Re-Os Isotopic Ages of Two Types of Molybdenite from Zhangdongkeng Tungsten Deposit in Southern Jiangxi Province and Their Geologic Implications
-
摘要: 赣南樟东坑钨矿具有典型的"上脉(黑钨矿石英脉)下体(蚀变细粒花岗岩)"和"上钨下钼"矿化模式, 为了弄清黑钨矿石英脉与蚀变细粒岩体型矿化之间在成矿时间上的关系, 对产于该矿细粒花岗岩中的辉钼矿和石英脉中的辉钼矿分别进行了Re-Os同位素定年. 测试结果为: 细粒花岗岩中的3件辉钼矿样品Re-Os等时线年龄为155.4±2.1 Ma(MSWD=1.12), 模式年龄154.9±2.6 Ma~156.5 ± 2.6 Ma, 加权平均年龄155.5±1.4 Ma(MSWD=0.44);而石英脉中5件辉钼矿样品的Re-Os等时线年龄为154.6±1.7 Ma(MSWD=0.030), 模式年龄变化范围为154.2±2.3 Ma~154.7±2.7 Ma, 加权平均年龄为154.29±0.98 Ma(MSWD=0.045). 上述结果表明, 花岗岩体型矿化与石英脉型矿化的年龄在误差范围内高度一致, 从而证明了岩体中的钼钨矿化与石英脉中的钨钼矿化为同一次岩浆热液矿化事件的产物.Abstract: Zhangdongkeng tungsten deposit has a special mineralization model, which is a quartz vein type mineralization in the upper portion while an altered granite type mineralization in the lower part. It also shows that tungsten was enriched in the upper part while molybdenum enriched in the lower. Molybdenites in fine-grained granite and quartz vein were separately used for Re-Os dating to test the temporal relation of the two types of mineralization. The isochron age of three molybdenite samples in fine-grained granite is 155.4±2.1 Ma (MSWD=1.12), with model ages of them between 154.9±2.6 Ma and 156.5±2.6 Ma, and the weighted average age 155.5±1.4 Ma (MSWD=0.44). Five molybdenite samples in quartz vein yield a Re-Os isochron age of 154.6±1.7 Ma (MSWD=0.030), with model ages 154.2±2.3 Ma to 154.7±2.7 Ma, and the weighted mean age is 154.29±0.98 Ma (MSWD=0.045). The results show that the ages of altered granite type mineralization and quartz vein type mineralization are basically almost same, which well indicates that molybdenites in both mineralization types are products of the same magmatic-hydrothermal event.
-
赣南是我国钨业的发祥地(吴永乐等,1987),钨矿山的数量和规模(图 1)在全球范围内都占有重要的地位. 然而,经过数十年的开采,很多主力老矿山钨的保有储量几近枯竭(如西华山、荡萍、岿美山和画眉坳等),寻找新的接替资源、延长老矿山的寿命已经成为当务之急(谭运金,2000;韦星林,2001). 在危机矿山的深边部找寻新的矿种和新的矿化类型,无疑是让老矿山重新焕发生机的有效途径.
樟东坑钨矿位于赣南著名的“崇-余-犹”钨矿集区,隶属荡坪钨业有限公司,是一典型的黑钨矿石英脉型矿床. 随着采矿和探矿工程的不断掘进,该矿的工作面早已触及下伏的花岗岩体,而作为外带型钨矿,该矿大多数石英脉在到达花岗岩之前一段距离就已经尖灭或趋于尖灭. 前人工作发现,仍有少量石英脉在进入花岗岩之后继续发育,但是钨的品位有所下降,而钼的品位则有所上升,这一特征被称为“上钨下钼”,幸世军等(2010)总结了樟东坑钨矿“上钨下钼”的矿化分带特征,对深部细粒花岗岩型的钼矿化进行了总结. 近年来工作又发现,包括樟东坑在内的许多赣南石英脉型钨矿的深部,都出现了蚀变花岗岩型钨钼矿化,这类矿化多产在云英岩化的细粒花岗岩中.他们被一些研究者称为“地下室”矿化,以对应于典型的“五层楼”脉型钨矿化(古菊云,1981);韦星林则把二者的组合称之为“上脉下体”(韦星林,2012).细粒花岗岩型钨钼矿的发现与重视对于延长樟东坑等钨矿的服务年限无疑具有重大意义,因此受到了广泛关注.本文利用辉钼矿Re-Os同位素对产于樟东坑钨矿石英脉和细粒花岗岩中的辉钼矿分别进行了年代学研究,以探讨这两类矿化的时间关系.
