Influence of Mulched Drip-Irrigation with Brackish Water on Element Composition of Soil, Cotton, and Cotton Yield
-
摘要: 通过微咸水和淡水膜下滴灌对比试验,研究灌溉水质对土壤和棉花元素组成及产量的影响.结果表明:微咸水灌溉处理,土壤窄行和膜间微量元素(尤其是铜、铁、锌)含量明显高于宽行,Na+增长率低于宽行;多数棉花器官中钾钠比、钙钠比并未因灌溉水质的区别而产生显著差异;微咸水滴灌有利于促进棉花前期营养生长及后期生殖生长,棉花干物质、单铃重、单位面积铃数及籽棉产量均高于淡水处理;棉株内锰、硼与钙元素间存在显著的相关关系,在一定阈值内,硼、锰促进棉花对钙的吸收.试验证明:微咸水中含有一定量的微量元素,合理利用微咸水灌溉,不会对棉花生长造成胁迫,相反能有效抑制土壤中Na+增长,增强棉花对盐分胁迫的抵抗能力、提高棉花产量.Abstract: Irrigation with brackish water has a long history throughout the world. Irrational use of brackish or saline waters, however, may lead to soil salinization and reduction of crop yields. In order to promote reasonable applications of brackish water and fertilizer irrigation, a series of experiments of mulched drip-irrigation with brackish and fresh waters were carried out at Bazhou Irrigation Experimental Station (Korla, Xinjiang, China). Plant and soil samples were collected at every growth stage. Cotton yields were measured at boll opening stage. Nine elements (Ca, Na, Mg, K, Cu, Fe, Mn, Zn and B) of each sample were tested in triplicate by ICP-OES (ICAP6300) after pretreated. The influence of water quality on the element compositions of soil and cotton and cotton yield were discussed based on the experiment. The results show that growth rate of Na+ in narrow rows and interspace of mulches was lower than that in wide rows because of higher content of Cu, Fe, Zn. The ratios of K+/Na+ and Ca2+/Na+, however, in most cotton organs show no significant differences between the two treatments. From buds to boll stages, brackish water irrigation enhanced the accumulation of above ground dry matters, which was favorable for vegetative development. From boll to boll opening stages, root and reproductive growth under brackish water were superior to that for fresh water. Furthermore, dry matters, boll weight, numbers of boll per unit area and cotton yield under brackish water were higher than those for fresh water. According to the correlations analyses, relationship between most trace and macro elements was weak. High correlations, however, were found among manganese, boron, and calcium. Within a certain threshold, boron, manganese promoted the absorption of calcium in cotton. It has been proved that a rational use of brackish water will not lead to the growth stress. On the contrary, it would not only lower the growth rate of Na+ in the soil effectively, but also strengthen cotton's resistibility to salt stress and increase cotton yields as well.
-
Key words:
- brackish water /
- cotton /
- salt damage /
- inhibition /
- trace element /
- geochemistry /
- environmental engineering
-
表 1 2012年巴州灌溉试验站灌溉用水中主要元素和离子含量
Table 1. Elements and anions in irrigation water of Bazhou Irrigation Experimental Station in 2012
元素及离子 淡水 微咸水 Cu 6.1±0.2 8.0±0.3 Zn 84.4±4.3 127.3±4.2 Fe 449.7±29 690.6±23.1 Mn 21.6±1.9 27.1±1.5 B 92.9±12.5 293.7±20.5** Na 67.86±11.20 401.37±7.43** K 7.12±1.11 23.38±0.43** Ca 51.57±3.24 145.01±3.98** Mg 24.06±1.84 100.67±3.98** HCO3- 196.08±3.16 368.07±2.81** NO3- 16.37±1.36 47.14±2.25** Cl- 55.18±7.09 443.20±10.61** SO42- 132.75±13.57 704.70±15.15** 注:Cu、Fe、Mn、Zn、B含量的单位为μg/L,其余为mg/L;表内各项指标为平均值±标准差;*表示0.05水平上,2种处理差异显著;**表示0.01水平上,2种处理差异极显著;表 2、4~7同理. 表 2 供试土壤中各元素背景值(10-6)
