Emeishan Basalts as Provenance Indicators: Implications for Formation of the Three Gorges
-
摘要: 峨眉山玄武岩作为长江上游攀西地区广泛分布的岩类,具有形成环境独特、出露面积大、岩石易鉴定的特点,可作为长江三峡贯通物源示踪研究的指示标志.通过对长江中上游阶地和江汉平原周老孔第四纪岩心沉积物中的玄武岩砾石和岩屑(1~2 mm)进行研究发现,峨眉山玄武岩砾石在长江上游很常见,在三峡以下很少;玄武岩岩屑在长江上游沉积物中非常普遍,而且在周老孔岩心沉积物中的很多层位都有出现.对玄武岩岩屑基质中的斜长石做了微量元素微区原位分析(LA-ICP-MS),分析表明,在周老孔中含峨眉山玄武岩岩屑的岩心层位最大深度为156 m,该层位古地磁年龄约为1.7 Ma,此时长江已经形成且三峡已经贯通.Abstract: The Emeishan basalts are typical rocks of the Yangtze River basin because of their unique origin, the broad distribution and simplicity of identification, which can be used as an indicator of tracing the source of the upstream Yangtze sediments after cutting of the Three Gorges. The gravel and debris (between 1-2 mm) of basalts in the sediments of the middle and upper reaches of the Yangtze terraces(above Fuling City) and the Quaternary sediments of the Zhoulao core in the Jianghan Plain are mainly studied in the article. The gravels of the lithic basalts are abundant in the floodplain sediments and the terrace deposits along the upper reach of the river (upstream of Fuling City), and are rare along the downstream of the Three Gorges. The basalt debris are very common on the terraces of the upper reach of the Yangtze River, and are also evaluated by the loose sediments of the Zhoulao core. These lithic debris were identified as the Emeishan basalts by LA-ICP-MS and appear at the core depth of 156 m (up). This line of change (156 m depth) dated of about 1.7 Ma attests a provenance change. Meanwhile, a wide drainage basin similar as today's dimension of the Yangtze River had formed and the Three Gorges had formed around 1.7 Ma.
-
Key words:
- Emeishan basalts /
- Jianghan Plain /
- Quaternary /
- sediments /
- trace elements /
- source tracing /
- evolution of the Yangtze River
-
表 1 玄武岩岩屑的微量元素(10-6)分析结果
Table 1. Analysis results of trace element (10-6) of basalt debris
样号 GSH-11-1 GSH-11-3 GSH-12-1 GSH-12-2 GSH-15-1 GSH-15-3 GSH-16-1 GSH-16-3 GSH-18-1 GSH-18-3 YB-T2-1-2 V 197.06 110.17 32.97 37.22 35.15 21.46 207.78 212.26 164.93 48.99 410.76 Cr 110.68 75.07 53.38 55.96 19.33 6.14 11.52 350.57 139.68 20.35 122.10 Co 13.45 11.71 1.34 0.72 7.40 6.26 27.29 26.88 6.06 10.53 12.10 Ni 100.92 33.13 4.95 8.44 8.04 7.41 51.70 59.61 15.75 22.73 56.08 Rb 54.62 65.39 6.71 5.87 9.34 8.42 4.69 14.75 76.76 197.02 167.85 Sr 165.22 235.48 42.29 47.43 16.53 14.31 153.60 67.58 32.50 59.09 235.14 Y 28.44 15.92 1.91 1.79 2.62 2.56 80.26 8.75 16.33 39.81 49.86 Zr 44.89 51.86 7.52 9.26 20.13 17.13 649.61 111.44 212.77 239.41 846.64 Nb 3.15 10.79 0.53 0.54 3.33 2.43 84.66 20.80 18.23 3.74 37.68 Sb 7.07 1.28 0.50 0.39 19.70 15.37 21.77 66.40 