1. 地质背景
樟东坑钨矿大地构造上位于南岭近东西向构造带东段,作为典型的外带型黑钨矿石英脉型矿床,该钨矿的石英脉矿体基本上都发育于寒武系高滩群浅变质岩之中(图 2),矿脉走向以北西向为主.对该矿的基本地质特征,陈广文和李基(1992)以及贺礼泰(2003)等有过介绍.矿区内未见花岗岩出露,工程揭露的隐伏花岗岩体顶面位于标高100~230 m之间,黄小娥等(2012)对隐伏花岗岩有过较为全面的研究.此外,区域上有九龙脑花岗岩基在该矿区北侧1.5 km附近发育.在垂直方向上,石英脉矿体的下部钼品位有增高的趋势.在花岗岩体与寒武系围岩的接触带附近,细粒的花岗岩脉特别发育,他们在岩体中呈“火焰状”向上贯入到围岩之中.而这种火焰状的细粒花岗岩脉本身就往往是钼矿化体;花岗岩体边缘相的部分细粒花岗岩中钼的含量同样达到了工业品位.如图 3所示,1号脉组自上而下大致可以分为:钨矿化带、钨钼矿化带和钼钨矿化带(幸世军等,2010).对应的矿石按照产状可以划分为石英脉型矿石和蚀变细粒花岗岩(细晶岩)型矿石(图 4),它们的矿石矿物主要为黑钨矿、辉钼矿、辉铋矿、自然铋和白钨矿,但脉石矿物则有所不同,石英脉型矿石主要为石英、云母、萤石等,蚀变花岗岩型矿石的脉石矿物则主要为花岗岩的造岩矿物.黑钨矿与辉钼矿多为半自形结构,矿石构造则主要有脉状构造、块状构造以及浸染状构造.围岩蚀变主要为接触带附近的角岩化、岩体中的云英岩化以及石英脉侧边的云英岩化等.
图 3 樟东坑矿区I组钼矿化垂向分带示意(据幸世军等,2010)1.地形线;2.钨矿化带下界;3.钨钼矿化带下界;4.钼钨矿化带下界;5.蚀变花岗岩型钼钨矿体;6.细粒花岗岩Fig. 3. Vertical zoning Schematic diagram of molybdenum mineralization in Zhangdongkeng veins of group I2. 样品及测试方法
用于Re-Os法年龄测试的含辉钼矿样品共计8件,均采自樟东坑钨矿开采矿井中的石英脉型矿体和岩体型矿体,其中3件为蚀变细粒花岗岩型的钼钨矿石,5件为石英脉型的钼钨矿石.
Os对于辉钼矿的晶格而言是高度不相容的,当放射性成因Os产生后,容易逃离辉钼矿的晶格,从中心向边缘运移,乃至向周围的他种硫化物运移,所以对于同一片辉钼矿而言,测试出来的结果通常边缘的年龄较老,中心的年龄较年轻;如果与他种硫化物接触,则该硫化物的测试年龄偏老(Selby and Creaser, 2004;李超等,2009).为了尽量降低同位素失耦带来的影响,应尽量选取完整的颗粒样品,多取样并尽量细碎(杜安道等,2007).本文测试所用的样品,颗粒较为粗大,但是基本无伴生的硫化物,测试之前,挑选纯度98%以上的完整样品,置玛瑙钵中长时间碾磨,使实际粒度远小于200目,从而使失耦现象的影响得到了最大程度的控制.样品的测试工作在国家地质实验测试中心完成,测试仪器为美国TJA公司生产的电感耦合等离子体质谱仪TJA X-series ICP-MS,化学处理过程及质谱测试过程详见相关文献(Shirey and Walker, 1995;杜安道等, 2001;Stein et al., 2001;屈文俊和杜安道,2003;Du et al., 2004).
3. 测试结果
樟东坑钨矿辉钼矿样品的测试结果如表 1所示,取187Re衰变常数1.666×10-11 a-1(Smoliar et al., 1996),采用Ludwig(2001) ISOPLOT软件计算加权平均年龄和构筑等时线.
