Geochemistry Characteristics and Significance of Metamorphic Intrusions in Guyang Region, Inner Mongolia
-
摘要: 内蒙古固阳地区新太古代变质侵入岩具明显TTG岩系特征, 符合钙碱性系列岩石的演化趋势, 且具有由早期富钙向晚期富钠演化的趋势.其SiO2含量介于49.99%~76.08%(绝大多数为51%~67%之间), 全碱含量高(Na2O+K2O>7%), 富钠(Na2O>3%), Na2O/K2O>1, 铝含量高(Al2O3含量通常在13%~18%之间), Mg#值较高(Mg#变化范围为33~50, 均值为45).微量元素显示岩石较低的Rb/Sr比值(0.02<Rb/Sr<0.22, 均值为0.08), 具有明显的Nb、P和Ti负异常以及Sr正异常.稀土元素配分曲线为右倾型, 岩石强烈富集LREE, 亏损HREE, 具弱Eu正异常.利用激光等离子体质谱(LA-ICP-MS)对其锆石进行了U-Pb定年, 测得其年龄在2 500~2 520 Ma之间, 属新太古代晚期.另外, 二长花岗岩的不一致线下交点年龄为410~576 Ma, 代表着引起Pb从矿物中丢失的热事件的时间, 即可以作为"早古生代华北地台应祁连山褶皱带的闭合而向南增生"这一事件在该区的时间响应.Abstract: The Neoarchean intrusions in Guyang area, Inner Mongolia, with obvious characteristics of TTG rock series, are in line with the calc-alkaline series in the rock evolution, reflecting the trend of rock evolution from the early Ca-enriched one to later Na-enriched one. The SiO2 content of these intrusive rocks is in the range of 49.99%-76.08% (mostly 51%-67%), with a high alkali content (Na2O+K2O > 7%), enriched in Na (Na2O > 3%), Na2O/K2O > 1, high-alumina (Al2O3 content usually between 13%-18%), high Mg# value (Mg# ranging from 33-50, average 45). Trace elements show low Rb/Sr ratio (0.02 < Rb/Sr < 0.22, average 0.08), with significant Nb, P and Ti negative anomalies and a positive Sr anomaly. REE distribution curves show that the rocks with a weak positive Eu anomaly are strongly LREE enriched, HREE loss, belonging to a right-inclined type. The laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used for the zircon U-Pb dating of the intrusive rocks, and the isotope age is between 2 500 and 2 520 Ma, belonging to the Late Neoarchaean. Moreover, monzogranite in obtaining inconsistent U-Pb age settlement under the curve (410-576 Ma) represents the cause of the loss of Pb from the mineral-thermal event of the time, that can be used as the time limit of the incident in this area, what is the southward hyperplasia of North China platform in Early Paleozoic should be with the closure of Qilian fold belt.
-
Key words:
- metamorphic intrusion /
- petrology /
- geochemistry /
- formation age /
- Guyang area
-
图 3 固阳地区变质侵入岩的K-Na-Ca关系(a)和固阳地区变质侵入岩的CaO-Na2O-K2O关系(b)
图a中TTG和钙碱性的趋势线及埃达克岩的区域见Martin et al.(2005);图中部分数据引自北京地大固阳幅区调资料(张维杰等,2000)
Fig. 3. Relation of K-Na-Ca from metamorphic intrusion in Guyang area (a) and relation of CaO-Na2O-K2O from metamorphic intrusion in Guyang area (b)
图 4 固阳地区侵入岩微量元素蛛网图(a)、斜长角闪岩及闪长岩(b)、石英闪长岩(c)和花岗闪长岩及二长花岗岩(d)稀土元素配分曲线(球粒陨石标准据Sun and McDonough, 1989)