1.70 0.00 0.24 Cs 5.65 5.57 0.64 0.51 3.84 2.19 2.17 8.81 0.18 0.79 0.89 Ba 470.99 265.76 60.69 82.84 31.20 30.43 223.10 165.26 584.55 1 736.34 2 104.99 La 23.75 32.08 1.34 2.17 2.10 2.68 79.30 14.82 24.41 38.12 18.96 Ce 39.89 38.87 1.44 2.55 2.66 4.04 184.43 36.26 46.33 86.31 32.94 Pr 5.35 5.21 0.36 0.31 0.34 0.17 23.67 4.13 5.61 10.80 4.59 Nd 24.64 18.27 1.21 1.35 1.49 2.18 104.75 26.77 21.79 46.65 20.83 Sm 5.71 4.52 0.12 0.18 0.51 0.33 23.20 5.78 4.58 7.43 6.87 Eu 1.53 1.26 0.01 0.11 0.02 0.03 4.67 0.49 0.64 1.83 4.78 Gd 6.26 4.49 0.27 0.37 0.13 0.09 19.81 4.80 3.39 8.95 9.10 Tb 0.98 0.53 0.04 0.05 0.00 0.00 2.76 0.31 0.41 1.13 1.54 Dy 4.75 3.36 0.24 0.37 0.16 0.13 15.35 0.56 2.63 7.56 9.85 Ho 1.03 0.62 0.05 0.05 0.08 0.06 2.66 0.57 0.53 1.39 2.28 Er 2.60 1.40 0.08 0.15 0.32 0.20 7.20 0.44 1.46 3.95 5.39 Tm 0.32 0.20 0.02 0.03 0.01 0.03 0.88 0.03 0.13 0.44 0.87 Yb 2.55 1.66 0.11 0.13 0.20 0.11 4.96 0.00 1.45 2.96 5.27 Lu 0.33 0.19 0.03 0.02 0.00 0.06 0.94 0.00 0.19 0.25 0.83 Hf 0.96 1.57 0.12 0.12 0.68 0.36 16.97 5.80 5.02 3.67 16.95 Ta 0.25 0.60 0.06 0.05 0.12 0.05 3.96 0.57 1.08 0.28 2.77 Pb 54.10 48.66 7.78 7.96 1.79 1.24 18.32 29.16 4.61 6.83 19.04 Th 6.15 10.27 0.54 0.38 0.57 0.40 18.34 0.84 4.14 7.61 12.49 U 4.80 2.32 1.71 1.97 1.55 1.01 3.29 0.69 1.05 1.24 3.51 Th/Ta 24.71 17.01 8.48 6.96 4.90 8.82 4.63 1.46 3.84 27.11 4.51 Th/Nb 1.95 0.95 1.03 0.70 0.17 0.17 0.22 0.04 0.23 2.04 0.33 La/Sm 4.16 7.10 11.57 12.19 4.11 8.17 3.42 2.56 5.33 5.13 2.76 Eu/Tb 1.57 2.35 0.25 2.45 - - 1.69 1.60 1.55 1.63 3.10 La/Ce 0.60 0.83 0.93 0.85 0.79 0.66 0.43 0.41 0.53 0.44 0.58 Ce/Nd 1.62 2.13 1.20 1.89 1.78 1.85 1.76 1.35 2.13 1.85 1.58 样号 YB-T2-1-3 YB-T2-2-1 YB-T2-2-3 YB-T2-3-1 YB-T2-3-2 YB-T1-1-1 YB-T1-1-3 YB-T1-2-1 YB-T1-2-2 YB-T1-3-1 YB-T1-3-2 V 293.52 119.42 186.69 454.72 471.88 730.29 254.77 316.95 268.98 459.05 508.84 Cr 110.07 101.13 59.88 82.48 218.88 132.47 36.59 21.12 14.91 74.46 8.15 Co 8.54 7.52 12.50 27.81 42.55 54.63 40.04 53.34 35.20 35.94 37.52 Ni 56.47 12.38 24.19 51.52 68.91 106.52 66.96 79.03 50.98 44.68 48.85 Rb 162.70 73.79 57.79 96.76 69.85 6.82 13.80 16.11 17.40 52.60 94.00 Sr 216.70 417.27 354.57 257.36 222.31 291.52 785.74 578.06 671.99 547.99 446.47 Y 15.45 28.01 22.82 37.97 30.70 47.34 50.53 53.76 23.05 41.28 69.42 Zr 157.41 424.66 301.32 472.66 398.50 458.85 554.57 448.10 191.64 430.57 858.71 Nb 22.63 28.64 16.71 60.45 54.20 37.19 42.63 49.25 16.46 42.96 123.36 Sb 0.12 0.22 0.06 0.41 0.28 7.09 1.51 0.00 2.69 0.00 8.50 Cs 0.30 0.49 0.67 0.87 0.86 0.50 0.59 1.89 1.04 1.10 0.49 Ba 2 966.57 1 671.12 1 240.66 1 274.96 973.18 220.07 442.56 469.67 405.99 265.42 1 269.14 La 19.65 19.34 14.16 