 5.65 Sm 6.63 6.82 7.71 10.48 5.86 5.84 6.74 7.12 6.95 5.46 5.29 7.03 7.64 Eu 2.17 2.08 2.41 3.22 1.85 1.81 1.86 1.95 1.90 1.53 1.50 2.15 2.60 Gd 6.90 7.17 7.27 10.9 6.12 6.01 6.04 6.61 6.38 5.05 4.99 6.83 7.31 Tb 1.14 1.16 1.18 1.74 1.01 0.97 0.90 1.02 1.07 0.79 0.79 1.07 1.19 Dy 6.71 6.91 6.79 9.94 6.17 5.65 5.27 6.01 5.70 4.62 4.54 6.17 6.93 Y 32.70 32.60 33.20 48.90 30.80 28.30 26.70 30.40 29.00 23.00 23.00 31.50 34.70 Ho 1.30 1.28 1.31 1.93 1.19 1.10 1.00 1.15 1.14 0.90 0.88 1.20 1.37 Er 3.56 3.63 3.84 5.45 3.48 3.16 2.92 3.36 3.31 2.63 2.57 3.48 3.94 Tm 0.48 0.48 0.54 0.74 0.49 0.45 0.41 0.48 0.48 0.39 0.37 0.48 0.56 Yb 3.03 3.01 3.74 5.01 3.33 2.95 2.85 3.34 3.27 2.61 2.65 3.39 3.88 Lu 0.39 0.39 0.54 0.72 0.49 0.42 0.42 0.49 0.50 0.40 0.39 0.50 0.57 Pb 2.76 0.92 16.90 6.70 7.19 5.75 6.56 10.30 6.84 5.99 8.60 4.58 14.70 Cs 346.00 406.00 445.00 351.00 443.00 463.00 529.00 504.00 457.00 493.00 436.00 416.00 364.00 -
[1] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contribution to Mineralogy and Petrology, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 [2] Cai, W.J., Li, C.Y., 1983. Preliminary Study on Plate Tectonics of Northern East Junggar in Xinjiang Uighur Autonomous Region. In: Institute of Geology, Chinese Academy of Geological Sciences., ed., Bulletin of the Chinese Academy of Geological Sciences (1983 Bound Volume in Chinese and English). Geological Publishing House, Beijing, 170-171 (in Chinese). [3] Chen, S., Zhang, Y.Y., Guo, Z.J., 2009. Zircon SHRIMP U-Pb Dating and Its Implication of Post-Collisional Volcanic Rocks in Santanghu Basin, Xinjiang. Acta Petrologica Sinica, 25(3): 527-538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903006.htm [4] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (PartⅠ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). http://www.researchgate.net/publication/269710583_Late_Paleozoic_vertical_growth_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post-collisional_plutonism [5] He, G.Q., Li, M.S., Jia, J.D., et al., 2001. A Discussion on Age and Tectonic Significance of Ophiolite in Eastern Junggar, Xinjiang. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852-858 (in Chinese with English abstract). http://www.researchgate.net/publication/282736819_A_discussion_on_age_and_tectonic_significance_of_ophiolite_in_Eastern_Junggar_Xinjiang [6] Hofmann, A., Jochum, K.P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. doi:10.1016/0012-821 X (86)90038-5 [7] Hole, M.J., Saunders, A.D., Marriner, G.F., et al., 1984. Subduction of Pelagio Sediments: Implications for the Origin of Ce-Anomalous Basalts from the Manana Islands. Journal of the Geological Society, London, 141(3): 453-472. doi: 10.1144/gsjgs.141.3.0453 [8] Huang, G., Niu, G.Z., Wang, X.L., et al., 2012. Formation and Emplacement Age of Karamaili Ophiolite: LA-ICP-MS Zircon U-Pb Age Evidence from the Diabase and Tuff in Eastern Junggar, Xinjiang. Geological Bulletin of China, 31(8): 1267-1278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201208006.htm [9] Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, Special Publication, 226: 73-100. doi: 10.1144/GSL.SP.2004.262.01.05 [10] Le Maitre, R.W., Bateman. P., Dudek. A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 130-171. [11] Li, C.N., 1992. Trace Elements Petrology of