Table 2. Background value of different elements in tested soil (10-6)
处理 深度(cm) Cu Fe Mn Zn B Ca Mg Na 有效钾 有效磷 有效氮 微咸水 0~10 0.88±0.06 102±0.8 58.9±3.2 1.58±0.24 1.56±0.09 21 023±1113 587±7 169±69 47.9±5.9 11.3±3.8 23.3±2.2 10~20 0.93±0.03 101±2.9 57.1±1.6 1.12±0.03 1.80±0.06 19 622±687 569±14 143±41 47.0±1.2 20.4±5.4 22.1±3.2 20~30 0.94±0.04 100±4.3 58.8±1.6 1.00±0.08 1.92±0.21 20 371±1097 557±9 123±10 55.6±8.1 14.0±3.5 26.0±3.5 30~40 0.75±0.03 87±2.8 55.0±2.2 0.87±0.11 1.40±0.13 21 124±607 447±8 108±5 50.8±4.6 5.5±3.3 18.3±2.0 40~50 0.81±0.13 83±5.1 58.8±4.0 0.96±0.34 1.55±0.29 18 244±1686 600±40 151±24 56.5±6.4 4.3±2.3 15.4±1.6 50~60 0.87±0.06 96±2.9 64.2±5.6 0.72±0.20 1.83±0.17 24 892±961 756±9 231±67 53.1±3.6 3.4±0.8 12.5±0.8 淡水 0~10 0.91±0.07 101±6.3 57.8±4.6 1.52±0.33 1.70±0.38 20 662±1690 610±35 156±47 50.6±2.1 12.0±4.7 24.5±2.1 10~20 0.96±0.17 102±6.9 59.3±3.3 1.09±0.23 1.78±0.43 20 332±953 587±43 135±30 46.0±3.7 19.7±4.1 23.2±2.8 20~30 0.99±0.16 97±6.8 56.3±4.1 1.02±0.16 2.07±0.70 19 232±1987 563±33 127±22 54.2±1.5 13.2±6.7 25.0±1.4 30~40 0.73±0.02 85±5.4 58.0±6.9 0.94±0.27 1.33±0.12 21 884±1450 470±84 104±27 52.8±4.6 5.9±7.3 17.5±4.1 40~50 0.79±0.11 88±8.8 62.8±9.0 1.04±0.17 1.51±0.27 19 650±3896 637±47 156±44 53.6±10.1 4.1±2.5 14.8±1.3 50~60 0.83±0.26 91±15.3 62.1±4.9 0.75±0.48 1.97±0.02 25 050±3322 762±66 214±3 55.5±6.9 3.5±0.2 13.3±3.6 表 3 2012年田间灌水、施肥方案
Table 3. Scheme of irrigation and fertilization in 2012
生育期 蕾期 花期 铃期 吐絮初期 合计 灌水次数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 灌水日期(月/日) 6/25 6/30 7/5 7/10 7/15 7/20 7/25 7/30 8/4 8/9 8/14 8/19 8/24 8/29 9/3 灌水份额(%) 4.3 7.1 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 5.7 5.7 2.9 2.9 2.9 100.0 灌水量(mm) 22.499 37.498 44.998 44.998 44.998 44.998 44.998 44.998 44.998 44.998 29.999 29.999 14.999 14.999 14.999 524.970 施氮量(kg/hm2) 14.4 19.2 52.8 60.0 60.0 60.0 266.4 表 4 不同生育期棉株钾钠比、钙钠比
Table 4. The ratio of K+/Na+ and Ca2+/Na+ in cotton at different growth stages
生育期 器官 K+/Na+ Ca2+/Na+ 微咸水 淡水 微咸水 淡水 蕾期 根 16.33±1.44 13.35±1.97 3.16±1.36 2.22±0.54 茎 14.36±0.12* 8.14±1.11 5.87±1.82 3.79±1.47 叶 9.69±1.81 5.45±1.27 16.02±1.43** 9.12±0.74 蕾 86.64±3.36** 39.28±2.78 81.83±2.28** 51.35±1.71 絮期 根 5.32±1.93 5.10±0.13 1.64±0.45 1.48±0.23 茎 4.94±1.04* 6.31±0.54 2.16±0.76 2.41±0.09 叶 3.80±1.52 4.39±0.04 5.06±0.69** 8.22±1.34 铃 48.41±6.19 46.57±9.66 13.10±4.98 10.65±1.85 絮 25.22±8.83* 37.71±6.65 5.75±0.79** 7.73±0.31 表 5 咸、淡水膜下滴灌条件下棉花根冠比
Table 5. Root/shoot ratios under mulched drip irrigation with brackish and fresh water