38.71 37.56 51.61 77.70 52.68 15.42 32.52 77.50 Ce 30.55 34.58 24.43 52.24 48.21 119.23 165.98 120.51 38.06 88.68 208.73 Pr 5.60 5.74 4.75 13.04 12.48 15.94 20.65 16.09 4.94 12.58 29.10 Nd 23.91 25.40 21.15 52.72 50.29 62.88 82.34 69.89 24.87 52.49 116.62 Sm 5.01 5.94 4.95 13.59 12.27 13.90 15.07 14.16 5.64 13.28 25.00 Eu 1.33 1.59 1.42 3.62 3.06 3.64 3.84 4.55 2.59 3.02 6.75 Gd 4.55 5.77 4.84 9.99 9.32 11.43 12.00 12.09 4.69 11.45 18.82 Tb 0.67 0.85 0.81 1.63 1.33 1.94 1.79 2.28 0.87 1.71 2.91 Dy 3.25 5.47 4.14 8.45 6.88 8.90 9.81 11.90 5.32 8.06 14.20 Ho 0.69 1.14 0.82 1.54 1.19 1.80 1.72 2.08 0.80 1.54 2.68 Er 1.61 2.96 2.16 3.90 3.07 4.30 5.27 5.42 2.24 4.51 6.97 Tm 0.21 0.37 0.30 0.57 0.46 0.52 0.67 0.76 0.33 0.56 0.81 Yb 1.26 2.53 1.94 3.94 2.89 5.03 3.79 5.16 2.74 3.73 5.93 Lu 0.17 0.34 0.29 0.52 0.32 0.73 0.62 0.51 0.31 0.38 0.92 Hf 3.24 8.69 6.32 10.80 9.52 9.76 14.27 11.92 5.70 11.41 24.03 Ta 1.50 1.95 1.22 4.14 3.70 2.67 3.46 3.34 1.35 2.98 8.95 Pb 9.79 10.77 16.98 17.24 16.09 4.76 5.77 5.29 3.61 7.97 17.99 Th 2.44 7.42 4.49 15.23 12.56 7.36 9.02 8.69 3.60 10.56 19.37 U 0.55 1.82 1.07 1.88 1.29 1.68 2.22 2.41 0.63 2.24 4.69 Th/Ta 1.63 3.80 3.67 3.68 3.40 2.76 2.61 2.60 2.66 3.54 2.16 Th/Nb 0.11 0.26 0.27 0.25 0.23 0.20 0.21 0.18 0.22 0.25 0.16 La/Sm 3.92 3.26 2.86 2.85 3.06 3.71 5.16 3.72 2.74 2.45 3.10 Eu/Tb 1.97 1.88 1.77 2.22 2.30 1.88 2.15 1.99 2.99 1.77 2.32 La/Ce 0.64 0.56 0.58 0.74 0.78 0.43 0.47 0.44 0.41 0.37 0.37 Ce/Nd 1.28 1.36 1.15 0.99 0.96 1.90 2.02 1.72 1.53 1.69 1.79 表 2 宜宾T1和T2阶地的样品微量元素比值的相对偏差(%)、标准偏差分析
Table 2. Deviations in trace element ratio between the basalt debris of the T1 and T2 terraces in Yibin City
比值 样品号 平均相对偏差(%) 标准偏差 YB-T1-1-1 YB-T1-1-3 YB-T1-2-1 YB-T1-2-2 YB-T1-3-1 YB-T1-3-2 YB-T2-1-2 YB-T2-1-3 YB-T2-2-1 YB-T2-2-3 YB-T2-3-1 YB-T2-3-2 Th/Ta 10.54 15.43 15.78 13.76 14.79 29.83 46.21 47.20 23.11 19.07 19.30 10.06 22.09 0.81 La/Yb 1.75 96.01 2.26 46.06 16.53 24.98 65.59 49.52 26.88 30.12 5.85 24.53 32.51 4.59 Zr/Nb 5.35 11.08 22.31 0.57 14.41 40.56 91.89 40.62 26.63 53.98 33.23 37.21 31.49 4.83 La/Nb 53.76 101.97 18.53 3.79 16.12 30.39 44.23 3.80 25.16 6.12 29.03 23.20 29.68 0.37 Rb/Nb 91.00 84.11 83.94 48.11 39.89 62.59 118.69 252.84 26.50 69.75 21.42 36.73 77.96 2.09 Th/Nb 10.72 4.45 20.38 1.17 10.99 29.15 49.61 51.35 16.90 21.41 13.71 4.60 19.54 0.06 Th/La 50.33 59.53 42.53 18.54 13.21 12.92 129.52 56.73 33.63 10.64 37.07 16.52 40.10 0.15 La/Ta 55.43 80.35 26.48 8.64 12.49 30.46 45.02 5.32 20.49 7.12 24.88 18.48 27.93 4.58 La/Sm 12.58 56.33 12.78 17.06 25.75 6.00 16.38 18.82 1.29 13.24 13.62 7.18 16.75 0.74 Ce/Sm 29.81 66.66 28.76 2.20 1.06 26.35 27.49 7.80 11.91 