Fig. 4. The trace elements spidergram (a), the chondrite-normalized REE patterns of amphibolites and diorites (b), quartz diorite (c) and granodiorite and monzonitic granite (d) of metamorphic intrusion in Guyang area
表 1 固阳地区新太古代变质侵入岩主量元素(%)、微量和稀土元素(10-6)分析及有关参数
Table 1. Major, trace and rare-earth element compositions of the Neoarchaean intrusive rocks in Guyang area
样号 PM204YQ17-1 PM311YQ1-1 PM310YQ6-1 PM404YQ35-1 D7034YQ-1 D7035YQ-1 PM704YQ5-1 PM311YQ13-1 PM704YQ13-1 文圪气YQ-1 文圪气YQ-2 杨家店YQ-2 杨家店YQ-4 岩石名称 中细粒二长花岗岩 片麻状二长花岗岩 片麻状花岗闪长岩 中细粒石英闪长岩 石英二长闪长岩 石英闪长岩 中细粒石英闪长岩 糜棱岩化闪长岩 蚀变斜长角闪岩 细粒含铁角闪岩 斜长角闪岩 细粒含铁角闪岩 细粒含铁角闪岩 SiO2 72.31 76.08 60.05 62.50 64.53 51.63 67.12 49.99 56.42 32.96 39.43 37.49 33.50 TiO2 0.26 0.07 0.67 0.36 0.61 1.05 0.38 1.68 0.71 1.41 0.84 2.37 1.42 Al2O3 14.37 13.76 17.42 17.87 16.78 16.20 15.97 14.24 16.48 2.06 2.95 6.87 3.55 Fe2O3 1.59 0.01 1.81 2.94 2.21 4.88 2.13 4.11 3.60 14.43 8.20 13.63 11.91 FeO 0.42 0.53 4.10 1.63 1.08 4.88 1.00 8.55 3.53 10.20 7.70 9.00 9.40 MnO 0.02 0.01 0.09 0.11 0.07 0.14 0.03 0.19 0.10 0.25 0.16 0.53 0.24 MgO 0.58 0.24 2.87 1.65 0.83 5.12 1.61 6.04 3.81 11.07 12.94 6.72 9.28 CaO 2.05 0.33 5.63 5.46 2.34 7.19 1.80 9.11 5.40 20.63 21.93 19.37 22.16 Na2O 4.02 3.85 3.35 3.36 3.93 3.56 4.37 3.08 3.98 0.37 0.45 1.02 0.77 K2O 2.98 4.04 2.42 1.64 5.34 1.62 3.41 0.37 3.27 0.05 0.95 0.50 0.39 P2O5 0.06 0.03 0.22 0.14 0.34 0.53 0.12 0.22 0.32 2.49 2.94 1.10 2.30 H2Op 0.97 0.69 0.97 1.99 1.36 2.72 1.62 2.05 1.93 1.20 0.75 0.89 1.09 CO2 0.14 0.10 0.10 0.12 0.18 0.14 0.18 0.16 0.12 2.61 0.50 0.12 3.71 LOI 0.80 0.66 0.55 1.79 1.22 2.39 1.58 1.40 1.62 2.88 0.17 0.18 3.66 Q 32.89 37.26 13.69 23.36 16.18 3.54 23.20 2.57 4.91 0.00 0.00 1.93 0.00 C 0.93 2.53 0.00 0.94 1.01 0.00 2.10 0.00 0.00 0.00 0.00 0.00 0.00 Or 17.87 24.15 14.51 9.93 32.21 9.90 20.59 2.24 19.81 0.00 0.00 3.00 0.00 Ab 34.44 32.88 28.71 29.08 33.87 31.08 37.71 26.68 34.46 0.00 0.00 8.74 0.00 An 9.96 1.48 25.65 26.91 9.81 24.17 8.40 24.50 17.82 3.97 3.26 12.85 5.34 Di 0.00 0.00 1.12 0.00 0.00 7.55 0.00 16.73 6.14 69.23 71.05 41.24 63.70 Hy 1.47 1.48 11.88 4.40 2.12 13.19 4.11 17.42 9.41 0.00 0.00 0.00 0.00 Mt 0.67 0.01 2.66 4.37 1.98 7.31 2.26 6.11 5.35 21.81 12.07 20.04 18.19 Ⅱ 0.50 0.13 1.29 0.70 1.18 2.06 0.74 3.27 1.38 2.79 1.62 4.57 2.84 Ap 0.13 0.07 0.49 0.31 0.76 1.20 0.27 0.49 0.72 5.67 6.52 2.44 5.29 No 12.63 2.20 30.88 31.63 12.65 28.00 10.02 31.47 20.54 42.37 Di 85.20 94.29 56.91 62.37 82.26 44.52 81.50 31.49 59.18 13.67 σ 1.67 1.88 1.95 1.28 3.99 3.11 2.51 1.70 3.92 -0.02 -0.55 -0.42 -0.14 Si 6.05 2.77 19.73 14.71 6.20 25.52 12.86 27.27 20.95 30.65 42.79 21.77 29.23 Fl 77.35 95.99 50.61 47.80 79.84 41.88 81.21 27.47 57.31 2.00 6.00 7.28 4.97 Ar 2.49 3.55 1.67 