Characteristics and Origin of Carbonate Cements of Shahejie Formation of Central Uplift Belt in Dongying Depression
-
摘要: 碳酸盐胶结物是东营凹陷中央隆起带砂岩储层中重要的自生矿物,但其形成机制目前尚无深入研究.首先在岩相观察下针对东营凹陷中央隆起带沙河街组的碳酸盐胶结物进行期次划分并归纳其发育特征,再依据各期碳酸盐胶结物的共生矿物、碳氧同位素组成、流体包裹体温度、元素化学成分等信息对其形成机制进行研究.研究结果表明:研究区碳酸盐胶结物的碳不仅受到有机质成熟过程中排放的有机酸的影响,还受到沙四段沉积的湖相碳酸盐岩溶解的影响.研究区沙河街组主要发育四期碳酸盐胶结物:第一期碳酸盐胶结物以白云石为主,其形成过程与甲烷细菌对有机质的分解作用有关;第二期碳酸盐胶结物以方解石为主,与第一期碳酸盐胶结物之间夹有一层绿泥石薄膜,胶结物的形成与孔隙流体的浓缩导致的Ca、HCO3-过饱和现象相关;第三期碳酸盐胶结物主要为方解石、白云石和铁白云石,以充填长石溶孔和原生孔隙为特征,其物质来源于长石的溶蚀及泥岩的脱水作用;第四期碳酸盐胶结物多为铁方解石和铁白云石,以充填早期碳酸盐溶蚀后形成的次生孔隙为特征,物质来源于粘土矿物的转化,多与黄铁矿颗粒共生,其形成过程受到烃类流体活动的影响.Abstract: Carbonate cement is an important authigenic mineral in sandstone reservoirs of the central uplift belt in the Dongying depression, but no in-depth study has been conducted on its formation mechanisms currently. In this article, carbonate cements of Shahejie Formation of the central uplift belt in the Dongying depression are divided into four periods using petrologic records and their development characteristics are concluded. And then, according to the paragenetic mineral assemblages, carbon and oxygen isotope ratios, chemical elemental composition and other information of carbonate cements, their formation mechanisms were studied. Study results show that carbonates in the study area are mainly affected by the organic acids generated during the process of maturation of organic matter and the dissolution of the carbonate debris during deposition of Es4. In the study area, four periods of carbonate cements developed mostly. The first period of carbonate cements is mainly dolomite. Its formation is related to decomposition effects of methane bacteria on organic matter; the second period of carbonate cements is mainly formed of calcite and there is a layer of chlorite film locating between the second period and the first period of carbonate cements. The formation of cements is related to Ca and HCO3- oversaturation caused by pore fluid condensation; the third period of carbonate cements mainly include calcite, dolomite and ankerite, being characterized by filling dissolution pore of feldspar and primary pore, with their substance derived from the dissolution pore of feldspar and dehydration of mudstone; the fourth period of carbonate cements is characterized by filling the early-stage carbonate-corroded pores. Their substances are derived from the conversion of clay minerals and are usually symbiotic with pyrite particles, and their formation is affected by the hydrocarbon fluid flow.
-
图 3 东营凹陷砂岩储层碳酸盐胶结物
a.灰质含鲕粗粉砂岩,辛15,2 069.21 m,单偏光照片;b.粉砂岩,史127,2 180.80 m,阴极发光照片;c.粉砂岩,史127,2 180.80 m,阴极发光照片;d.碳酸盐岩交代第二期石英次生加大,辛斜161,3 364.63 m,铸体薄片照片;e.含铁碳酸盐岩充填溶孔,史126,3 385.49 m,铸体薄片照片;f.油气充注发生在含铁碳酸盐岩胶结之前,牛20,3 038.53 m,铸体薄片照片
Fig. 3. Carbonate cements in sandstone reservoirs of the Dongying Depression
图 4 典型碳酸盐胶结物及其共生矿物的电子探针背散射图像照片
a.测点处为第一期碳酸盐胶结物,史127井,2 180.8 m;b.测点处为第二期碳酸盐胶结物,史127井,2 180.8 m;c.测点处为第三期碳酸盐胶结物,史127井,3 142.0 m;d.测点处为第四期碳酸盐胶结物,牛22井,3 208.6 m填于钾长石溶蚀的溶孔中,胶结物周围无黄铁矿分布(图 4c);第四期碳酸盐胶结物以充填早期碳酸盐溶孔等次生孔隙为特征,胶结物与大量黄铁矿颗粒所伴生,其周围为粘土混层(图 4d).
