• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    埃塞俄比亚施瑞地区花岗岩地球化学特征及构造环境

    韩世礼 张术根 柳建新 丁俊 张文山

    韩世礼, 张术根, 柳建新, 丁俊, 张文山, 2014. 埃塞俄比亚施瑞地区花岗岩地球化学特征及构造环境. 地球科学, 39(1): 10-20. doi: 10.3799/dqkx.2014.002
    引用本文: 韩世礼, 张术根, 柳建新, 丁俊, 张文山, 2014. 埃塞俄比亚施瑞地区花岗岩地球化学特征及构造环境. 地球科学, 39(1): 10-20. doi: 10.3799/dqkx.2014.002
    Han Shili, Zhang Shugen, Liu Jianxin, Ding Jun, Zhang Wenshan, 2014. Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia. Earth Science, 39(1): 10-20. doi: 10.3799/dqkx.2014.002
    Citation: Han Shili, Zhang Shugen, Liu Jianxin, Ding Jun, Zhang Wenshan, 2014. Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia. Earth Science, 39(1): 10-20. doi: 10.3799/dqkx.2014.002

    埃塞俄比亚施瑞地区花岗岩地球化学特征及构造环境

    doi: 10.3799/dqkx.2014.002
    基金项目: 

    国家自然科学基金项目 41174103

    2010年国外矿产资源风险勘查专项资金项目 管理财[2010]211号

    详细信息
      作者简介:

      韩世礼(1979-), 男, 博士研究生, 矿产普查与勘探专业

      通讯作者:

      张术根, E-mail: zhangshugenzsg@163.com

    • 中图分类号: P588.12;P595;P597

    Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia

    • 摘要: 埃塞俄比亚北部施瑞地区具有造山前、造山期和造山后3种花岗岩类型, 全岩Sm-Nd等时线测年结果表明, 造山前和造山后花岗岩成岩年龄分别为824.4±15.5 Ma和517.9±5.8 Ma.3类花岗岩主量元素和稀土微量元素成分存在明显差异, 其中造山前花岗岩属于低钾过铝质花岗岩, 稀土分配模式属轻稀土弱富集型, 富集大离子亲石元素, 亏损P和Ti高场强元素;造山期花岗岩为准铝质高钾钙碱性花岗岩, 稀土分配模式属轻稀土富集型, 富集大离子亲石元素和高场强元素;造山后花岗岩为弱过铝质高钾钙碱性花岗岩, 稀土分配模式具强烈铕亏损的海鸥型, 富集大离子亲石元素, 明显亏损P和Ti高场强元素.综合研究表明: 造山前和造山期花岗岩均为I型幔源花岗岩, 构造环境处于被动大陆边缘-火山岛弧环境;造山后花岗岩为A2型壳源主花岗岩, 是在洋盆关闭和阿拉伯-努比亚地盾成熟后, 由减薄的地壳部分熔融产生.

       

    • 图  1  埃塞俄比亚施瑞地区地质简图

      Fig.  1.  Geological sketch map of the Shire region in northern Ethiopia

      图  2  造山前(a~c)、造山期(d~f)和造山后(g~i)花岗岩野外及镜下照片

      a.灰白色花岗闪长岩;b.整体结构;c.定向排列的鳞片状黑云母;d.灰白色黑云母花岗岩;e.钠长石穿插微斜长石;f.黑云母交代角闪石;g.肉红色钾长花岗岩;h.石英与钠长石;i.锆石

      Fig.  2.  Photos of pre-(a-c), syn-(d-f), and post-(g-i)orogenic granitoids in the field and under microscope

      图  3  花岗岩K2O-SiO2图解(a)和A/NK-A/CNK图解(b)(据Maniar and Piccoli, 1989)

      Fig.  3.  K2O-SiO2 diagram (a) and A/NK-A/CNK classification diagram(b) for granitoids