Volcanic Rocks. China University of Geosciences Press, Wuhan, 181-182 (in Chinese). [12] Li, D., He, D.F., Fan, C., et al., 2012. Geochemical Characteristics and Tectonic Significance of Carboniferous Basalt in the Karamaili Gas Field of Junggar Basin. Acta Petrologica Sinica, 28(3): 981-992 (in Chinese with English abstract). [13] Li, J.L., Sun, S., Hao, J., et al., 1999. Time Limit of Collision Event of Collision Orogens. Acta Petrologica Sinica, 15(2): 315-320 (in Chinese with English abstract). http://www.oalib.com/paper/1473027 [14] Li, J.Y., 1991. Early Paleozoic Evolution of Lithosphere Plate, East Junggar, Xinjiang. Bulletin of the Chinese Academy of Geological Sciences, 1-12 (in Chinese with English abstract). http://www.researchgate.net/publication/285162161_Early_Paleozoic_evolution_of_lithosphere_plate_East_Junggar_Xinjiang [15] Li, J.Y., 2004. Late Neoproterozoic and Paleozoic Tectonic Framework and Evolution of Eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200403015 [16] Li, J.Y., He, G.Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract). http://www.researchgate.net/publication/286884899_Crustal_tectonic_framework_of_northern_Xinjiang_and_adjacent_regions_and_its_formation [17] Li, J.Y., Xiao, X.C., Tang, Y.Q., et al., 1988. Progress in Study of Ancient Plate Tectonics in Karamaili Region, Eastern Junggar, Xinjiang. Chinese Science Bulletin, 33(10): 762-764 (in Chinese). doi: 10.1360/csb1988-33-10-762 [18] Li, J.Y., Xiao, X.C., Tang, Y.Q., et al., 1990. Main Characteristics of Late Paleozoic Plate Tectonics in the Southern Part of East Junggar, Xinjiang. Geological Review, 36(4): 305-316 (in Chinese with English abstract). http://www.researchgate.net/publication/313240678_The_main_characteristics_of_Late_Paleozoic_plate_tectonics_in_the_southern_part_of_East_Junggar_Xinjiang [19] Li, J.Y., Yang, T.N., Li, Y.P., et al., 2009. Geological Features of the Karamaili Faulting Belt, Eastern Junggar Region, Xinjiang, China and Its Constraints on the Reconstruction of Late Paleozoic Ocean-Continental Framework of the Central Asian Region. Geological Bulletin of China, 28(12): 1817-1826 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200912015.htm [20] Li, W., Liu, Y.Q., Dong, Y.P., et al., 2012. The Geochemical Characteristics, Geochronology and Tectonic Significance of the Carboniferous Volcanic Rocks of the Santanghu Area in Northeastern Xinjiang, China. Science in China (Series D), 42(11): 1716-1728 (in Chinese). doi: 10.1007/s11430-012-4483-3 [21] Liégeois, J.P., 1998. Some Words on the Post-Collisional Magmatism. Lithos, 45: 15-18: xv-xvii. doi: 10.1016/S0024-4937(98)00023-1 [22] Liu, Y.S., Gao, S., Hu. Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [23] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [24] Long, X.P., Yuan, C., Sun, M., et al., 2012. Geochemistry and U-Pb Detrital Zircon Dating of Paleozoic Graywackes in East Junggar, NW China: Insights into Subduction-Accretion Processes in the Southern Central Asian Orogenic Belt. Gondwana Research, 21(2-3): 637-653. doi: 10.1016/j.gr.2011.05.015 [25] Ludwig, K.R., 2003. Users Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Exccel. Berkeley Geochronology Center, Berkeley, 1-39. [26] Mao, Z.G., Zou, C.N., Zhu, R.K., et al., 2010. Geochemical Characteristics and Tectonic Settings of