1.55 2.88 1.57 2.56 1.35 1.99 1.04 1.12 1.12 1.09 Na2O/K2O 1.35 0.95 1.38 2.05 0.74 2.20 1.28 8.32 1.22 7.40 0.47 2.04 1.97 Mg# 0.36 0.44 0.47 0.41 0.33 0.50 0.50 0.47 0.50 0.46 0.61 0.36 0.45 Ba 828.00 1 422.00 1 096.00 637.00 1 970.00 1 077.00 1 059.00 178.00 1 235.00 55.90 421.00 898.00 189.00 Rb 52.50 70.90 61.50 33.60 95.60 37.40 81.40 9.20 87.80 1.80 31.30 6.30 11.20 Sr 430.00 326.00 494.00 635.00 821.00 970.00 580.00 515.00 914.00 461.00 508.00 941.00 411.00 Zr 132.00 91.60 148.00 95.30 192.00 167.00 106.00 116.00 122.00 14.70 12.50 132.00 29.80 Nb 2.75 1.58 5.90 4.44 9.28 12.30 3.45 8.90 5.95 1.20 1.23 8.44 3.17 Th 4.62 0.94 4.20 1.61 3.15 1.95 0.51 2.19 0.46 0.85 0.82 3.53 1.34 Ga 18.40 13.60 18.70 19.90 17.00 20.40 17.80 21.60 22.60 9.87 6.61 22.40 14.00 Ni 3.28 6.25 13.80 6.07 6.76 68.60 29.80 43.30 32.40 48.80 77.60 13.40 33.40 V 24.7 17.0 121.0 59.4 70.0 148.0 61.7 316.0 144.0 673.0 320.0 608.0 661.0 Cr 3.5 3.5 28.5 13.5 12.5 129.0 78.4 164.0 73.0 73.0 152.0 33.9 59.0 Hf 5.3 2.7 4.7 3.2 6.7 4.6 4.4 2.6 3.9 0.6 0.3 4.0 1.1 Cs 0.90 2.27 1.2 1.02 1.04 1.06 1.39 0.96 1.03 0.92 1.15 0.86 1.09 Sc 1.57 1.10 15.20 9.06 3.67 24.30 3.90 46.50 24.30 82.40 83.80 38.50 68.00 Ta 0.096 0.420 0.360 0.260 0.320 0.590 0.330 0.620 0.140 0.100 0.100 0.800 0.160 Co 2.72 2.16 17.70 6.71 11.00 30.50 8.85 44.60 20.20 83.30 51.00 46.90 60.10 Be 0.98 1.06 1.30 1.01 1.23 1.35 1.37 0.98 2.08 0.32 0.26 2.81 0.59 U 0.230 0.200 0.630 0.370 0.320 0.320 0.180 0.410 0.088 0.200 0.170 0.830 1.150 La 28.29 9.59 23.40 17.61 56.37 69.68 15.66 20.82 37.35 19.53 21.44 65.67 24.63 Ce 48.97 11.63 46.75 33.75 95.15 143.70 25.18 44.02 77.92 47.72 47.46 159.10 57.60 Pr 4.55 1.35 6.15 4.29 10.18 18.43 2.75 5.98 10.10 8.23 7.25 23.53 8.93 Nd 13.99 3.53 21.78 15.91 34.14 69.80 8.94 24.52 38.78 36.56 34.20 106.80 37.84 Sm 1.68 0.60 4.18 3.00 4.49 11.24 1.34 5.42 7.27 8.39 7.41 22.75 8.01 Eu 0.83 0.64 1.15 0.97 1.81 2.80 0.72 1.80 1.59 2.21 2.03 6.59 2.15 Gd 1.00 0.37 3.65 2.63 2.80 7.78 0.92 5.41 5.05 6.58 6.02 17.42 6.51 Tb 0.14 0.05 0.57 0.41 0.36 1.09 0.13 0.91 0.72 0.82 0.73 2.49 0.90 Dy 0.65 0.26 3.14 2.20 1.70 5.51 0.66 5.45 3.74 3.80 3.15 11.71 4.43 Ho 0.11 0.05 0.64 0.45 0.31 1.09 0.13 1.10 0.70 0.62 0.54 2.09 0.81 Er 0.25 0.14 1.71 1.20 0.69 2.61 0.29 3.09 1.72 1.20 1.10 4.66 1.83 Tm 0.04 0.02 0.27 0.19 0.09 0.38 0.04 0.47 0.25 0.14 0.14 0.59 0.24 Yb 0.20 0.15 1.71 1.14 0.56 2.17 0.24 2.92 1.43 0.72 0.70 3.19 1.31 Lu 0.04 0.03 0.26 0.19 0.09 0.30 0.04 0.45 0.21 0.10 0.09 0.47 0.19 Y 1.95 1.26 15.65 11.28 6.51 25.75 2.67 27.45 15.61 12.29 11.74 44.30 17.80 ∑REE 102.69 29.67 131.01 95.22 