      图  4  造山前、造山期和造山后花岗岩稀土元素球粒陨石标准化图解(a~c)和微量元素蛛网图(d~f)

      a, d.造山前花岗岩;b, e.造山期花岗岩;c, f.造山后花岗岩

      Fig.  4.  Chondrite-normalized REE patterns(a-c) and primitive mantle normalized spider diagram(d-f)of pre-, syn-, and post-orogenic granitoids

      图  5  造山前(a)和造山后(b)花岗岩Sm-Nd全岩等时线

      Fig.  5.  The Sm-Nd whole rock isochrons of pre-orogen(a) and post-orogen(b) granitoids

      图  6  各期花岗岩(Na2O+K2O)-104×Ga/Al(据Whalen et al., 1987)、Y-SiO2(据Collins et al., 1982)、Nb-Y-3Ga(据Eby, 1992)和Rb/Ba-Rb/Sr(据Sylvester, 1998)判别图

      Fig.  6.  (Na2O+K2O)-104×Ga/Al、Y-SiO2、Nb-Y-3Ga and Rb/Ba-Rb/Sr discrimination diagrams of granitoids

      图  7  花岗岩构造环境判别图解(据Pearce et al., 1984; Pearce, 1996)

      syn-COLG.同碰撞花岗岩;VAG.火山弧花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩

      Fig.  7.  Tectonic environment discrimination of granitoids

      图  8  花岗岩构造环境R1-R2判别(据Batchelor and Bowden, 1985)

      ①地幔分异;②碰撞前;③碰后抬升;④晚造山;⑤非造山;⑥同碰撞;⑦后造山

      Fig.  8.  R1-R2 multi-cation diagram for tectonic environment discrimination of granitoids