25.28 41.82 40.54 25.81 2.17 Ce/Eu 42.36 87.44 14.95 36.20 27.31 34.21 70.09 0.15 5.53 25.42 37.35 31.52 34.38 10.03 U/Ce 57.32 59.36 39.36 49.56 23.35 31.79 223.63 45.73 59.45 33.07 9.23 18.91 54.23 0.03 Eu/Tb 14.48 1.88 9.14 36.32 19.56 5.58 41.44 10.24 14.30 19.55 1.13 4.68 14.86 0.44 La/Ce 18.32 11.66 17.50 23.56 30.80 29.93 8.61 21.38 5.54 9.36 39.85 47.03 21.96 0.14 Ce/Nd 26.62 34.61 15.14 2.19 12.81 19.51 5.59 14.68 9.08 22.89 33.84 35.98 19.41 0.35 Ba/Nb 83.31 70.73 73.11 30.44 82.58 70.99 57.55 269.58 64.56 109.36 40.52 49.37 83.51 37.99 Ba/Th 84.94 75.31 72.78 43.28 87.35 67.00 15.13 512.19 13.45 38.98 57.84 60.99 94.10 329.90 Ba/La 90.94 87.90 81.05 44.03 82.65 65.19 135.95 220.86 83.64 86.26 30.01 44.94 87.78 49.18 Ba/Ce 93.35 90.39 85.95 61.54 89.21 78.08 130.35 250.09 74.21 83.10 12.02 27.23 89.63 30.72 Ba/Cs 78.66 63.96 88.01 81.12 88.30 25.63 14.19 379.66 66.00 10.92 29.05 45.46 80.91 2 682.77 表 3 长江流域某些玄武岩源岩的微量元素比值
Table 3. The trace element ratio of basalt in the Yangtze River basin
比值 云南宾川峨眉山玄武岩1 武当山群
2基性岩(23样)康县碧口群
玄武岩3(5样)YB-T1
(6样)YB-T2
(6样)低钛LT1区(9样) 低钛LT2区(8样) 高钛HT区(8样) Th/Ta 3.20~5.02(4.24) 1.56~3.56(2.19) 1.66~2.32(1.90) 1.03~3.65(1.73) 1.03~1.44(1.24) 2.16~2.76(2.72) 3.68~4.51(3.81) Th/Nb 0.19~0.48(0.26) 0.085~0.210(0.120) 0.10~0.17(0.12) 0.054~0.151(0.115) 0.068~0.091(0.080) 1.56~2.25(0.20) 0.11~0.33(0.24) La/Sm 3.11~4.14(3.37) 2.11~3.02(2.64) 3.20~4.76(4.10) 1.11~3.60(2.64) 1.35~3.93(2.18) 2.45~5.17(3.48) 2.75~3.92(3.12) Eu/Tb 1.69~1.98(1.87) 1.57~2.12(1.77) 1.96~2.40(2.15) 1.83~3.14(2.10) 1.52~2.49(1.89) 1.76~2.99(2.18) 1.77~3.10(2.21) La/Ce 0.47~0.49(0.48) 0.43~0.47(0.46) 0.41~0.47(0.45) 0.34~0.69(0.51) 0.33~0.45(0.37) 0.37~0.47(0.41) 0.56~0.80(0.65) Ce/Nd 1.62~1.89(1.67) 1.34~1.59(1.50) 1.63~1.91(1.78) 1.17~2.01(1.51) 1.25~1.84(1.47) 1.53~2.02(1.77) 0.96~1.58(1.22) 注:括号内为平均值;上标“1”数据引用自 Xiao et al.(2003) ;上标“2”数据引用自张成立等(1999);上标“3”数据引用自闫全人等(2004). -
[1] Chen, H.H., Ma, Z.L., 1987. Lower Pleistocene Series in Jianghan Plain. Earth Science—Journal of Wuhan College of Geology, 12(2): 129-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198702003.htm [2] Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): 1-20. doi: 10.1029/2002TC001402 [3] Fan, D.D., Li, C.X., Yokoyama, K., et al., 2004. Monazite Age Spectra in the Late Cenozoic Strata of the Changjiang Delta and Its Implication on the Changjiang Run-Through Time. Science in China (Ser. D), 34(11): 1015-1022 (in Chinese). http://d.wanfangdata.com.cn/Periodical_NSTL_QKJJ028318266.aspx [4] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. doi: 10.1039/B804760J [5] Hubei Bureau of Geology and Mineral Resources, 