表 1 樟东坑钨矿两种不同产状辉钼矿Re-Os同位素测试结果Table Supplementary Table Data of Re-Os isotope analysis of two type molybdenites from Zhangdongkeng deposit原样名 样重(g) Re (μg·g-1) 普Os(ng·g-1) 187Re (μg·g-1) 187Os (ng·g-1) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZYN-6 0.405 11 0.578 0 0.005 9 0.000 2 0.001 0 0.363 3 0.003 7 0.948 5 0.009 5 156.5 2.6 ZYW-5 0.4005 3 0.307 0 0.002 8 0.000 2 0.000 2 0.192 9 0.001 7 0.499 6 0.005 4 155.2 2.5 ZYN-13 0.403 88 5.805 0 0.064 0 0.000 2 0.006 8 3.649 0 0.040 0 9.428 0 0.089 0 154.9 2.6 Zmn-2 0.400 46 0.212 2 0.001 7 0.043 4 0.000 9 0.133 4 0.001 1 0.343 1 0.003 3 154.2 2.3 Zmn-1 0.400 96 0.077 9 0.000 6 0.000 2 0.000 5 0.049 0 0.000 4 0.126 0 0.001 3 154.2 2.3 Zmn-3 0.400 78 0.098 1 0.000 8 0.000 2 0.000 2 0.061 7 0.000 5 0.158 6 0.001 3 154.2 2.2 Zmn-4 0.400 50 0.137 3 0.001 1 0.002 9 0.000 5 0.086 3 0.000 7 0.221 9 0.002 2 154.2 2.3 Zmn-5 0.401 10 0.526 6 0.004 1 0.001 7 0.000 7 0.331 0 0.002 6 0.854 1 0.006 7 154.7 2.1 细粒花岗岩中的3件辉钼矿样品Re-Os等时线年龄为155.4±2.1 Ma,MSWD值为1.12,等时线在y轴的截距为0.001±0.010,误差范围内与零值一致;模式年龄为154.9±2.6 Ma~156.5±2.6 Ma,加权平均年龄155.5±1.4 Ma,MSWD值为0.44.
石英脉中5件辉钼矿样品的Re-Os等时线年龄为154.6±1.7 Ma,MSWD值为0.030,等时线在y轴的截距为-0.000 5±0.002 2,模式年龄变化范围为154.2±2.3 Ma~154.7±2.7 Ma,加权平均年龄为154.29±0.98 Ma,MSWD值为0.045(图 5).
上述测试结果显示,等时线年龄与模式年龄在误差范围内高度一致,且两条等时线与y轴的截距都在零值附近,说明辉钼矿中基本不存在普通锇,187Os基本上都是187Re的衰变产物,这符合计算模式年龄的条件,从而说明所获得的模式年龄是有效的.但从测试结果(表 1)来看Zmn-2的普通锇含量为0.043 4±0.000 9,相对较高,其原因尚待查证,其计算出的模式年龄理论上应该偏老,但是模式年龄的计算结果却与正常样品较为一致,说明可能初始Os中187Os含量极低,基本上不影响模式年龄的计算.另外该矿伴生辉钼矿中Re的含量也比较稳定,除了ZYN-13(5 805×10-9)稍显异常外,其余样品变化于77.9×10-9~578.0×10-9之间.
4. 讨论
石英脉型钨矿中伴生钼的情况相当普遍(华仁民等,2008),典型实例有赣南的茅坪、铁山垅、盘古山、大吉山、木梓园、西华山、庵前滩、樟东坑以及赣中的浒坑和下桐岭以及内蒙的乌日尼图等矿床(刘珺等,2008;曾载淋等,2009;王登红等,2010;李光来,2011a;杨增海等,2012)都存在或多或少的伴生钼.而具有“上脉下体”或“五层楼+地下室”矿化模式的钨矿也比较多,如赣中的徐山、赣南的大吉山、茅坪、黄沙等钨矿床(胡东泉等,2011;Li et al., 2011;李光来等,2011b).然而像樟东坑这样同时具备这两种情况,并在岩体中的矿化以钼为主的矿床并不多见.樟东坑深部岩体型钼钨矿体的发现为石英脉型钨矿深部花岗岩中寻找钼钨矿化体提供了很好的实例.
传统认为,黑钨矿在较高温度下形成,辉钼矿一般在较低温度下形成,“上钨下钼”似乎使得黑钨矿成为了远温矿物,有些学者称这种分带为逆向分带(夏宏远和梁书艺,1986).
从元素的地球化学性质来看,钼与钨之间的关系非常密切.在周期表上,钼与钨都属于第六副族,为同族元素;二者不仅(正6价)离子半径相等,而且(WO4)2-和(MoO4)2-络阴离子半径也相近.因此,钼是最容易与钨发生类质同象置换的元素.一些钨矿物中的钼含量可以相当高,例如白钨矿、钨钼铅矿等.白钨矿可以含高达3%的MoO3,而钼白钨矿(seyrigite Ca[(W, Mo)O4])所含的MoO3可达24%(刘英俊和马东升,1987).