      表  1  花岗岩主量元素(10-2)、稀土微量元素(10-6) 分析结果

      Table  1.   Major (10-2), REE and other element (10-6) contents of granitoids

      岩性样号 造山前花岗岩 造山期花岗岩 造山后花岗岩
      QA042 QA044 QA045 QA046 QA047 QA051 QA037 QA038 QA039 QA040 QA041 BB318 BB319 BB320 BB321 BB322
      SiO2 71.63 72.11 71.61 71.56 69.65 76.41 61.83 64.73 65.28 66.00 64.20 75.45 74.91 74.66 73.13 72.98
      TiO2 0.23 0.23 0.22 0.22 0.24 0.14 0.51 0.49 0.49 0.46 0.49 0.04 0.02 0.08 0.09 0.10
      Al2O3 13.05 13.46 13.16 13.71 13.75 12.12 15.07 14.88 14.78 14.75 14.91 13.63 14.20 12.72 14.12 13.96
      Tfe 4.23 4.09 3.70 3.85 3.94 2.75 4.41 4.29 4.06 3.28 3.84 1.06 0.89 1.56 1.69 1.87
      MnO 0.24 0.21 0.15 0.11 0.12 0.12 0.13 0.15 0.16 0.08 0.10 0.06 0.05 0.07 0.08 0.10
      MgO 0.79 0.71 0.75 0.88 0.97 0.39 3.28 3.10 2.44 2.34 2.82 0.14 0.14 0.33 0.28 0.26
      CaO 2.86 3.23 2.71 2.95 3.17 1.14 3.70 3.14 2.84 2.58 3.42 0.40 0.26 0.87 1.05 0.98
      Na2O 3.92 3.88 3.17 3.44 3.64 4.24 3.97 3.86 3.77 3.78 3.46 4.73 4.94 3.81 4.50 3.93
      K2O 0.64 0.83 1.31 1.09 1.26 1.09 3.56 3.82 4.12 4.17 3.15 3.93 3.95 3.78 3.59 4.67
      P2O5 0.041 0.049 0.035 0.046 0.048 0.008 0.301 0.187 0.172 0.176 0.198 0.001 0.001 0.010 0.020 0.013
      LOI 0.98 0.96 1.33 0.92 1.65 0.97 1.27 1.23 1.77 1.29 1.78 0.63 0.66 0.97 0.92 0.93
      Total 98.69 99.84 98.29 98.91 98.58 99.46 98.30 100.15 100.15 99.13 98.62 100.10 100.05 98.88 99.49 99.83
      分异指数DI 76.56 75.89 77.23 75.93 75.05 87.50 70.00 72.75 75.67 77.66 70.56 95.40 95.87 91.87 90.86 91.31
      A/NK 1.82 1.85 1.99 2.00 1.87 1.49 1.45 1.42 1.38 1.37 1.64 1.13 1.14 1.23 1.25 1.21
      A/CNK 1.06 1.02 1.14 1.12 1.05 1.18 0.88 0.92 0.93 0.96 0.97 1.07 1.10 1.06 1.07 1.05
      Rb 13.90 15.90 24.40 24.10 24.90 24.50 103.00 117.50 124.50 129.50 91.90 316.00 325.00 235.00 256.00 298.00
      Ba 584.0 681.0 1 105.0 1 100.0 1 175.0 670.0 1 355.0 1 340.0 1 340.0 1 345.0 1 445.0 24.8 14.9 186.5 174.0 307.0
      Th 2.30 2.11 1.87 2.15 2.08 1.74 8.75 11.90 10.00 13.05 6.97 14.35 29.00 19.65 31.90 29.30
      U 1.44 1.27 1.14 1.20 1.15 0.65 3.20 3.13 4.46 4.54 5.11 7.28 16.15 9.37 12.50 12.90
      Ta 0.20 0.10 0.20 0.10 0.10 0.20 0.80 0.80 0.50 0.60 0.60 14.20 12.30 3.30 5.30 5.60
      Nb 4.00 2.80 3.20 2.70 2.80 3.80 8.70 8.80 8.50 8.40 5.50 35.60 76.10 32.00 51.00 50.70
      Pb 23.00 67.00 43.00 5.00 7.00 5.00 40.00 76.00 43.00 25.00 18.00 48.00 56.00 34.00 36.00 41.00