1991. Regional Geology of Hubei Province. Geological Publishing House, Beijing, 343-400(in Chinese). [6] Kang, C.G., Li, C.A., Wang, J.T., et al., 2009. Heavy Mineral Characteristics of Sediments in Jianghan Plain and Its Indication to the Forming of the Three Gorges. Earth Science—Journal of China University of Geosciences, 34(3): 419-427 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.047 [7] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [8] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [9] Lü, Q.R., 1992. Mineral Characteristics of Fine-Grain Sediment and Its Sedimentary Differentiation in Changjiang Estuary. Shanghai Geology, 43(3): 18-25, 40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD199203002.htm [10] Ma, Y.F., Li, C.A., Wang, Q.L., et al., 2007. Statistics of Gravels from a Bore in Zhoulao Town, Jianghan Plain and Its Relationship with Cut-Through of the Yangtze Three Gorges, China. Geological Science and Technology Information, 26(2): 40-44 (in Chinese with English Abstract). http://www.cqvip.com/QK/93477A/20072/24094697.html [11] Pearce, J.A., Cann, J.R., 1973. Tectonic Setting of Basic Volcanic Rocks Investigated Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5 [12] Richardson, N.J., Densmore, A.L., Seward, D., et al., 2010. Did Incision of the Three Gorges Begin in the Eocene?Geology, 38(6): 551-554. doi: 10.11/G30527.1 [13] Song, X.Y., Hou, Z.Q., Wang, Y.L., et al., 2002. The Mantle Plume Features of Emeishan Basalts. Journal of Mineralogy and Petrology, 22(4): 27-32 (in Chinese with English abstract). http://www.researchgate.net/publication/292927725_The_mantle_plume_features_of_Emeishan_basalts [14] Sun, B.Y., 1990. Detrital Mineral Assemblages in the Huanghe, Changjiang and Zhujiang River Delta Sediments. Marine Geology & Quaternary Geology, 10(3): 23-34(in Chinese with English abstract). http://www.researchgate.net/publication/285012617_Detrital_mineral_assemblages_in_the_Huanghe_Changjiang_and_Zhujiang_River_delta_sediments [15] Sun, X.L., Li, C.A., 2010. 40Ar-39Ar Age Tracing of Detrital Muscovites and Its Application in Yangtze River Running-Through Time. Geological Science and Technology Information, 29(6): 121-127 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201006021.htm [16] Wang, J.T., Li, C.A., Yang, Y., et al., 2010. Detrital Zircon Geochronology and Provenance of Core Sediments in Zhoulao Town, Jianghan Plain, China. Journal of Earth Science, 21(3): 257-271. doi: 10.1007/S12583-010-0090-4 [17] Wang, L.C., Chen, X.L., Chu, T.Q., 1997. A Contrast Analysis on the Loads Character of the Changjiang River and the Yellow River. Geographical Research, 