播种后天数(d) 处理 棉花不同器官干物质(g) 根 茎 叶 蕾 花 铃 絮 地下部干物质重(g) 地上部干物质重(g) 根冠比 59 微咸水 1.03±0.78 1.61±0.35 1.64±0.52 0.27±0.03 1.03±0.78 3.51±1.17 29.2±5.1% 淡水 1.23±0.72 2.04±0.3 1.64±0.47 0.34±0.04 1.23±0.72 4.02±1.23 30.5±6.3% 66 微咸水 2.37±0.63 5.84±1.83 6.33±1.98 0.95±0.35* 1.27±0.44* 2.37±0.63 14.39±4.25 16.5±1.4% 淡水 1.58±0.58 3.61±0.46 4.81±0.48 0.45±0.13 0.31±0.02 1.58±0.58 9.17±1.11 17.2±1.2% 71 微咸水 2.24±0.35* 7.33±0.14* 8.08±0.74 2.81±0.51* 0.16±0.03* 2.24±0.35* 18.37±1.37* 12.2±1.5% 淡水 1.65±0.48 4.74±1.28 6.29±1.74 1.89±0.35 0.27±0.01 1.65±0.48 13.18±1.38 12.5±3.6% 81 微咸水 3.62±0.11** 10.56±1.82 9.02±1.68* 2.32±0.52* 0.30±0.02* 9.18±0.05** 3.62±0.11** 31.38±5.01* 11.5±1.5% 淡水 2.33±0.15 8.32±0.31 7.19±0.54 1.43±0.39 0.48±0.05 2.25±0.01 2.33±0.15 19.66±0.04 11.9±1.7% 116 微咸水 6.54±0.81* 16.62±2.87 16.16±2.81 27.17±2.11* 6.54±0.81* 59.95±3.04* 10.9±0.9%* 淡水 3.28±0.69 13.39±0.87 10.83±3.23 21.38±2.94 3.28±0.69 45.59±3.16 7.2±0.6% 137 微咸水 6.47±1.98 14.45±2.41 17.47±0.85* 29.89±8.74 25.61±7.72 6.47±1.98 87.42±3.94* 7.4±1.4% 淡水 4.04±0.42 9.32±2.96 8.53±1.85 22.23±8.18 19.71±5.41 4.04±0.42 59.79±6.97 6.8%±1.9% 表 6 咸、淡水膜下滴灌条件下棉株产量
Table 6. Cotton yields under mulched drip irrigation with brackish and fresh water
处理 单铃重(g) 单位面积铃数(个/3.3 m2) 籽棉产量(kg/hm2) 微咸水 6.014±0.534 397.8±48.5** 7 177.05±883.96** 淡水 5.833±0.428 318.3±42.6 5 569.95±754.32 表 7 咸、淡水膜下滴灌棉花内元素组成(吐絮期)
Table 7. Elements composition in cotton under mulched drip irrigation with brackish and fresh water (boll opening stage)
处理 器官 Cu Fe Mn Zn B Ca Mg Na K 微咸水 根 5.6±0.8 70.2±3.0 5.6±0.2** 9.0±1.1* 11.1±0.2 2 793±18** 1 437±3** 1 709±8** 9 099±50** 茎 7.4±0.1** 213.9±8.2* 11.0±0.8 23.2±9.2 32.4±0.2** 21 418±234** 10 840±313** 9 960±40** 49 145±467** 叶 4.4±1.0 374.6±5.4 27.5±4.2 16.3±1.1 39.0±1.5* 33 841±138** 7 710±30** 6 707±100** 25 470±466** 铃 3.3±0.6** 89.7±1.4* 8.3±0.5 14.5±1.2 15.5±1.7 3 741±223** 2 119±11 283±13 13 829±286 絮 2.6±0.1** 109.1±2.4** 8.5±0.6** 15.5±1.2* 10.6±0.4** 1 545±16** 1 407±18** 264±4** 6 763±23** 淡水 根 3.0±1.1 73.8±8.4 3.6±0.2 10.5±0.7 11.0±1.3 2 390±46 1204±12 1 614±18 8 221±45 茎 6.4±0.2 239.9±3.4 10.3±2.1 27.5±5.9 23.2±0.6 22 808±194 12 622±384 9 472±28 59 798±550 叶 4.8±0.1 384.0±45.4 29.1±1.8 17.9±1.5 43.3±1.6 35 825±465 7 857±27 4 368±15 19 177±786 铃 4.4±0.9 70.4±8.7 7.4±0.6 12.0±1.4 13.7±0.3 3084±21 2 071±51 291±6 13 506±316 絮 2.2±0.1 59.8±0.5 6.8±0.2 11.9±1.2 5.7±0.1 1254±29 1 023±144 163±4 6 111±76 注:元素单位为10-6. 表 8 棉株内9种元素间相关性分析(n=54)
Table 8. Correlations of 9 elements in cotton
元素 Cu Fe Mn Zn B Ca Mg Na K Cu 1.000 Fe 0.294* 1.000 Mn 0.407** 0.576** 1.000 Zn 0.35** 0.617** 0.529** 1.000 B 0.349** 0.579** 0.648** 0.267 1.000 Ca 0.35** 0.38** 0.704** 0.295* 0.715** 1.000 Mg 0.458** 0.220 0.53** 0.246 0.534** 0.794** 1.000 Na 0.068 0.136 -0.012 -0.082 0.260 0.493** 0.607** 1.000 K 0.080 0.177 -0.030 0.133 0.162 0.382** 0.587** 0.782** 1.000 -