215.25 362.33 59.71 149.81 202.44 148.91 144.00 471.36 173.18 ∑Ce 98.31 27.34 103.41 75.53 202.14 315.65 54.59 102.56 173.01 122.64 119.79 384.44 139.16 ∑Y 4.38 2.33 27.60 19.69 13.11 46.68 5.12 47.25 29.43 26.27 24.21 86.92 34.02 ∑Ce/∑Y 22.45 11.73 3.75 3.84 15.42 6.76 10.66 2.17 5.88 4.67 4.95 4.42 4.09 (La/Yb)N 93.18 42.11 9.01 10.18 66.31 21.15 42.98 4.70 17.21 17.87 20.18 13.56 12.39 Sr/Y 220.510 258.730 31.565 56.294 126.110 37.670 217.230 18.761 58.552 37.510 43.271 21.242 23.090 Rb/Sr 0.12 0.22 0.12 0.05 0.12 0.04 0.14 0.02 0.10 0.00 0.06 0.01 0.03 δEu 1.81 3.87 0.88 1.03 1.46 0.87 1.88 1.01 0.76 0.88 0.90 0.97 0.88 注:样品测试由国土资源部武汉矿产资源监督检测中心分析. 表 2 固阳地区新太古代变质侵入岩锆石LA-ICP-MS同位素测年结果
Table 2. LA-ICP-MS U-Th-Pb analytical data of zircon from the Neoarchaean intrusive rocks in Guyang area
分析点 U238 Th232 Th/U 206Pb/238U 207Pb/235U pr 238U/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U (μg/g) 比值 1s 比值 1s 比值 1s 比值 1s 比值 1s 比值 1s PM704-01 325 201.0 0.62 9.885 22 0.087 79 0.448 64 0.002 84 0.90 1.62 0.02 2 451 7 2 424 8 2 389 13 PM704-02 637 341.0 0.53 10.844 20 0.081 12 0.471 96 0.002 99 0.90 1.87 0.02 2 521 6 2 510 7 2 492 13 PM704-03 115 94.1 0.82 10.870 12 0.144 78 0.474 06 0.004 60 0.90 1.23 0.01 2 524 11 2 512 12 2 501 20 PM704-04 459 381.0 0.83 11.352 42 0.091 18 0.496 40 0.003 16 0.90 1.21 0.01 2 515 6 2 553 7 2 598 14 PM704-05 602 467.0 0.78 10.980 09 0.079 95 0.478 50 0.002 91 0.90 1.29 0.01 2 521 6 2 521 7 2 521 13 PM704-06 404 406.0 1.01 9.655 20 0.079 83 0.421 11 0.002 57 0.90 0.99 0.01 2 518 7 2 402 8 2 266 12 PM704-07 299 205.0 0.69 10.938 32 0.095 74 0.477 88 0.003 02 0.90 1.46 0.01 2 514 7 2 518 8 2 518 13 PM704-08 311 200.0 0.64 10.202 07 0.092 27 0.441 60 0.002 83 0.90 1.55 0.02 2 529 7 2 453 8 2 358 13 PM704-09 315 162.0 0.52 10.854 60 0.096 50 0.469 00 0.003 22 0.90 1.94 0.02 2 533 7 2 511 8 2 479 14 PM704-10 118 75.1 0.63 10.230 95 0.115 80 0.460 55 0.003 55 0.90 1.57 0.02 2 464 10 2 456 10 2 442 16 PM704-11 302 176.0 0.58 10.681 51 0.099 31 0.468 81 0.003 08 0.90 1.72 0.02 2 504 8 2 496 9 2 478 14 PM704-12 1 613 209.0 0.13 9.576 43 0.073 73 0.423 60 0.002 96 0.90 7.72 0.08 2 490 6 2 395 7 2 277 13 PM704-13 305 126.0 0.41 10.170 94 0.098 30 0.442 93 0.003 48 0.90 2.42 0.02 2 517 7 2 450 9 2 364 16 PM704-14 570 434.0 0.76 10.784 66 0.075 50 0.474 07 0.002 86 0.90 1.31 0.01 2 501 5 2 505 7 2 501 13 PM704-15 2 067 595.0 0.29 10.880 39 0.123 66 0.475 02 0.005 38 0.90 3.48 0.03 2 513 9 2 513 11 2 506 23 PM704-16 2 179 608.0 0.28 10.103 19 0.115 94 0.449 00 0.004 01 0.91 3.59 0.04 2 489 25 2 444 11 2 391 18 PM704-17 334 186.0 0.56 10.163 77 