16(4): 71-79 (in Chinese with English abstract). [18] Wang, Z.B., Yang, S.Y., Li, P., et al., 2006. Detrital Mineral Compositions of the Changjiang River Sediments and Their Tracing Implications. Acta Sedimentologica Sinica, 24(4): 570-578 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB200604014.htm [19] Xiang, F., Zhu, L.D., Wang, C.S., et al., 2006. Character of Basaltic Gravels in Quaternary Sediments in Yichang Area and Its Relationship with Formation of Yangtze Three Gorges. Journal of Earth Sciences and Environment, 28(2): 6-10, 24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200602001.htm [20] Xiao, L., Xu, Y.G., Chuang, S.L., et al., 2003. Chemostratigraphic Correlation of Upper Permian Lava Succession from Yunnan Province, China: Extent of the Emeishan Large Igneous Province. International Geology Review, 45: 753-766. doi: 10.2747/0020-6814.45.8.753 [21] Yan, Q.R., Hanson, A.D., Wang, Z.Q., et al., 2004. Geochemistry and Tectonic Setting of the Bikou Volcanic Terrane on the Northern Margin of the Yangtze Plate. Acta Petrologica et Mineralogica, 23(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200401000.htm [22] Yang, D.Y., 1988. The Origin and Evolution of the Three Gorges of the Changjiang Yangtze River. Journal of Nanjing University (Natural Sciences Edition), 24(3): 466-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198803009.htm [23] Yang, S.Y., 2006. Advances in Sedimentary Geochemistry and Tracing Applications of Asian Rivers. Advances in Earth Science, 21(6): 648-655 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200606013.htm [24] Zhang, C.L., Zhou, D.W., Liu, Y.Y., 1999. Geochemistry of Basic Dykes in Wudangshan Block and Their Tectonic Significance. Geochimica, 28(2): 126-135(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX902.002.htm [25] Zhang, H.X., Xu, Z.F., Ma, Y.J., et al., 2001. Geochemical Features and Origin of Continental Flood Basalts. Earth Science—Journal of China University of Geosciences, 26(3): 261-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200103007.htm [26] Zhang, Y.F., Li, C.A., Wang, Q.L., et al., 2008. Magnetism Parameters Characteristics of Drilling Deposits in Jianghan Plain and Indication for Forming of the Yangtze River Three Gorges. Chinese Science Bulletin, 53(5): 577-582 (in Chinese). doi: 10.1360/csb2008-53-5-577 [27] Zhang, Y.X., Luo, Y.N., Yang, C.X., 1988. Panxi Rift. Geological Publishing House, Beijing(in Chinese) [28] Zheng, H.B., Jia, D., Chen, J., et al., 2013. Did Incision of the Three Gorges Begin in the Eocene? COMMENT. Geology, 39 (5): 244-245. doi: 10.1130/G31944C.1 [29] Zheng, H.F., Xie, H.S., Guo, J., 1998. Reliability of Trace Element Ratios in the Study of the Composition of Magma Source Region: Experimental Study on Basalt Melting. Acta Mineralogica Sinica, 18(4): 541-545(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199804020.htm [30] 陈华慧, 马祖陆, 1987. 