Carboniferous Volcanic Rocks in Junggar Basin. Acta Petrologica Sinica, 26(1): 207-216 (in Chinese with English abstract). [27] Ouyang, S., Zhu, H.C., Zhan, J.Z., et al., 2004. Comparison of Permian Palynofloras from the Junggar and Tarim Basins and Its Bearing on Phytoprovincialism and Stratigraphy. Journal of Stratigraphy, 28(3): 193-207 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200403000.htm [28] Pearce, J.A., 1982. Trace Element Characteristics of Lava from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Orogenic Andesites and Related Rocks. John Wiley and Sons, Chichester, 528-548. [29] Pearce, J.A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at Active Plate Margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publications, Cheshire, 230-249. [30] Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016 [31] Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contribution to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745 [32] Plank, T., Langmuir, C.H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2 [33] Seghedi, I., Downes, H., Vaselli, O., et al., 2004. Post-Collisional Tertiary-Quaternary Mafic Alkalic Magmatism in the Carpathian-Pannonian Region: A Review. Tectonophysics, 393(1-4): 43-62. doi: 10.1016/j.tecto.2004.07.051 [34] Shu, L.S., Wang, Y.J., 2003. Late Devonian-Early Carboniferous Radiolarian Fossils from Siliceous Rocks of Kelameili Ophiolite, Xinjiang. Geological Review, 49(4): 408-412 (in Chinese with English abstract). http://www.researchgate.net/publication/284318300_Late_Devonian-Early_Carboniferous_radiolarian_fossils_from_siliceous_rocks_of_the_Kelameili_ophiolite_Xinjiang [35] Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2010. Zircon U-Pb and Hf Isotopes of Volcanic Rocks from the Batamayineishan Formation in the Eastern Junggar Basin. Chinese Science Bulletin, 55(30): 2931-2943. doi: 10.1007/s11434-010-4151-y [36] Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2012. Geochemistry and Geochronology of Carboniferous Volcanic Rocks in the Eastern Junggar Terrane, NW China: Implication for a Tectonic Transition. Gondwana Research, 22(3-4): 1009-1029. doi: 10.1016/j.gr.2012.01.004 [37] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London, Special Publication, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [38] Tan, J.Y., Wu, R.J., Zhang, Y.Y., et al., 2009. Characteristics and Geochronology of Volcanic Rocks of Batamayineishan Formation in Kalamaily, Eastern Junggar, Xinjiang. Acta Petrologica Sinica, 25(3): 539-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903007.htm [39] Wang, B.Y., Jiang, C.Y., Li, Y.J., et al., 2009. Geochemistry and Tectonic Implications of Karamaili Ophiolite in East Junggar of Xinjiang. Journal of Mineralogy and Petrology, 29(3): 74-82 (in Chinese with English abstract). http://www.researchgate.net/publication/283773982_Geochemistry_and_tectonic_implications_of_Karamaili_ophiolite_in_East_Junggar_of_Xinjiang [40] Wang, D.Y., Deng, J.H., 1995. Characteristics and Evolution of the Plate Tectonics in Eastern Junggar, Xinjiang. Journal of Chengdu Institute of Technology, 22(4): 38-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG504.007.htm [41] Wang, T., Hong, D.W., Jahn, B., et al., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. Journal of Geology, 