因此,钼与钨共生的情况是相当普遍的,但是钼与钨之间在元素地球化学性质上仍有较大的差异.钼在第五周期而钨在第六周期,电子构型的差异、得失电子的难易程度不同,是造成自然界中钼亲硫而钨亲氧的重要因素(刘英俊和马东升,1987;马东升,2009).通常钼主要以硫化物-辉钼矿的形式存在,只有在较高的氧化条件下,钼才可以形成钼酸钙(钼钙矿CaMoO4)或钼钨酸钙(钼钨钙矿Ca2MoWO4).因此,与钨矿共生的钼,往往与硫化物共生,形成于相对还原的条件.一般认为,越接近地表(浅部),还原硫越不易存在,这也许可以作为“上钨下钼”形成机理的一种解释.
本次实验获得细粒花岗岩型矿化中的辉钼矿年龄为155.4±2.1 Ma,石英脉中的辉钼矿年龄为154.6±1.7 Ma,所有细粒花岗岩中的辉钼矿年龄都略微大于石英脉中的年龄,前者加权平均年龄为155.5±1.4 Ma,后者则为154.29±0.98 Ma,似乎反映了石英脉型钼矿化稍显滞后,但是实际上,二者在误差范围内是近乎一致的,都为华南中生代第二次大规模成矿作用的结果(华仁民等,2005),因此,这一结果显示樟东坑钨矿岩体型矿化与石英脉型矿化可能源自同一次热液事件,但可能是不同阶段的矿化结果.
类似地,曾载淋等(2009)对茅坪钨矿“地下室”的研究结果也证实了其中的岩体型矿化早于石英脉型矿化.
因此可以设想,在岩浆作用晚期大量携带成矿物质的气液挥发分汇聚于岩体顶部,并形成较早期的浸染状钼(钨)矿化体,而之后不久的张性裂隙发育使得更多的气液向上贯入,并在这些既是导矿构造又是储矿构造的裂隙中形成了第二阶段的石英脉型矿化.
按照Mao et al.(1999)的观点,金属矿床物质来源不同,伴生的辉钼矿中Re的含量也有所不同,深源物质贡献的越多,辉钼矿中的Re含量越高,从幔源、壳幔混源到壳源,辉钼矿的Re含量通常以数量级递减(Mao et al., 1999).樟东坑钨矿岩体中辉钼矿的Re含量为0.12×10-6~5.81×10-6,石英脉中辉钼矿的Re含量0.08×10-6~0.53×10-6,与Mao et al.(1999)研究的小柳沟钨矿(辉钼矿中Re含量为0.8×10-6~8.7×10-6)以及南岭地区若干石英脉型钨矿中辉钼矿的平均Re含量0.009×10-6~7.15×10-6相当(陈郑辉等,2006;丰成友等, 2007a, 2007b;付建明等,2008;张家菁等,2008;曾载淋等,2009;张文兰等,2009;王小飞等,2010;陈润生等,2013),而明显低于斑岩型铜矿中伴生的辉钼矿的Re含量,指示樟东坑钨矿的成矿物质主要为壳源.
5. 结论
通过对樟东坑钨矿两种不同产状辉钼矿的年代学研究,得出结论如下:(1)樟东坑细粒花岗岩型矿化的时间为155.4±2.1 Ma,石英脉型矿化时间为154.6±1.7 Ma,二者在误差范围内几乎一致,反映了细粒花岗岩型矿化与石英脉型矿化都是赣南钨矿成矿高峰期的同一次岩浆热液事件产物.(2)樟东坑钨矿的辉钼矿具有较低的Re含量,可能指示成矿物质为壳源.