0.113 56 0.459 33 0.002 94 0.90 1.80 0.02 2 456 11 2 450 10 2 437 13 PM704-18 313 200.0 0.64 10.169 59 0.149 37 0.444 06 0.003 20 0.90 1.56 0.02 2 514 15 2 450 14 2 369 14 PM704-19 479 293.0 0.61 10.942 03 0.184 44 0.473 76 0.003 04 0.90 1.63 0.02 2 530 20 2 518 16 2 500 13 PM704-20 456 192.0 0.42 9.888 82 0.203 43 0.429 28 0.003 52 0.90 2.37 0.02 2 528 23 2 424 19 2 302 16 PM311-01 397 347.0 0.87 10.765 41 0.238 36 0.472 80 0.003 40 0.90 1.14 0.01 2 504 27 2 503 21 2 496 15 PM311-02 399 562.0 1.41 10.277 59 0.197 03 0.455 97 0.003 17 0.90 0.71 0.01 2 486 23 2 460 18 2 422 14 PM311-03 607 705.0 1.16 11.031 67 0.171 90 0.491 11 0.003 12 0.90 0.86 0.01 2 481 18 2 526 15 2 575 13 PM311-04 366 302.0 0.82 10.860 13 0.159 56 0.490 81 0.003 78 0.90 1.21 0.01 2 458 15 2 511 14 2 574 16 PM311-05 547 239.0 0.44 11.495 95 0.134 42 0.491 43 0.003 74 0.90 2.29 0.02 2 550 10 2 564 11 2 577 16 PM311-06 448 827.0 1.84 11.388 67 0.170 79 0.490 56 0.005 83 0.90 0.54 0.01 2 541 12 2 555 14 2 573 25 PM311-07 538 370.0 0.69 8.525 99 0.114 01 0.397 91 0.002 98 0.90 1.45 0.01 2 406 27 2 289 12 2 159 14 PM311-08 360 307.0 0.85 10.596 79 0.106 16 0.475 26 0.003 33 0.90 1.17 0.01 2 471 8 2 488 9 2 507 15 PM311-09 407 278.0 0.68 10.093 25 0.120 32 0.455 98 0.005 47 0.90 1.46 0.01 2 460 9 2 443 11 2 422 24 PM311-10 588 316.0 0.54 9.296 99 0.114 30 0.445 80 0.003 95 0.90 1.86 0.02 2 356 10 2 368 11 2 377 18 PM311-11 180 169.0 0.94 10.665 30 0.141 45 0.474 15 0.003 71 0.90 1.06 0.01 2 484 12 2 494 12 2 502 16 PM311-12 218 184.0 0.84 10.770 43 0.128 15 0.475 74 0.004 19 0.90 1.18 0.01 2 497 10 2 504 11 2 509 18 PM311-13 677 942.0 1.39 11.782 85 0.148 38 0.490 46 0.004 24 0.90 0.72 0.01 2 592 10 2 587 12 2 573 18 PM311-14 449 325.0 0.72 11.353 13 0.103 56 0.490 81 0.004 01 0.90 1.38 0.01 2 533 7 2 553 9 2 574 17 PM311-15 1 282 342.0 0.27 10.494 86 0.101 67 0.464 39 0.002 83 0.85 3.74 0.04 2 496 20 2 479 9 2 459 12 PM311-16 411 291.0 0.71 9.559 09 0.261 69 0.422 80 0.004 78 0.89 1.41 0.01 2 497 51 2 393 25 2 273 22 PM311-17 588 235.0 0.40 10.666 22 0.105 60 0.460 67 0.003 18 0.89 2.51 0.03 2 537 21 2 494 9 2 443 14 PM311-18 609 278.0 0.46 9.953 40 0.104 88 0.439 86 0.003 28 0.89 2.19 0.02 2 499 22 2 430 10 2 350 15 PM311-19 529 242.0 0.46 9.521 61 0.133 41 0.418 76 0.003 61 0.90 2.19 0.02 2 507 28 2 390 13 2 255 16 PM311-20 271 264.0 0.98 10.653 06 0.117 40 0.455 18 0.003 59 0.90 1.02 0.01 2 547 9 2 493 10 2 418 16 PM311-21 311 266.0 0.86 11.109 76 0.116 93 0.475 07 0.003 53 0.90 1.17 0.01 2 543 9 2 532 10 2 506 15 PM204-1 367 231.0 0.63 11.573 99 0.100 89 0.500 69 0.003 93 0.90 1.59 0.02 2 521 