      Sr 262.0 238.0 292.0 264.0 245.0 137.0 1 290.0 1 195.0 1 025.0 923.0 1 075.0 20.2 8.3 98.2 116.0 118.5
      Zr 229 61 65 70 70 111 171 182 206 252 185 39 157 76 121 117
      Hf 5.80 2.00 2.00 2.10 2.20 3.50 5.40 5.70 6.50 6.90 4.90 4.80 14.60 3.90 6.40 6.20
      La 10.90 11.50 8.20 15.00 10.80 5.80 35.60 31.40 33.20 19.90 25.80 8.30 4.20 14.20 19.80 17.50
      Ce 90.40 21.60 17.10 29.40 20.70 13.90 71.60 62.90 65.40 45.10 53.50 6.20 23.80 30.50 44.90 40.30
      Pr 2.85 3.10 2.19 4.03 2.87 2.23 7.72 6.67 6.79 5.81 6.58 3.13 1.46 3.61 5.35 4.72
      Nd 12.60 13.50 9.90 17.30 12.80 11.20 31.10 26.90 26.50 21.70 25.90 17.60 7.30 15.90 23.40 20.90
      Sm 3.32 3.44 2.68 4.24 3.49 3.52 5.76 4.87 4.70 3.89 5.10 9.92 4.26 5.48 8.22 7.48
      Eu 0.71 0.76 0.72 0.81 0.74 0.76 1.21 1.04 0.92 0.84 1.26 0.22 0.05 0.29 0.35 0.36
      Gd 3.64 3.59 3.02 4.22 3.79 3.94 3.80 3.15 3.10 2.67 3.74 11.40 4.94 6.41 10.00 9.88
      Tb 0.61 0.59 0.50 0.70 0.59 0.72 0.47 0.38 0.37 0.33 0.52 2.08 1.46 1.33 2.07 2.10
      Dy 4.19 3.95 3.52 4.51 4.09 5.23 2.48 2.13 2.00 1.70 3.10 12.95 12.85 9.48 14.85 15.15
      Ho 0.95 0.89 0.78 1.02 0.95 1.27 0.45 0.40 0.35 0.33 0.63 2.54 3.15 2.10 3.27 3.42
      Er 3.11 2.78 2.49 3.17 2.97 4.36 1.21 1.12 0.99 0.86 1.86 8.75 13.15 7.09 11.10 11.75
      Tm 0.48 0.45 0.40 0.49 0.47 0.71 0.17 0.14 0.14 0.13 0.31 1.59 2.73 1.17 1.83 1.90
      Yb 3.39 3.05 2.72 3.41 3.29 5.04 1.11 1.04 0.90 0.91 2.17 13.00 23.40 8.46 13.10 13.60
      Lu 0.59 0.50 0.45 0.57 0.56 0.84 0.16 0.15 0.14 0.15 0.36 2.02 3.75 1.26 2.01 2.08
      Y 28.40 25.60 22.40 29.40 27.40 35.50 13.70 12.50 11.00 9.80 18.70 77.60 67.00 77.30 120.50 130.50
      ∑REE 166.14 95.30 77.07 118.27 95.51 95.02 176.54 154.79 156.50 114.12 149.53 177.30 173.50 184.58 280.75 281.64
      LR/HR 7.12 3.41 2.94 3.91 3.08 1.69 15.53 15.72 17.21 13.73 9.31 0.84 0.63 1.88 1.75 1.52
      δEu 0.69 0.72 0.85 0.64 0.68 0.69 0.81 0.83 0.75 0.82 0.92 0.07 0.04 0.17 0.13 0.14
      Sm/Nd 0.26 0.25 0.27 0.25 0.27 0.31 0.19 0.18 0.18 0.18 0.20 0.56 0.58 0.34 0.35 0.36
      Nb/Ta 63.00 135.00 49.50 173.00 128.00 56.00 38.88 33.63 53.00 36.17 43.17 1.24 0.59 4.82 4.42 3.73
      (La/Yb)N 1.91 2.24 1.79 2.61 1.95 0.68 19.04 17.93 21.90 12.98 7.06 0.38 0.11 1.00 0.90 0.76
      注: A/NK=Al2O3/(Na2O+K2O), 分子比;A/CNK=Al2O3/(CaO+Na2O+K2O), 分子比;DI=Qz+Or+Ab+Ne+Kp;稀土元素球粒陨石标准化值据Herman(1971).
      下载: 导出CSV