114(6): 735-751. doi: 10.1086/507617 [42] Wang, Z.H., Sun, S., Li, J.L., et al., 2003. Paleozoic Tectonic Evolution of the Northern Xinjiang, China: Geochemical and Geochronological Constraints from the Ophiolites. Tectonics, 22(2): 1014-1023. doi: 10.1029/2002TC001396 [43] Wilson, M., 1989. Igneous Petrogenesis. Springer, Netherlands, 173-174. [44] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 [45] Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. doi: 10.1144/0016-76492006-022 [46] Wu, Q., Qu, X., Chang, G.H., et al., 2012. Geochronology of the Hongliuxia Ductile Shear Zone and Its Constraint on the Closure Time of the Junggar Ocean. Acta Petrologica Sinica, 28(8): 2331-2339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201208004.htm [47] Wu, R.J., Zhang, Y.Y., Tan, J.Y., et al., 2009. The Characteristics of Different Structure Layers and Tectonic Implications since Late Paleozoic in Kalamaily Area, Xinjiang. Earth Science Frontiers, 16(3): 102-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200903011.htm [48] Wu, X.Q., Liu, D.L., Li, Z.S., 2009a. Post-Collisional Volcanism of Karamaili Suture Zone. Earth Science Frontiers, 16(3): 220-230 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60086-X [49] Wu, X.Q., Liu, D.L., Wei, G.Q., et al., 2009b. Geochemical Characteristics and Tectonic Setting of Carboniferous Volcanic Rocks from Ludong-Wucaiwan Area, Junggar Basin. Acta Petrologica Sinica, 25(1): 55-66 (in Chinese with English abstract). [50] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122 [51] Xiao, W.J., Han, C.M., Yuan, C., et al., 2006. Unique Carboniferous-Permian Tectonic-Metallogenic Framework of Northern Xinjiang (NW China): Constraints for the Tectonics of the Southern Paleoasian Domain. Acta Petrologica Sinica, 22(05): 1062-1076 (in Chinese with English abstract). http://www.oalib.com/paper/1472010 [52] Xiao, W.J., Han, C.M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. doi: 10.1016/j.jseaes.2007.10.008 [53] Xiao, W.J., Windley, B.F., Huang, B. C, et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z [54] Xiao, W.J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. doi: 10.2475/ajs.304.4.370 [55] Xiao, Y., Zhang, H.F., Shi, J.A., et al., 2011. Late Paleozoic Magmatic Record of East Junggar, NW China and Its Significance: Implication from Zircon U-Pb Dating and Hf Isotope. Gondwana Research, 20(2-3): 532-542. doi: 10.1016/j.gr.2010.12.008 [56] Yang, G.X., Li, Y.J., Li, Z.C., et al., 2010. Genesis and Tectonic Setting of Post-Collison Volcanic Rocks in North Eastern Margin of East Junggar. Earth Science Frontiers, 17(1): 49-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001006.htm [57] Yang, G.X., Li, Y.J., Yan, J., et al., 2011. Geochemistry Characteristics of Volcanic Rocks of Heishantou Formation in Karamaili, East Junggar, and Tectonic Settings Implication. Xinjiang Geology, 29(3): 257-262 (in Chinese with English abstract). [58] Yang, P.R., Yang, W.Q., Meng, Y.Y., et al., 2007. Lower Carboniferous Stratigraphic System of Karamaili Orogenic Belt, Xinjiang and Its Tectonic Setting. Geological Science and Technology Information, 26(5): 6-10 (in Chinese with English abstract). http://www.researchgate.net/publication/291153400_Lower_carboniferous_stratigraphic_system_of_kelamaili_oogenic_belt_Xinjiang_and_its_tectonic_setting [59] Zhang, W.S., Gao, H.Z., 1999. The Residual Sea Basin of Karamaili Orogenic Belt, Eastern Junggar, Xinjiang. Earth Science Frontiers, 6(4): 294 (in Chinese). [60] Zhang, Y.Y., Pe-Piper, G., Piper, D, J.W., et al., 2013. Early Carboniferous Collision of the Kalamaili Orogenic Belt, North Xinjiang, and Its Implications: Evidence from Molasse Deposits. Geological Society of America Bulletin, 125(5-6): 932-944. doi: 10.1130/B30779.1 [61] Zhao, H.L., Xu, F., Zhang, J., et al., 2012. The Karamaili Ophiolites: Age, Geological Characteristics and Tectonic Significance. Xinjiang Geology, 30(2): 161-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201202012.htm [62] Zhao, L., Ji, J.Q., Xu, Q.Q., et al., 2012. Karamaili Strike-Slipping Fault and Deformational Sequence since Late Paleozoic in the Northern Xinjiang. Acta Petrologica Sinica, 28(7): 2257-2268 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201207026.htm [63] Zhao, X., Jia, C.Z., Zhang, G.Y., et al., 2008. Geochemistry and Tectonic Settings of Carboniferous Intermediate-Basic Volcanic Rocks in Ludong-Wucaiwan, Junggar Basin. Earth Science Frontiers, 15(2): 272-279 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S187257910960004X [64] Zhao, Z.H., Guo, Z.J., Han, B.F., et al., 2006. The Geochemical Characteristics and Tectonic-Magmatic Implications of the Latest-Paleozoic Volcanic Rocks from Santanghu Basin, Eastern Xinjiang, Northwest China. Acta Petrologica Sinica, 22(1): 199-214 (in Chinese with English abstract). http://www.researchgate.net/publication/286792823_The_geochemical_characteristics_and_tectonic-magmatic_implications_of_the_latest-Paleozoic_volcanic_rocks_from_Santanghu_basin_eastern_Xinjiang_northwest_China [65] Zheng, Y.F., Yang, J.H., Song, S.G., et al., 2013. Progress in Study of Chemical Geodynamics. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 1-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201301002.htm [66] 蔡文俊, 李春昱, 1983. 新疆东准噶尔北缘板块构造初步研究. 见: 中国地质科学院地质研究所编, 中国地质科学院文集(1983中英文合订本). 北京: 地质出版社, 170-171. [67] 陈石, 张元元, 郭召杰, 2009. 新疆三塘湖盆地后碰撞火山岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 25(3): 527-538. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903006.htm [68] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)—后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [69] 何国琦, 李茂松, 贾进斗, 等, 2001. 论新疆东准噶尔蛇绿岩的时代及其意义. 北京大学学报(自然科学版), 37(6): 852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017 [70] 黄岗, 牛广智, 王新录, 等, 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限—来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据. 地质通报, 31(8): 1267-1278. doi: 10.3969/j.issn.1671-2552.2012.08.006 [71] 李昌年, 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社, 181-182. [72] 李涤, 何登发, 樊春, 等, 2012. 准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义. 岩石学报, 28(3): 981-992. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203027.htm [73] 李继亮, 孙枢, 郝杰, 等, 1999. 碰撞造山带的碰撞事件时限的确定. 岩石学报, 15(2): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.019.htm [74] 李锦轶, 1991. 试论新疆东准噶尔早古生代岩石圈板块构造演化. 中国地质科学院院报, 23: 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199102000.htm [75] 李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015 [76] 李锦轶, 何国琦, 徐新, 等, 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017 [77] 李锦轶, 肖序常, 汤耀庆, 等, 1988. 