致谢: 江西荡萍钨矿的领导和同行在野外考察过程中提供了有力的帮助,江西有色地质勘查局的王定生高工、胡志国高工、张绍聪硕士在本文写作过程中给予了悉心的指导,本文还参考了荡萍钨矿危机矿山项目的有关资料.谨向以上单位和个人致以诚挚的谢意. -
图 3 樟东坑矿区I组钼矿化垂向分带示意(据幸世军等,2010)
1.地形线;2.钨矿化带下界;3.钨钼矿化带下界;4.钼钨矿化带下界;5.蚀变花岗岩型钼钨矿体;6.细粒花岗岩
Fig. 3. Vertical zoning Schematic diagram of molybdenum mineralization in Zhangdongkeng veins of group I
表 1 樟东坑钨矿两种不同产状辉钼矿Re-Os同位素测试结果
Table 1. Data of Re-Os isotope analysis of two type molybdenites from Zhangdongkeng deposit
原样名 样重(g) Re (μg·g-1) 普Os(ng·g-1) 187Re (μg·g-1) 187Os (ng·g-1) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 ZYN-6 0.405 11 0.578 0 0.005 9 0.000 2 0.001 0 0.363 3 0.003 7 0.948 5 0.009 5 156.5 2.6 ZYW-5 0.4005 3 0.307 0 0.002 8 0.000 2 0.000 2 0.192 9 0.001 7 0.499 6 0.005 4 155.2 2.5 ZYN-13 0.403 88 5.805 0 0.064 0 0.000 2 0.006 8 3.649 0 0.040 0 9.428 0 0.089 0 154.9 2.6 Zmn-2 0.400 46 0.212 2 0.001 7 0.043 4 0.000 9 0.133 4 0.001 1 0.343 1 0.003 3 154.2 2.3 Zmn-1 0.400 96 0.077 9 0.000 6 0.000 2 0.000 5 0.049 0 0.000 4 0.126 0 0.001 3 154.2 2.3 Zmn-3 0.400 78 0.098 1 0.000 8 0.000 2 0.000 2 0.061 7 0.000 5 0.158 6 0.001 3 154.2 2.2 Zmn-4 0.400 50 0.137 3 0.001 1 0.002 9 0.000 5 0.086 3 0.000 7 0.221 9 0.002 2 154.2 2.3 Zmn-5 0.401 10 0.526 6 0.004 1 0.001 7 0.000 7 0.331 0 0.002 6 0.854 1 0.006 7 154.7 2.1 -
[1] Chen, G.W., Li, J., 1992. Characteristics of Deposit Occurrence and Statistical Analysis of Mining Losses in Zhangdongkeng Mine. Journal of Southern Institute of Metallurgy, 13(4): 271-278(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NFYX199204000.htm [2] Chen, R.S., Li, J.W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in the Northern Fujian Province: Implications for Regional Mineralization. Earth Science—Journal of China University of Geosciences, 38(2): 289-304 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.029 [3] Chen, Z.H., Wang, D.H., Qu, W.J., et al., 2006. Geological Characteristics and Mineralization Age of the Taoxikeng Tungsten Deposit in Chongyi County, Southern Jiangxi Province, China. Geological Bulletin of China, 25(4): 496-501 (in Chinese with English abstract). http://www.researchgate.net/publication/280015317_Geological_characteristics_and_mineralization_age_of_the_Taoxikeng_tungsten_deposit_in_Chongyi_County_southern_Jiangxi_Province_China [4] Du, A.D., Qu, W.J., Wang, D.H., et al., 2007. Subgrain-Size Decoupling of Re and 187Os within Molybdenite. Mineral Deposits, 26(5): 572-580 (in Chinese with English abstract). http://www.researchgate.net/publication/284889953_Subgrain-size_decoupling_of_Re_and_187Os_within_molybdenite [5] Du, A.D., Wu, S.Q., Sun, D.Z., et al., 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x [6] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001. Precise Re-Os Dating for Molybdenite by IDNTIMS with Carius Tube Sample Preparation. Rock and Mineral Analysis, 20(4): 247-252(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200104001.htm [7] Feng, C.Y., Feng, Y.D., Xu, J.X., et al., 2007a. Isotope Chronological Evidence for Upper Jurassic Petrogenesis and Mineralization of Altered Granite-Type Tungsten Deposits in the Zhangtiantang Area, Southern Jiangxi. Geology in China, 34(4): 642-650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200704014.htm [8] Feng, C.Y., Xu, J.X., Zeng, Z.L., et al., 2007b. Zircon SHRIMP U-Pb and Molybdenite Re-Os Dating in Tianmenshan-Hongtaoling Tungsten-Tin Orefield, Southern Jiangxi Province, China, and Its Geological Implication. Acta Geologica Sinica, 81(7): 952-963 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200707010.htm [9] Fu, J.M., Li, H.Q., Qu, W.J., et al., 2008. Determination of Mineralization Epoch of Quartz-Vein Type Tungsten Deposits in Shixing Region, Northern Guangdong and Its Geological Significance. Geotectonica et Metallogenia, 32(1): 57-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801009.htm [10] Gu, J.Y., 1981. Morphological Zoning of the Vein-Type Tungsten Deposits in South China. In: Yu, H.Z., ed., Proceeding of Symposium on Tungsten Geology. Geological