[1] Abdulnour, J.E., Donnelly, D.J., Barthakur, N.N., 2000. The Effect of Boron on Calcium Uptake and Growth in Micropropagated Potato Plantlets. Potato Research, 43(3): 287-295. doi: 10.1007/BF02358088 [2] Abo-Kassem, E., Sharafeldin, A., Rozema, J., et al., 1995. Synergistic Effects of Cadmium and NaCl on the Growth, Photosynthesis and Ion Content in Wheat Plants. Biologia Plantarum, 37(2): 241-249. doi: 10.1007/BF02913220 [3] Al-Karaki, G., 2000. Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown under Salt Stress. Journal of Plant Nutrition, 23: 1-8. doi: 10.1080/01904160009381992 [4] Bastias, E., Fernandez-Garcia, N., Carvajal, M., 2004. Aquaporin Functionality in Roots of Zea Mays in Relation to the Interactive Effects of Boron and Salinity. Plant Biology, 6(4): 415-421. doi: 10.1055/s-2004-820889 [5] Chen, D.M., Yu, R.P., 1996. Studies on Relative Salt Tolerance of Crops Ⅱ. Salt Tolerance of Some Main Crop Species. Acta Pedologica Sinica, 33(2): 121-128 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/289638 [6] Chen, J.S., Deng, B.S., Tao, S., et al., 1990. Environmental Geochemistry. China Ocean Press, Beijing, 140 (in Chinese). [7] Dasgan, H., Aktas, H., Abak, K., et al., 2002. Determination of Screening Techniques to Salinity Tolerance in Tomatoes and Investigation of Genotype Responses. Plant Science, 163(4): 695-703. doi: 10.1016/S0168-9452(02)00091-2 [8] Dogan, I., Ozyigit, I.I., Demir, G., 2012. Mineral Element Distribution of Cotton (Gossypium Hirsutum L. ) Seedlings under Different Salinity Levels. Pakistan Journal of Botany, 44(1): 15-20. http://www.researchgate.net/publication/259477828_MINERAL_ELEMENT_DISTRIBUTION_OF_COTTON_GOSSYPIUM_HIRSUTUM_L_SEEDLINGS_UNDER_DIFFERENT_SALINITY_LEVELS [9] Dong, H.Z., 2010. Cotton Farming in Saline Soil. Science Press, Beijing, 77 (in Chinese). [10] Gouia, H., Ghorbal, M.H., Touraine, B., 1994. Effects of NaCl on Flows of N and Mineral Ions and on NO3- Reduction Rate within Whole Plants of Salt-Sensitive Bean and Salt-Tolerant Cotton. Plant Physiology, 105(4): 1409-1418. doi: 10.1104/pp.105.4.1409 [11] Guo, W.Q., Bian, S.G., Zhang, P.T., et al., 2012. Analysis of Yield and Yield Formation Features of High-Yielding Cotton Cultivars Planted in Coastal Saline-Alkali Soil in Jiangsu Province. Acta Agriculturae Jiangxi, 24(9): 15-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8581.2012.09.004 [12] He, Y.J., Wang, B.G., Wang, Z.M., et al., 2010. Study on Irrigation Scheduling of Cotton under Mulch Drip Irrigation with Brackish Water. Transactions of the CSAE, 26(7): 14-20 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-6819.2010.07.003 [13] Jin, M.G., Zhang, R.Q., Gao, Y.F., et al., 1998. Sustainable Irrigation with Brackish Groundwater in Heilonggang Region, China. Journal of China University of Geosciences, 9(1): 90-94. http://d.wanfangdata.com.cn/Periodical_dqkx-e199801011.aspx [14] Keyser, H.H., Munns, D.N., 1979. Effects of Calcium, Manganese, and Aluminum on Growth of Rhizobia in Acid Media. Soil Science Society of America Journal, 43(3): 500-503. doi: 10.2136/sssaj1979.03615995004300030014x [15] Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London, 171-178. [16] Mikkelsen, R.L., Haghnia, G.H., Page, A.L., et al., 1988. The Influence of Selenium, Salinity, and Boron on Alfalfa Tissue Composition and Yield. Journal of Environmental Quality, 17(1): 85-88. doi: 10.2134/jeq1988.00472425001700010012x [17] Minarik, C.E., Shive, J.W., 