江汉平原下更新统. 地球科学——武汉地质学院学报, 12(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198702003.htm [31] 范代读, 李从先, Yokoyama, K., 等, 2004. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究. 中国科学(D辑), 34(11): 1015-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm [32] 湖北省地质矿产局, 1991. 湖北省区域地质志. 北京: 地质出版社, 343-400. [33] 康春国, 李长安, 王节涛, 等, 2009. 江汉平原沉积物重矿物特征及其对三峡贯通的指示. 地球科学——中国地质大学学报, 34(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903006.htm [34] 吕全荣, 1992. 长江口细颗粒沉积物的矿物特征和沉积分异. 上海地质, 43(3): 18-25, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD199203002.htm [35] 马永法, 李长安, 王秋良, 等, 2007. 江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系. 地质科技情报, 26(2): 40-44. doi: 10.3969/j.issn.1000-7849.2007.02.008 [36] 宋谢炎, 侯增谦, 汪云亮, 等, 2002. 峨眉山玄武岩的地慢热柱成因. 矿物岩石, 22(4): 27-32. doi: 10.3969/j.issn.1001-6872.2002.04.006 [37] 孙白云, 1990. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征. 海洋地质与第四纪地质, 10(3): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199003002.htm [38] 孙习林, 李长安, 2010. 碎屑白云母40Ar-39Ar示踪及在长江贯通研究中的应用探讨. 地质科技情报, 29(6): 121-127. doi: 10.3969/j.issn.1000-7849.2010.06.021 [39] 王腊春, 陈晓玲, 储同庆, 1997. 黄河、长江泥沙特性对比分析. 地理研究, 16(4): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.009.htm [40] 王中波, 杨守业, 李萍, 等, 2006. 长江水系沉积物碎屑矿物组成及其示踪意义. 沉积学报, 24(4): 570-578. doi: 10.3969/j.issn.1000-0550.2006.04.015 [41] 向芳, 朱利东, 王成善, 等, 2006. 宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系. 地球科学与环境学报, 28(2): 6-10, 24. doi: 10.3969/j.issn.1672-6561.2006.02.002 [42] 闫全人, Hanson, A.D., 王宗起, 等, 2004. 扬子板块北缘碧口群火山岩的地球化学特征及其构造环境. 岩石矿物学杂志, 23(1): 1-11. doi: 10.3969/j.issn.1000-6524.2004.01.001 [43] 杨达源, 1988. 长江三峡的起源与演变. 南京大学学报(自然科学版), 24(3): 466-474. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198803009.htm [44] 杨守业, 2006. 亚洲主要河流的沉积地球化学示踪研究进展. 地球科学进展, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013 [45] 张成立, 周鼎武, 刘颖宇, 1999. 武当山地块基性岩墙群地球化学研究及其大地构造意义. 地球化学, 28(2): 126-135. doi: 10.3321/j.issn:0379-1726.1999.02.003 [46] 张鸿翔, 徐志方, 马英军, 等, 2001. 大陆溢流玄武岩的地球化学特征及起源. 地球科学——中国地质大学学报, 26(3): 261-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103007.htm [47] 张玉芬, 李长安, 王秋良, 等, 2008. 江汉平原沉积物磁学特征及对长江三峡贯通的指示. 科学通报, 53(5): 577-582. doi: 10.3321/j.issn:0023-074X.2008.05.013 [48] 张云湘, 骆耀南, 杨崇喜, 1988. 攀西裂谷. 北京: 地质出版社. [49] 郑海飞, 谢鸿森, 郭捷, 1998. 微量元素比值研究岩浆源区成分的可靠性: 玄武岩熔融实验研究. 矿物学报, 18(4): 541-545. doi: 10.3321/j.issn:1000-4734.1998.04.021