Publishing House, Beijing, 35-45(in Chinese). [11] He, L.T., 2003. Discussion on the Changing Rules of Mineral Veins and Inspecting Methods. China Tungsten Industry, 18(4): 15-19 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZGWU200304005.htm [12] Hu, D.Q., Hua, R.M., Li, G.L., et al., 2011. Study on the Fluid Inclusions of Maoping Tungsten Deposit, Southern Jiangxi Province. Geological Journal of China Universities, 17(2): 327-336(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565586.html [13] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005. Three Major Metallogenic Events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107(in Chinese with English abstract). http://www.researchgate.net/publication/284690423_Three_major_metallogenic_events_in_Mesozoic_in_South_China [14] Hua, R.M., Zhang, W.L., Li, G.L., et al., 2008. A Preliminary Study on the Features and Geologic Implication of the Accompanying Metals in Tungsten Deposits in the Nanling Region. Geological Journal of China Universities, 14(4): 527-538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804008.htm [15] Huang, X.E., Li, G.L., Guo, J.S., et al., 2012. Characteristics of Ore-Forming Granite and Its Mineralization in the Zhangdongkeng Tungsten Deposit of Southern Jiangxi Province. Geology and Exploration, 48(4): 685-692 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201204004.htm [16] Li, B., 2011. Synchronization Theory and Tungsten-Polymetallic Mineralization Distribution in the Qianlishan-Qitianling Area, Southern Hunan. Journal of China University of Geosciences, 22(6): 726-736. doi: 10.1007/s12583-011-0223-4 [17] Li, C., Qu, W.J., Du, A.D., 2009. Decoupling of Re and Os and Migration Model of 187Os in Coarse-Grained Molybdenite. Mineral Deposits, 28(5): 707-712(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/kcdz200905016 [18] Li, G.L., Hua, R.M., Huang, X. E, et. al., 2011a. Re-Os Isotopic Age of Molybdenite from the Xiatongling Tungsten Deposit, Central Jiangxi Province, and Its Geological Implications. Mineral Deposits, 30(6): 1075-1084(in Chinese with English abstract). [19] Li, G.L., Hua, R.M., Wei, X. L, et al., 2011b. Rb-Sr Isochron Age of Single-Grain Muscovite in the Xushan W-Cu Deposit, Central Jiangxi, and Its Geological Significance. Earth Science—Journal of China University of Geosciences, 36(2): 282-288 (in Chinese with English abstract). [20] Li, G.L., Hua, R.M., Zhang, W. L, 2011. He-Ar Isotope Composition of Pyrite and Wolframite in the Tieshanlong Tungsten Deposit, Jiangxi, China: Implications for Fluid Evolution. Resource Geology, 61(4): 356-366. doi: 10.1111/j.1751-3928.2011.00172.x [21] Liu, J., Ye, H.S., Xie, G.Q., et al., 2008. Re-Os Dating of Molybdenite from the Hukeng Tungsten Deposit in the Wugongshan Area, Jiangxi Province, and Its Geological Implications. Acta Geologica Sinica, 82(11): 1576-1584 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200811014.htm [22] Liu, Y.J., Ma, D.S., 1987. Geochemistry of Tungsten. Science Press, Beijing (in Chinese). [23] Ludwig, K.R., 2001. ISOPLOT/EX. Version 2.49, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, 1-20. [24] Ma, D.S., 2009. Progress in Research on Geochemistry of Tungsten. Geological Journal of China Universities, 15(1): 19-34(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253566003.html [25] Mao, J.W., Zhang, Z.C., Zhang, Z.H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W(Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. doi: 10.1016/S0016-7037(99)00165-9 [26] Qu, W.J., Du A.D., 2003. Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion. Rock and Mineral Analysis, 22(4): 254-257 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200304003.htm [27] Selby, D., Creaser, R.A., 2004. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite: Testing Spatial Rest Rictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os with in Molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908. doi: 10.1016/j.gca.2004.03.022 [28] Shirey, S.B., Walker, R.J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Anal. Chem. , 67: 2136-2141. doi: 10.1021/ac00109a036 [29] Smoliar, M.L., Walker, R.J., Morgan, J.W., 1996. Re-Os Ages of Group ⅡA, Ⅲa, ⅣA and ⅣB Iron Meteorites. Science, 271: 1099-1102. doi: 10.1126/science.271.5252.1099 [30] Stein, H.J., Markey, R.J., Morgan, J.W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13: 479-486. doi: 10.1046/j.1365-3121.2001.00395.x [31] Tan, Y.J., 2000. An Opinion on the Second Round Exploration of Wolframite in Nanling Region. China Tungsten Industry, 15(6): 9-13(in Chinese with English abstract). [32] Wang, D.H., Chen, Z.H., Chen, Y.C., et al., 2010. New Data of the Rock Forming and Ore-Forming Chronology for China's Important Mineral Resources. Acta Geologica Sinica, 84(7): 1030-1040(in Chinese with English abstract). http://www.researchgate.net/publication/284594588_New_data_of_the_rock-forming_and_ore-forming_chronology_for_China's_important_mineral_resources_areas [33] Wang, X.F., Qi, H.W., Hu, R.Z., et al., 2010. Re-Os Isotopic Chronology of Molybdenites from Hongling Tungsten Deposit of Guangdong Province and Its Geological Significance. Mineral Deposits, 29(3): 415-426(in Chinese with English abstract). http://www.researchgate.net/publication/284485448_Re-Os_isotopic_chronology_of_molybdenites_from_Hongling_tungsten_deposit_of_Guangdong_Province_and_its_geological_significance [34] Wei, X.L., 2001. Initiate New Prospect on the Geological Work of Tungsten Minerals. China Tungsten Industry, 16(5): 65-68(in Chinese with English abstract). http://www.ga.gov.au/data-pubs/data-and-publications-search/publications/aimr/tungsten [35] Wei, X.L., 2012. The Metallogenic Features and Ore-Finding Potentiality of the Tungsten Deposits in South Jiangxi Province. China Tungsten Industry, 27(1): 14-21 (in Chinese with English abstract). http://www.researchgate.net/publication/285821188_The_metallogenic_features_and_ore-finding_potentiality_of_the_Tungsten_Deposits_in_South_Jiangxi_Province [36] Wu, Y.L., Mei, Y.W., Liu, P.C., et al., 1987. Geology of the Xihuashan Tungsten Ore Field. Geological Publishing House, Beijing (in Chinese). [37] Xia, H.Y., Liang, S.Y., 1986. Primary Zoning and Genetics Series of W, Sn(Ta, Nb) Ore Deposits in Nanling. Journal of Mineralogy and Petrology, 1: 1-182 (in Chinese with English abstract). [38] Xing, S.J., Chen, D.S., Li, G.L., 2010. Analysis on the Vertical Distribution in the Zhangdongkeng W-Mo Deposit of Jiangxi. China Tungsten Industry, 25(5): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWU201005005.htm [39] Yang, Z.H., Wang, J.P., Liu, J, J., et al., 2012. Characteristics and Its Geological Significance of Fluid Incluisions of the Wurinitu W-Mo Deposit in Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268-1278 (in Chinese with English abstract). http://www.researchgate.net/publication/288079622_Characteristics_and_its_geological_significance_of_fluid_inclusions_of_the_Wurinitu_W-Mo_Deposit_in_Inner_Mongolia_China [40] Zeng, Z.L., Zhang, Y.Z., Zhu, X.P., et al., 2009. Re-Os Isotopic Dating of Molybdenite from the Maoping Tungsten-Tin Deposit in Chongyi County of Southern Jiangxi Province and Its Geological Significance. Rock and Mineral Analysis, 28(3): 209-214 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YKCS200903007.htm [41] Zhang, J.J., Chen, Z.H., Wang, D.H., et al., 2008. Geological Characteristics and Metallogenic Epoch of the Xingluokeng Tungsten Deposit, Fujian Province. Geotectonica et Metallogenia, 32(1): 92-97 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=26509874 [42] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2009. New Dating of the Piaotang Granite and Related Tungsten Mineralizationin, Southern Jiangxi. Acta Geologica Sinica, 83(5): 659-670 (in Chinese with English abstract). http://www.researchgate.net/publication/343062917_New_Dating_of_the_Piaotang_Granite_and_Related_Tungsten_Mineralization_in_Southern_Jiangxi [43] 陈广文, 李基, 1992. 樟东坑矿床赋存特征及开采损失统计分析. 