Fig. 4. Photos showing host rock and EPMA back-scattered images of typical carbonate cement
图 6 中央隆起带碳酸盐胶结物δ13CPDB和δ18OSMOW数值相关
图 6中地幔碳酸盐岩域的数据主要参考Taylor et al.(1967)和Hoefs(1997)的资料;沉积碳酸盐岩域的数据主要参考Veizer and Hoefs(1976)、Toyoda et al.(1994)、Kelts et al.(1990)、王大锐和张映红(2001)和潘立银等(2009)的资料;生物有机体主要参考了Denies(1980)的资料;原始地幔碳酸盐岩与沉积碳酸盐岩之间的过渡带主要参考Valley(1986)的资料
Fig. 6. δ13CPDB and δ18OSMOW correlogram of carbonate cements in the central uplift belt
表 1 东营凹陷中央隆起带各类碳酸盐矿物平均含量
Table 1. Average contents of different carbonate cements in central uplift belt of Dongying depression
层位 深度 平均含量(%) 碳酸盐总量(%) 样品总数(个) 方解石 白云石 铁方解石 铁白云石 沙一段 1 400~2 200 3.6 0.2 0.0 0.0 3.8 174 沙二段 1 800~2 400 2.3 0.7 0.2 0.0 3.2 449 沙三段 2 400~3 400 1.4 1.3 2.6 1.7 7.0 498 沙四段 3 000~3 800 1.1 2.7 0.4 1.1 5.3 400 表 2 东营凹陷碳酸盐岩胶结物流体包裹体温度
Table 2. Measurement data of fluid inclusion in the carbonate cements in the Dongying depression
深度(m) 包裹体类型 宿主矿物 温度(℃) 3 042.54 油包裹体 方解石胶结物 90.00 3 042.54 油包裹体 方解石胶结物 91.50 3 042.54 油包裹体 方解石胶结物 96.30 3 042.54 油包裹体 石英次生加大边 83.20 3 042.54 油包裹体 石英次生加大边 84.50 3 042.54 盐水包裹体 石英颗粒内裂纹 103.20 3 042.54 盐水包裹体 石英颗粒内裂纹 103.70 3 042.54 盐水包裹体 石英颗粒内裂纹 104.30 3 042.54 盐水包裹体 石英颗粒内裂纹 107.00 3 042.54 盐水包裹体 石英颗粒内裂纹 107.10 3 042.54 盐水包裹体 石英颗粒内裂纹 107.40 3 042.54 盐水包裹体 石英颗粒内裂纹 130.40 3 042.54 盐水包裹体 方解石胶结物 103.50 3 042.54 盐水包裹体 方解石胶结物 108.00 3 042.54 盐水包裹体 方解石胶结物 109.70 3 042.54 盐水包裹体 方解石胶结物 115.00 3 042.54 盐水包裹体 方解石胶结物 118.20 3 042.54 盐水包裹体 方解石胶结物 134.00 注:井号:牛872;层位:沙三段;资料来源:胜利油田地质科学研究所. 表 3 东营凹陷中央隆起带碳酸盐胶结物碳氧同位素测试结果
Table 3. The test result of carbon and oxygen isotope ratio of calcite cements from central uplift belt of Dongying depression
井号 深度(m) δ13CV-PDB(‰) δ18OV-PDB(‰) δ18OV-SMOW(‰) 主要矿物 温度(℃) 河130 2 780.4 2.7 -11.8 18.7 白云石 117.4 河130 2 404.0 6.0 -7.3 23.3 方解石 54.0 河156 2 752.8 -4.3 -7.6 23.0 白云石 82.5 河156 2 997.7 3.3 -10.1 20.5 白云石 102.0 河156 3 215.5 -2.5 -8.9 21.7 白云石 92.1 河159 2 954.3 1.0 -5.1 25.6 白云石 65.7 河163 2 833.4 2.1 -10.6 20.0 方解石 76.6 河斜108 3 477.0 2.8 -9.4 21.2 白云石 96.4 河斜108 3 481.8 -2.2 -11.7 18.8 白云石 116.4 河斜108 3 478.2 0.8 -12.9 17.6 白云石 128.1 利99-3 3 155.1 1.3 -10.6 20.0 白云石 106.4 梁105 2 767.1 -2.5 -17.4 13.0 方解石 146.4 牛110 3 000.6 3.5 -12.0 18.6 方解石 88.0 牛110 3 004.8 4.3 -12.3 18.2 方解石 91.4 牛116 3 099.7 2.2 -13.9 16.6 白云石 139.0 牛22 3 233.2 2.4 -9.1 21.5 方解石 65.7 牛22 3 208.6 0.3 -10.2 20.4 铁白云石 98.8 史106 3 398.7 3.3 -13.5 16.9 铁方解石 102.0 史112 3 042.4 1.6 -10.6 20.0 方解石 76.8 史117 3 392.1 -2.5 -11.9 18.7 方解石 87.2 史117 3 332.5 1.4 -14.0 16.4 方解石 107.0 史121 3 530.0 1.3 -13.9 16.6 方解石 105.4 史127 3 162.8 2.9 -13.5 17.0 白云石 134.3 史127 3 142.0 -9.0 -13.7 16.8 方解石 104.1 史127 3 214.5 2.8 -9.9 20.7 方解石 71.6 辛154 2 934.5 3.4 -12.4 18.1 方解石 92.2 辛154 2 936.5 2.6 -10.4 20.1 方解石 75.6 营67 3 068.7 2.9 -11.2 19.4 铁白云石 108.5 营67 3 072.0 1.6 -10.1 20.5 铁白云石 97.8 营67 3 067.2 1.5 -12.7 17.8 方解石 94.4 注:(1)计算温度时流体的δ18O(SMOW)取现今海水值0;(2)计算(铁)方解石、白云石、铁白云石的温度公式是不一样的;(3)PDB是北美皮狄组美洲拟箭石(Pee Dee Belemnite)的缩略语,SMOW为维也纳标准平均海水, 两者换算公式为δ13CV-PDB=0.97δ18OV-SMOW-30.00;(4)构造带:中央隆起带;层位:沙三段. 表 4 东营凹陷沙河街组湖泊沉积碳酸盐碳氧同位素组成(蔡观强等,2009)