7 2 571 8 2 617 17 PM204-2 400 247.0 0.62 10.919 37 0.096 72 0.486 12 0.003 26 0.90 1.62 0.02 2 473 7 2 516 8 2 554 14 PM204-3 420 343.0 0.82 10.443 39 0.104 31 0.462 63 0.004 57 0.90 1.22 0.01 2 487 8 2 475 9 2 451 20 PM204-4 1 689 1 438.0 0.85 12.623 01 0.087 10 0.526 85 0.003 23 0.90 1.18 0.01 2 582 5 2 652 6 2 728 14 PM204-5 192 420.0 2.18 9.800 47 0.331 45 0.438 14 0.006 44 0.95 0.46 0.01 2 479 64 2 416 31 2 342 29 PM204-6 2 025 2 172.0 1.07 7.355 68 0.163 64 0.323 36 0.006 51 0.90 0.93 0.01 2 494 17 2 156 20 1 806 32 PM204-7 3 003 173.0 0.06 10.989 70 0.070 58 0.501 15 0.003 04 0.90 17.35 0.17 2 437 5 2 522 6 2 619 13 PM204-8 1 189 361.0 0.30 10.630 89 0.087 43 0.462 24 0.002 92 0.90 3.29 0.03 2 526 18 2 491 8 2 449 13 PM204-9 693 358.0 0.52 11.135 07 0.115 31 0.480 80 0.004 58 0.90 1.93 0.02 2 533 8 2 534 10 2 531 20 PM204-10 551 534.0 0.97 9.550 39 0.105 52 0.424 72 0.003 84 0.90 1.03 0.01 2 486 8 2 392 10 2 282 17 PM204-11 2465 1 124.0 0.46 6.979 45 0.054 74 0.323 98 0.002 27 0.90 2.19 0.02 2 411 6 2 109 7 1809 11 PM204-12 899 156.0 0.17 9.961 12 0.089 19 0.440 85 0.003 78 0.90 5.76 0.06 2 492 7 2 431 8 2 354 17 PM204-13 182 379.0 2.09 10.766 34 1.066 06 0.422 41 0.012 81 0.94 0.48 0.01 2 697 177 2 503 92 2 271 58 PM204-14 2 852 171.0 0.06 9.903 23 0.171 89 0.445 29 0.007 17 0.9 16.65 0.17 2 463 13 2 426 16 2 374 32 PM204-15 2 597 567.0 0.22 10.642 16 0.115 77 0.460 69 0.004 76 0.9 4.58 0.05 2 529 8 2 492 10 2 443 21 PM204-16 578 248.0 0.43 13.314 90 0.151 76 0.560 86 0.005 58 0.9 2.33 0.02 2 575 9 2 702 11 2 870 23 PM204-17 133 405.0 3.04 10.255 24 0.587 58 0.435 89 0.009 08 0.95 0.33 0.01 2 564 105 2 458 53 2 332 41 PM204-18 229 322.0 1.41 9.412 29 0.435 52 0.411 69 0.005 11 0.92 0.71 0.01 2 516 83 2 379 42 2 223 23 PM204-19 844 637.0 0.75 10.069 90 0.225 27 0.442 03 0.004 50 0.91 1.33 0.01 2 510 42 2 441 21 2 360 20 PM204-20 197 316.0 1.60 9.963 15 0.203 50 0.449 56 0.003 57 0.90 0.62 0.01 2 457 24 2 431 19 2 393 16 PM204-21 372 152.0 0.41 10.173 18 0.248 11 0.462 81 0.003 50 0.90 2.46 0.02 2 442 31 2 451 23 2 452 15 注:测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室,2008年. -
[1] Ballard, J.R., Palin, J.M., Williams, I.S., et al., 2001. Two Ages of Porphyry Intrusion Resolved for the Super-Giant Chuquicamata Copper Deposit of Northern Chile by ELA-ICP-MS and SHRIMP. Geology, 29(5): 383-386. doi: 10.1130/0091-7613(2001)029<0383:TAOPIR>2.0.CO;2 [2] Condie, K.C., 1989. Plate Tectonics and Crustal Evolution. Pergamon, Oxford. [3] Dai, F.H., 2009. Geochemistry Characteristics and Geochronology of Neoarchean Metamorphic Intrusives in Guyang Region, Inner