1939. The Effect of Boron in the Substrate on Calcium Accumulation by Soybean Plants. American Journal of Botany, 26(10): 827-831. doi: 10.1002/j.1537-2197.1939.tb09363.x [18] Redondo-Go'mez, S., Andrades-Moreno, L., Naranjo, E.M., et al., 2011. Synergic Effect of Salinity and Zinc Stress on Growth and Photosynthetic Responses of the Cordgrass, Spartina Densiflora. Journal of Experimental Botany, 62(15): 5521-5530. doi: 10.1093/jxb/err234 [19] Rengel, Z., 1992. The Role of Calcium in Salt Toxicity. Plant Cell Environment, 15(6): 625-632. doi: 10.1111/j.1365-3040.1992.tb01004.x [20] Saleh, B., 2012. Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Communications in Soil Science and Plant Analysis, (43): 1976-1983. doi: 10.1080/00103624.2012.693229 [21] Wang, D., Kang, Y.H., Wan, S.Q., 2007. Distribution Characteristics of Different Salt Ions in Soil under Drip Irrigation with Saline Water. Transactions of the CSAE, 23(2): 83-87 (in Chinese with English abstract). doi: 1002-6819(2007)2-0083-05 [22] Wang, Z.M., Jin, M.G., He, Y.J., et al., 2012. Water Flow and Salt Transport in Cotton Field of Mulched Drip-Irrigation Using Dye Tracer. Earth Science—Journal of China University of Geosciences, 37(5): 1093-1100 (in Chinese with English abstract). doi: 10.3799/dqkx2012.116 [23] Wu, Z.D., Wang, Q.J., 2010. Effect on Both Soil Infiltration Characteristics and Ion Mobility Features by Mineralization Degree of Infiltration Water. Transactions of the Chinese Society for Agricultural Machinery, 41(7): 64-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1298.2010.07.014 [24] Xin, C.S., Tang, W., Wang, H.Z., et al., 2002. Responses of Seedling Growth of Lumian 14 to NaCl Stress and Effects of Treatments with Microelement and Hormone. Cotton Science, 14(2): 108-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-7807.2002.02.010 [25] Yermiyahu, U., Ben-Gal, A., Keren, R., et al., 2008. Combined Effect of Salinity and Excess Boron on Plant Growth and Yield. Plant Soil, 304(1-2): 73-87. doi: 10.1007/s11104-007-9522-z [26] 陈德明, 俞仁培, 1996. 作物相对耐盐性的研究——Ⅱ. 不同栽培作物的耐盐性差异. 土壤学报, 33(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB602.001.htm [27] 陈静生, 邓宝山, 陶澍, 等, 1990. 环境地球化学. 北京: 海洋出版社, 140. [28] 董合忠, 2010. 盐碱地棉花栽培学. 北京: 科学出版社, 77. [29] 郭文琦, 卞曙光, 张培通, 等, 2012. 江苏沿海滩涂盐碱地植棉高产品种产量及形成特征分析. 江西农业学报, 24(9): 15-18. doi: 10.3969/j.issn.1001-8581.2012.09.004 [30] 何雨江, 汪丙国, 王在敏, 等, 2010. 棉花微咸水膜下滴灌灌溉制度的研究. 农业工程学报, 26(7): 14-20. doi: 10.3969/j.issn.1002-6819.2010.07.003 [31] 王丹, 康跃虎, 万书勤, 2007. 微咸水滴灌条件下不同盐分离子在土壤中的分布特征. 农业工程学报, 23 (2): 83-87. doi: 10.3321/j.issn:1002-6819.2007.02.016 [32] 王在敏, 靳孟贵, 何雨江, 等, 2012. 基于染色示踪的膜下滴灌水盐运移规律. 地球科学——中国地质大学学报, 37(5): 1093-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205025.htm [33] 吴忠东, 王全九, 2010. 入渗水矿化度对土壤入渗特征和离子迁移特性的影响. 农业机械学报, 41 (7): 64-69. doi: 10.3969/j.issn.1000-1298.2010.07.014 [34] 辛承松, 唐薇, 王洪征, 等, 2002. 鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应. 棉花学报, 14(2): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB200202009.htm