Table 4. The δ13C and δ18O values of carbonates for Es sedimentary rocks from the Dongying sag
层位 样号 岩性 δ13C(‰) δ18O(‰) Es3 L11-2 泥灰岩 -1.33 -11.61 L11-6 泥灰岩 -2.45 -13.98 L11-23 泥灰岩 -1.96 -13.28 L11-31 泥灰岩 -1.55 -12.89 Es4 DF5-1 泥灰岩 3.08 -11.09 DF5-2 泥灰岩 3.59 -9.24 DF5-6 泥灰岩 2.80 -8.71 DF5-7 泥灰岩 3.20 -8.89 DF5-10 泥灰岩 1.20 -10.76 DF5-12 泥灰岩 3.01 -8.75 DF5-14 泥灰岩 3.50 -8.20 -
[1] Anna, B., Susanne, G., Peter, K., 2009. Porosity-Preserving Chlorite Cements in Shallow-Marine Volcaniclastic Sandstones: Evidence from Cretaceous Sandstones of the Sawan Gas Field, Pakistan. AAPG Bulletin, 93(5): 595-615. doi: 10.1306/01300908096 [2] Cai, G.Q., Guo, F., Liu, X.T., et al., 2009. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implications of Lacustrine Carbonate Rocks from the Shahejie Formation in the Dongying Sag. Earth and Environment, 37(4): 347-354(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200904006.htm [3] Chen, Y.Q., Yu, X.H., Zhou, X.G., et al., 2004. Research on Diagenetic Evolutive Succession and Occurrence of Secondary Porosity of Lower Tertiary in Different Structural Belt of Dongying Depression. Natural Gas Geoscience, 15(1): 68-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200401013.htm [4] Denies, P., 1980. The Isotopic Composition of Reduced Organic Carbon. In: Fritz, P., Fontes, J.C., eds., Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment. Elsevier Scientific Publishing Company, Amsterdam, 339-345. [5] Drummod, C.N., Wilkinson, B.H., Lohmann, K.C., et al., 1993. Effect of Regional Topography and Hydrology on the Lacustrine Isotopic Record of Miocene Paleoclimate in Rocky Mountains. Palaeogeogr., Palaeoclimatol., Palaeoecal. , 101(1-2): 67-79. doi: 10.1016/0031-0182(93)90152-9 [6] Fayek, M., Harrison, T.M., Grove, M., et al., 2001. In Situ Stable Isotopic Evidence for Protracted and Complex Carbonate Cementation in a Protracted and Complex Carbonate Cementation in a Petroleum Reservoir, North Coles Levee, San Joaquin Basin, California, USA. Journal of Sedimentary Research, 71(3): 444-458. doi: 10.1306/2DC40954-0E47-11D7-8643000102C1865D [7] Frank, S.G., Dias, R., Freeman, K.H., et al., 2011. Carbon Isotopic Composition of Organic Acids in Oil Field Waters, San Joaquin Basin, California, USA. Geochimica et Cosmochimica Acta, 65(8): 