Mongolia (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [4] Didier, J., Duthou, J.L., Lameyre, J., 1982. Mantle and Crustal Granites: Genetic Classification of Orogenic Granites and the Nature of Their Enclaves. Journal of Volcanology and Geothermal Research, 14(1-2): 125-132. doi: 10.1016/0377-0273(82)90045-2 [5] He, Y.K., Wu, T.R., Luo, H.L., et al., 2010. Late Archean Continent-Continent Collision Event of Middle Segment of North Margin of North China Plate: Evidence from S-Type Granite of Hejiao Area. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 571-580 (in Chinese with English abstract). http://www.researchgate.net/publication/285768996_Late_archean_continent-continent_collision_event_of_middle_segment_of_north_margin_of_North_China_plate_Evidence_from_S-type_granite_of_Hejiao_Area [6] Horn, I., Rudnick, R.L., McDonough, W.F., 2000. Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS: Application to U-Pb Geochronology. Chemical Geology, 164(3-4): 281-301. doi: 10.1016/S0009-2541(99)00168-0 [7] Jian, P., Zhang, Q., Liu, D.Y., et al., 2005. SHRIMP Dating and Geological Significance of Late Achaean High-Mg Diorite (Sanukite) and Hornblende-Granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151-157 (in Chinese with English abstract). http://www.researchgate.net/publication/279605221_SHRIMP_dating_and_geological_significance_of_Late_Achaean_high-Mg_diorite_sanukite_and_hornblende-granite_at_Guyang_of_Inner_Mongolia [8] Li, J.C., Zhao, A.L., Wang, L., et al., 2003. U-Pb Isotope Zircon Age of Baiyanhua Plagiogranite in Seerteng Area, Inner Mongolia. Acta Petrologica et Mineralogica, 22(3): 225-228 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200303003.htm [9] Li, J.C., Zhao, A.L., Wang, L., et al., 2004. Disintegration of Seertengshan Group and Characteristics of the Protolith. Northwestern Geology, 37(1): 74-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200401013.htm [10] Ludwig, K.R., 1991. ISOPLOT: a Plotting and Regression Program for Radiogenic-Isotope Data. US Geological Survey Open-File Report, 39: 91-445. http://ci.nii.ac.jp/naid/10008802019 [11] Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048 [12] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [13] Tao, J.X., 2003. Characteristics of Neoarchean Metamorphic Intrusives and the Relationship with the Mineralization of Gold in Guyang Region, Inner Mongolia. Geological Survey and Research, 26(1): 21-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200301004.htm [14] Wang, R.M., Li, M.J., Cheng, S.H., 2012. Gelingyao High-Cr Granite (Closepet-Like) in