新疆东准噶尔卡拉麦里地区古板块构造研究的新进展. 科学通报, 33(10): 762-764. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198810012.htm [78] 李锦轶, 肖序常, 汤耀庆, 等, 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003 [79] 李锦轶, 杨天南, 李亚萍, 等, 2009. 东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束. 地质通报, 28(12): 1817-1826. doi: 10.3969/j.issn.1671-2552.2009.12.014 [80] 李玮, 柳益群, 董云鹏, 等, 2012. 新疆三塘湖地区石炭纪火山岩年代学、地球化学及其大地构造意义. 中国科学(D辑), 42(11): 1716-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201211010.htm [81] 毛治国, 邹才能, 朱如凯, 等, 2010. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义. 岩石学报, 26(1): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001025.htm [82] 欧阳舒, 朱怀诚, 詹家桢, 等, 2004. 新疆准噶尔盆地和塔里木盆地二叠纪孢粉组合的比较及其植物区系和地层意义. 地层学杂志, 28(3): 193-207. doi: 10.3969/j.issn.0253-4959.2004.03.001 [83] 舒良树, 王玉净, 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石. 地质论评, 49(4): 408-412. doi: 10.3321/j.issn:0371-5736.2003.04.011 [84] 苏玉平, 郑建平, Griffin, W.L., 等, 2010. 东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究. 科学通报, 55(30): 2931-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201030009.htm [85] 谭佳奕, 吴润江, 张元元, 等, 2009. 东准噶尔卡拉麦里地区巴塔玛依内山组火山岩特征和年代确定. 岩石学报, 25(3): 539-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903007.htm [86] 汪帮耀, 姜常义, 李永军, 等, 2009. 新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义. 矿物岩石, 29(3): 74-82. doi: 10.3969/j.issn.1001-6872.2009.03.012 [87] 王道永, 邓江红, 1995. 东准噶尔地区板块构造特征及演化. 成都理工学院学报, 22(4): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG504.007.htm [88] 吴琪, 屈迅, 常国虎, 等, 2012. 红柳峡韧性剪切带形成时代及其对准噶尔洋盆闭合时限的约束. 岩石学报, 28(8): 2331-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208004.htm [89] 吴润江, 张元元, 谭佳奕, 等, 2009. 新疆卡拉麦里地区晚古生代以来不同构造层特征及大地构造意义. 地学前缘, 16(3): 102-109. doi: 10.3321/j.issn:1005-2321.2009.03.006 [90] 吴小奇, 刘德良, 李振生, 2009a. 卡拉麦里缝合带后碰撞期火山活动. 地学前缘, 16(3): 220-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903025.htm [91] 吴小奇, 刘德良, 魏国齐, 等, 2009b. 准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景. 岩石学报, 25(1): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901006.htm [92] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(05): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm [93] 杨高学, 李永军, 李注苍, 等, 2010. 东准噶尔东北缘后碰撞火山岩成因与构造环境. 地学前缘, 17(1): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001006.htm [94] 杨高学, 李永军, 严镜, 等, 2011. 卡拉麦里地区黑山头组火山岩地球化学特征及构造环境分析. 新疆地质, 29(3): 257-262. doi: 10.3969/j.issn.1000-8845.2011.03.003 [95] 杨品荣, 杨文强, 蒙有言, 等, 2007. 新疆克拉麦里造山带下石炭统地层系统及其沉积构造背景. 地质科技情报, 26(5): 6-10. doi: 10.3969/j.issn.1000-7849.2007.05.002 [96] 张旺生, 高怀忠, 1999. 新疆东准卡拉麦里造山带的陆间残余海盆. 地学前缘, 6(4): 294. doi: 10.3321/j.issn:1005-2321.1999.04.031 [97] 赵恒乐, 许凡, 张冀, 等, 2012. 东准噶尔卡拉麦里蛇绿岩形成时代、地质特征及构造意义. 新疆地质, 30(2): 161-164. doi: 10.3969/j.issn.1000-8845.2012.02.008 [98] 赵磊, 季建清, 徐芹芹, 等, 2012. 新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次. 岩石学报, 28(7): 2257-2268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207026.htm [99] 赵霞, 贾承造, 张光亚, 等, 2008. 准噶尔盆地陆东-五彩湾地区石炭系中、基性火山岩地球化学及其形成环境. 地学前缘, 15(2): 272-279. doi: 10.3321/j.issn:1005-2321.2008.02.030 [100] 赵泽辉, 郭召杰, 韩宝福, 等, 2006. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义. 岩石学报, 22(1): 199-214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601020.htm [101] 郑永飞, 杨进辉, 宋述光, 等, 2013. 化学地球动力学研究进展. 矿物岩石地球化学通报, 32(1): 1-24. doi: 10.3969/j.issn.1007-2802.2013.01.001 -