1301-1310. doi: 10.1016/S0016-7037(00)00606-2 [8] Han, Y.J., He, S., Song, G.Q., et al., 2012. Origin of Carbonate Cements in the Overpressured Top Seal and Adjacent Sandstones in Dongying Depression. Acta Petrolei Sinica, 33(3): 385-393(in Chinese with English abstract). doi: 10.1038/aps.2011.162 [9] He, S., Yang, Z., He, Z.L., et al., 2009. Mechanism of Carbonate Cementation and Secondary Dissolution Porosity Formation in Deep-Burial Sandstones near the Top Overpressured Surface in Central Part of Junggar Basin. Earth Science-Journal of China University of Geosciences, 34(5): 759-768, 798(in Chinese with English abstract). doi: 10.3799/dqkx.2009.084 [10] Hoefs, J., 1997. Stable Isotope Geochemistry. Springer-Verlag, Berlin. [11] Huang, S.J., Qing, H.R., Hu, Z.W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science-Journal of China University of Geosciences, 33(1): 26-34(in Chinese with English abstract). doi: 10.3799/dqkx.2008.004 [12] Kelts, K., Talbot, M., 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/ Biotic Interactions. In: Tilzer, M.M., Serruya, C., eds., Large Lakes: Ecological Structure and Function. Springer-Verlag, New York, 288-315. doi: 10.1007/978-3-642-84077-7_15 [13] Li, P.L., Jiang, Z.X., Ma, Z.P., et al., 2000. Reservoir and Oil & Gas Distribution in Dongying Sag. Petroleum Industry Press, Beijing, 11-35(in Chinese). [14] Li, Z.Q., Chen, H.H., Liu, H.M., et al., 2008. Division of Hydrocarbon Charges and Charging Date Determination of Sha 3 Member, Dongying Depression by Various Aspects of Fluid Inclusions. Geological Science and Technology Information, 27(4): 69-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200804013.htm [15] Ma, L.J., Zheng, H.R., Xie, X.N., 2005. Faulted Structures and Hydrocarbon Migration in Central Uplift Belt of Dongying Depression. Oil & Gas Geology, 26(2): 246-251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200502020.htm [16] Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution (Special Publication 26 of the IAS). Wiley-Blackwell Press, New Jersey, 1-26. [17] Pan, L.Y., Huang, G.P., Shou, J.F., et al., 2009. A Preliminary Study of Formation Environment of the Neogene Lacustrine Carbonates in Nanyishan Area of Qaidam Basin: Constrains from Carbon-Oxygen Isotope and Fluid Inclusion Analysis. Bulletin of Mineralogy, Petrology and Geochemistry, 28(1): 71-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200901014.htm [18] Taylor, H.P., Frechen, J., Degens, E.T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407-430. doi: 10.1016/0016-7037(67)90051-8 [19] Toyoda, K., Horichi, H., Tokonami, M., 1994. Dupal Anomaly of Brazilian Carbonatites