Shangyi: New Evidence of Late-Archean Suture Zone. Acta Petrologica Sinica, 28(4): 1037-1043 (in Chinese with English abstract). http://www.oalib.com/paper/1475176 [15] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircons and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1605 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [16] Xu, W.C., Zhang, H.F., Liu, X.M., 2007. U-Pb Dating and Geological Significance of Metamorphic Rock Series in Qilian Mountain. Chinese Science Bulletin, 52(10): 1174-1181 (in Chinese). doi: 10.1360/csb2007-52-10-1174 [17] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Geostan. Geoanal. Res., 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [18] Zhai, M.G., 2006. Geological Significance of the Neoarchean Global Cratonization Event and the Boundary between Archean and Proterozoic. Geotectonica et Metallogenia, 30(4): 419-421 (in Chinese). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200604001&dbcode=CJFD&year=2006&dflag=pdfdown [19] Zhang, W.J., Li, L., Geng, M.S., 2000. Petrology and Dating of Neo-Archaean Intrusive Rocks from Guyang Area, Inner Mongolia. Earth Science—Journal of China University of Geosciences, 25(3): 221-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200003000.htm [20] 代芳华, 2009. 内蒙固阳地区变质侵入岩地球化学特征及年代学研究. 武汉: 中国地质大学. [21] 贺元凯, 吴泰然, 罗红玲, 等, 2010. 华北板块北缘中段新太古代的陆-陆碰撞事件: 来自合教S型花岗岩的证据. 北京大学学报(自然科学版), 46(4): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201004012.htm [22] 简平, 张旗, 刘敦一, 等, 2005. 内蒙古固阳晚太古代赞岐岩(Sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501016.htm [23] 李景春, 赵爱林, 王力, 等, 2003. 内蒙古色尔腾地区白彦花斜长花岗岩锆石U-Pb年龄. 岩石矿物学杂志, 22(3): 225-228. doi: 10.3969/j.issn.1000-6524.2003.03.003 [24] 李景春, 赵爱林, 王力, 等, 2004. "色尔腾山群"的解体及其原岩特征. 西北地质, 37(1): 74-80. doi: 10.3969/j.issn.1009-6248.2004.01.013 [25] 陶继雄, 2003. 内蒙固阳地区新太古代变质侵入岩特征及与成矿关系. 地质调查与研究, 26(1): 21-26. doi: 10.3969/j.issn.1672-4135.2003.01.005 [26] 王仁民, 李孟江, 程素华, 2012. 尚义葛令夭高铬花岗岩(Closepet-Like)-新太古代古缝合带的新证据. 岩石学报, 28(4): 1037-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204003.htm [27] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1605. doi: 10.3321/j.issn:0023-074X.2004.16.002 [28] 徐旺春, 张宏飞, 柳小明, 2007. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义. 科学通报, 52(10): 1174-1181. doi: 10.3321/j.issn:0023-074X.2007.10.014 [29] 翟明国, 2006. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义. 大地构造与成矿学, 30(4): 419-421. doi: 10.3969/j.issn.1001-1552.2006.04.002 [30] 张维杰, 李龙, 耿明山, 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学——中国地质大学学报, 25(3): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200003000.htm