南方冶金学院学报, 13(4): 271-278. https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX199204000.htm [44] 陈润生, 李建威, 曹康, 等, 2013. 闽北上房钨矿床锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 地球科学——中国地质大学学报, 38(2): 289-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302010.htm [45] 陈郑辉, 王登红, 屈文俊, 等, 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代. 地质通报, 25(4): 496-501. doi: 10.3969/j.issn.1671-2552.2006.04.013 [46] 杜安道, 屈文俊, 王登红, 等, 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象. 矿床地质, 26(5): 572-580. doi: 10.3969/j.issn.0258-7106.2007.05.010 [47] 杜安道, 赵敦敏, 王淑贤, 等, 2001. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002 [48] 丰成友, 丰耀东, 许建祥, 等, 2007a. 赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据. 中国地质, 34(4): 642-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704014.htm [49] 丰成友, 许建祥, 曾载淋, 等, 2007b. 赣南天门山-红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义. 地质学报, 81(7): 952-963. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707010.htm [50] 付建明, 李华芹, 屈文俊, 等, 2008. 粤北始兴地区石英脉型钨矿成矿时代的确定及其地质意义. 大地构造与成矿学, 32(1): 57-62. doi: 10.3969/j.issn.1001-1552.2008.01.008 [51] 古菊云, 1981. 华南钨矿床的形态分带. 见: 余鸿彰著, 钨矿地质讨论会论文集. 北京: 地质出版社, 35-45. [52] 贺礼泰, 2003. 浅议矿脉变化规律与探矿方法. 中国钨业, 18(4): 15-19. doi: 10.3969/j.issn.1009-0622.2003.04.006 [53] 胡东泉, 华仁民, 李光来, 等, 2011. 赣南茅坪钨矿流体包裹体研究. 高校地质学报, 17(2): 327-336. doi: 10.3969/j.issn.1006-7493.2011.02.018 [54] 华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002 [55] 华仁民, 张文兰, 李光来, 等, 2008. 南岭地区钨矿床共(伴)生金属特征及其地质意义初探. 高校地质学报, 14(4): 527-538. doi: 10.3969/j.issn.1006-7493.2008.04.006 [56] 黄小娥, 李光来, 郭家松, 等, 2012. 赣南樟东坑钨矿成矿花岗岩及矿化特征. 地质与勘探, 48(4): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201204004.htm [57] 李超, 曲文俊, 杜安道, 2009. 大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究. 矿床地质, 28 (5): 707-712. doi: 10.3969/j.issn.0258-7106.2009.05.016 [58] 李光来, 华仁民, 黄小娥, 等, 2011a. 赣中下桐岭钨矿辉钼矿Re-Os年龄及其地质意义. 矿床地质, 30(6): 1075-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201106009.htm [59] 李光来, 华仁民, 韦星林, 等, 2011b. 江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义. 地球科学——中国地质大学学报, 36(2): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102014.htm [60] 刘珺, 叶会寿, 谢桂青, 等, 2008. 江西武功山地区浒坑钨矿床辉钼矿的Re-Os年龄及其地质意义. 地质学报, 82(11): 1576-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200811014.htm [61] 刘英俊, 马东升, 1987. 钨的地球化学. 北京: 科学出版社. [62] 马东升, 2009. 钨的地球化学研究进展. 高校地质学报, 15(1): 19-34. doi: 10.3969/j.issn.1006-7493.2009.01.002 [63] 屈文俊, 杜安道, 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003 [64] 盛继福, 2004. 钨矿床. 见: 赵一鸣, 吴良士, 白鸽, 等著. 中国主要金属矿床成矿规律. 北京: 地质出版社, 125. [65] 谭运金, 2000. 论南岭地区黑钨矿山的二轮找矿. 中国钨业, 15(6): 9-13. doi: 10.3969/j.issn.1009-0622.2000.06.005 [66] 王登红, 陈郑辉, 陈毓川, 等, 2010. 我国重要矿产地成岩成矿年代学研究新数据. 地质学报, 84(7): 1030-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007009.htm [67] 王小飞, 戚华文, 胡瑞忠, 等, 2010. 粤北红岭钨矿中辉钼矿Re-Os同位素年代学及其地质意义. 矿床地质, 29(3): 415-426. doi: 10.3969/j.issn.0258-7106.2010.03.004 [68] 韦星林, 2001. 依靠科技进步开创钨矿地质找矿新局面. 中国钨业, 16(5): 65-68. doi: 10.3969/j.issn.1009-0622.2001.05.019 [69] 韦星林, 2012. 赣南钨矿成矿特征与找矿前景. 中国钨业, 27(1): 14-21. doi: 10.3969/j.issn.1009-0622.2012.01.004 [70] 吴永乐, 梅勇文, 刘鹏程, 等, 1987. 西华山钨矿地质. 北京: 地质出版社. [71] 夏宏远, 梁书艺, 1986. 南岭某些钨锡(铌钽)矿床的原生分带及成因系列研究. 矿物岩石: 1: 1-182. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198601000.htm [72] 幸世军, 陈冬生, 李光来, 2010. 江西樟东坑钨钼矿床"上钨下钼"垂向分带规律浅析. 中国钨业, 25(5): 8-12. doi: 10.3969/j.issn.1009-0622.2010.05.002 [73] 杨增海, 王建平, 刘家军, 等, 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学——中国地质大学学报, 37(6): 1268-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206024.htm [74] 曾载淋, 张永忠, 朱祥培, 等, 2009. 赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义. 岩矿测试, 28(3): 209-214. doi: 10.3969/j.issn.0254-5357.2009.03.003 [75] 张家菁, 陈郑辉, 王登红, 等, 2008. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义. 大地构造与成矿学, 32(1): 92-97. doi: 10.3969/j.issn.1001-1552.2008.01.012 [76] 张文兰, 华仁民, 王汝成, 等, 2009. 赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定. 地质学报, 83(5): 659-670. doi: 10.3321/j.issn:0001-5717.2009.05.007 -