Geochemical Correlations with Hotspots in the South Atlantic and Implications for the Mantle Source. Earth and Planetary Science Letter, 126(4): 315-331. doi: 10.1016/0012-821X(94)90115-5 [20] Valley, J.W., 1986. Stable Isotope Geochemistry of Metamorphic Rocks. In: Valley, J.W., Clayton, R.N., O'Neil, J.R., eds., Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry, USA, 16: 445-489. [21] Veizer, J., Hoefs, J., 1976. The Nature of O18/O16 and C13/C12 Secular Trends in Sedimentary Carbonate Rocks. Geochimica et Cosmochimica Acta, 40(11): 1387-1395. doi: 10.1016/0016-7037(76)90129-0 [22] Wang, D.R., Zhang, Y.H., 2001. A Study on the Origin of the Carbonate Cements within Reservoirs in the External Metamorphic Belt of the Bohai Bay Oil-Gas Bearing Region. Petroleum Exploration and Development, 28(2): 40-42(in Chinese with English abstract). [23] Wang, Q.B., Zang, C.Y., Lai, W.C., et al., 2009. Distribution Characteristics and Origin of Carbonate Cements in the Middle and Deep Clastic Reservoirs of the Paleogene in the Bozhong Depression. Oil & Gas Geology, 30(4): 438-443(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200904012.htm [24] Yang, X.Z., Yang, Z.L., Tao, K.Y., et al., 2002. Formation Temperature of Chloritein Oil-Bearing Basalt. Acta Mineralogica Sinica, 22(4): 365-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200204012.htm [25] You, G.Q., Pan, J.H., Liu, S.Q., et al., 2006. Diagenesis and Pore Evolution of Paleogene Sandstone Reservoir in Dongying Depression. Acta Petrologica et Mineralogica, 25(3): 237-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200603008.htm [26] Yu, B.S., Lai, X.Y., Gao, Z.Q., 2007. The Equilibrium between Calcite and Dolomite during Diagenesis in Sandstone Reservoir in Kela 2 Gas Field and the Influence to Quality of Reservoir. Progress in Natural Science, 17(3): 339-345(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJY200709009.htm [27] Zeng, J.H., Peng, J.L., Qiu, N.S., et al., 2006. Carbonate Dissolution-Precipitation in Sandstone-Shale Contact and Its Petroleum Geological Meanings. Natural Gas Geoscicence, 17(6): 760-764(in Chinese with English abstract). http://www.oalib.com/paper/1418040 [28] Zhang, Y.W., Zeng, J.H., Gao, X., et al., 2009. Distribution Characteristics and Main Controlling Factors of Carbonate Cements in the Paleogene Reservoirs in Dongying Depression. Journal of Jilin University (Earth Science Edition), 39(1): 16-22(in Chinese with English abstract). http://www.cqvip.com/QK/91256B/200901/29246857.html [29] Zhong, D.K., Zhu, X.M., Zhang, Z.H., et al., 2003. Controlling Factors of Sandstone Reservoir of the Paleogene in Dongying Sag. Petroleum Exploration and Development, 30(3): 95-98(in Chinese with English abstract). [30] Zhu, H.Q., Pang, X.Q., Jiang, Z.X., et al., 2007. Accumulation Time and Accumulation Process of Lithological Reservoirs in Dongying Depression. Geological Science and Technology Information, 26(1): 65-70(in Chinese with English abstract). [31] 蔡观强, 郭峰, 刘显太, 等, 2009. 东营凹陷沙河街组沉积岩碳氧同位素组成的古环境记录. 地球与环境, 37(4): 347-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200904006.htm [32] 陈永峤, 于兴河, 周新桂, 等, 2004. 东营凹陷各构造区带下第三系成岩演化与次生孔隙发育规律研究. 天然气地球科学, 15(1): 68-74. doi: 10.3969/j.issn.1672-1926.2004.01.013 [33] 韩元佳, 何生, 宋国奇, 等, 2012. 东营凹陷超压顶封层及其附近砂岩中碳酸盐胶结物的成因. 石油学报, 33(3): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203006.htm [34] 何生, 杨智, 何志亮, 等, 2009. 准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理. 地球科学—中国地质大学学报, 34(5): 759-768, 798. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905008.htm [35] 黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学—中国地质大学学报, 33(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801007.htm [36] 李丕龙, 姜在兴, 马在平, 等, 2000. 东营凹陷储集体与油气分布. 北京: 石油工业出版社, 11-35. [37] 李兆奇, 陈红汉, 刘惠民, 等, 2008. 流体包裹体多参数综合划分东营凹陷沙三段油气充注期次及充注时期确定. 地质科技情报, 27(4): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200804013.htm [38] 马丽娟, 郑和荣, 解习农, 2005. 东营凹陷中央隆起带断裂构造及油气运移. 石油与天然气地质, 26(2): 246-251. doi: 10.3321/j.issn:0253-9985.2005.02.021 [39] 潘立银, 黄革萍, 寿建峰, 等, 2009. 柴达木盆地南翼山地区新近系湖相碳酸盐岩成岩环境初探—碳、氧同位素和流体包裹体证据. 矿物岩石地球化学通报, 28(1): 71-74. doi: 10.3969/j.issn.1007-2802.2009.01.011 [40] 王大锐, 张映红, 2001. 渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义. 石油勘探与开发, 28(2): 40-42. doi: 10.3321/j.issn:1000-0747.2001.02.012 [41] 王清斌, 臧春艳, 赖维成, 等, 2009. 渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制. 石油与天然气地质, 30(4): 438-443. doi: 10.3321/j.issn:0253-9985.2009.04.008 [42] 杨献忠, 杨祝良, 陶奎元, 等, 2002. 含油玄武岩中绿泥石的形成温度. 矿物学报, 22(4): 365-370. doi: 10.3321/j.issn:1000-4734.2002.04.012 [43] 游国庆, 潘家华, 刘淑琴, 等, 2006. 东营凹陷古近系砂岩成岩作用与孔隙演化. 岩石矿物学杂志, 25(3): 237-242. doi: 10.3969/j.issn.1000-6524.2006.03.009 [44] 于炳松, 赖兴运, 高志前, 等, 2007. 克拉2气田砂岩储层中成岩方解石-白云石的平衡及其对储层质量的影响. 自然科学进展, 17(3): 339-345. doi: 10.3321/j.issn:1002-008X.2007.03.008 [45] 曾溅辉, 彭继林, 邱楠生, 等, 2006. 砂-泥岩界面碳酸盐溶解-沉淀反应及其石油地质意义. 天然气地球科学, 17(6): 760-764. doi: 10.3969/j.issn.1672-1926.2006.06.004 [46] 张永旺, 曾溅辉, 高霞, 等, 2009. 东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素. 吉林大学学报(地球科学版), 39(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200901003.htm [47] 钟大康, 朱筱敏, 张枝焕, 等, 2003. 东营凹陷古近系砂岩储集层物性控制因素评价. 石油勘探与开发, 30(3): 95-98. doi: 10.3321/j.issn:1000-0747.2003.03.026 [48] 祝厚勤, 庞雄奇, 姜振学, 等, 2007. 东营凹陷岩性油藏成藏期次与成藏过程. 地质科技情报, 26(1): 65-70. doi: 10.3969/j.issn.1000-7849.2007.01.011