      表  2  造山前和造山后花岗岩Sm-Nd同位素分析结果及特征比值

      Table  2.   Sm-Nd isotopic analysis and characteristic ratios of of pre-orogen and post-orogen granitoids

      样号 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd±1σ εNd(0) fSm/Nd
      造山前花岗岩
      QA042 2.756 10.930 0.152 5 0.512 660±0.000 005 0.43 -0.22
      QA044 2.882 11.950 0.146 0 0.512 632±0.000 003 -0.12 -0.26
      QA045 2.460 9.463 0.157 3 0.512 691±0.000 006 1.03 -0.20
      QA046 3.694 15.710 0.142 3 0.512 613±0.000 004 -0.49 -0.28
      QA047 2.909 11.420 0.154 0 0.512 673±0.000 005 0.68 -0.22
      QA051 2.965 9.815 0.182 7 0.512 830±0.000 006 3.75 -0.07
      造山后花岗岩
      BB319 3.825 7.102 0.325 9 0.513 301±0.000 008 12.93 0.66
      BB320 4.465 15.930 0.169 6 0.512 766±0.000 005 2.50 -0.14
      BB321 6.122 21.640 0.171 2 0.512 775±0.000 004 2.67 -0.13
      BB322 5.992 21.720 0.166 9 0.512 767±0.000 006 2.52 -0.15
      下载: 导出CSV
    • [1] Ayalew, T., Bell, K., Moore, M. J., et al., 1990. U-Pb and Rb-Sr Geochronology of Western Ethiopian Shield. Geological Society of America Bulletin, 102(9): 1309-1316. doi:10.1130/0016-7606(1990)102<1309:UPARSG>2.3.CO;2
      [2] Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. doi: 10.1016/009-2541(85)90034-8
      [3] Collins, W.J., Bearns, S.D., White A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to South-Eastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. doi: 10.1007/BF00374895
      [4] De Souza Filho, C.R., Drury, S.A., 1998. A Neoproterozoic Supra-Subduction Terrane in Northern Eritrea, NE Africa. Journal of the Geological Society, 155(3): 551-566. doi: 10.1144/gsjps.155.3.0551
      [5] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      [6] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X
      [7] Guo, K.C., Zhang, W.L., Yang, X.P., et al., 2011. Origin of Early Permian A-Type Granite in the Wudaogou Area, Heihe City. Journal of Jilin University (Earth Science Edition), 41(4): 1077-1083 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247971332.html
      [8] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Large Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X
      [9] Li, F.L., Xie, Y., Zhou, H.W., et al., 2011. Petrogenesis and Geodynamic Setting of Early Cretaceous Dykes in the Chun'an Area, Zhejiang Province. Journal of Mineralogy and Petrology, 31(3): 55-65 (in Chinese with English abstract). http://www.researchgate.net/publication/289640123_Petrogenesis_and_gedynamic_setting_of_early_cretaceous_dykes_in_the_Chun'an_area_Zhejiang_Province
      [10] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635- 643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [11] Pearce, J.A., 1996. Source and Setting of Granitic Rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
      [12] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
      [13] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treaties on Ceochemistry. Elsevier Pergamon, Oxford.
      [14] Shao, J.A., Mu, B.L., Zhu, H.Z., et al., 2010. Material Source and Tectonic Settings of the Mesozoic Mineralization of the Da Hinggan Mts. Acta Petrologica Sinica, 26(3): 649-656 (in Chinese with English abstract). http://www.researchgate.net/publication/279768472_Material_source_and_tectonic_settings_of_the_Mesozoic_mineralization_of_the_Da_Hinggan_Mts
      [15] Stern, R.J., Kröner, A., Bender, R., et al., 1994. Precambrian Basement around Wadi Halfa, Sudan: A New Perspective on the Evolution of the East Saharan Craton. Geol. Rundsch. , 83(3): 564-577. doi: 10.1007/BF00194162
      [16] Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98000024-3
      [17] Tadesse, A.A., 1998. Geochemisstry of Neoproterozoic Granitoids from the Axum Area, Northern Ethiopia. Journal of African Earth Sciences, 27(3-4): 437-460. doi:S0899-5362(98)00072-4
      [18] Tadesse, T., Hoshino, M., Suzuki, K., et al., 2000. Sm-Nd, Rb-Sr and Th-U-Pb Zircon Ages of Syn- and Post-Tectonic Granitoids from the Axum Area of Northern Ethiopia. Journal of African Earth Sciences, 30(2): 313-327. doi:S0899-5362(00)00022-1
      [19] Tadesse, T., Suziki, K., Hoshino, M., 1997. Chemical Th-U-Total Pb Isochron Age of Zircon from the Mereb Granite in Northern Ethiopia. The Journal of Earth Planetary Sciences, Nagoya University, 44: 21-27. http://www.researchgate.net/publication/37505181_Chemical_Th-U-total_Pb_isochron_age_of_zircon_from_the_Mereb_Granite_in_northern_Ethiopia
      [20] Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi. Earth Science-Journal of China University of Geosciences, 33(6): 743-754 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.090
      [21] Teklay, M., 1997. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield. Memoir 1, Department of Mines, Eritrea, Asmara, 125.
      [22] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. doi: 10.1093/petrology/37.1.45
      [23] Wan, Y.S., 1999. Barium Anomaly and Its Geochemical Significance. Continental Dynamics, 4(1): 84-87. http://www.cnki.com.cn/Article/CJFDTotal-DLDX199901009.htm
      [24] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
      [25] Woldemichael, B.W., Kimura, J.I., Dunkley, D.J., et al., 2010. SHRIMP U-Pb Zircon Geochronology and Sr-Nd Isotopic Systematic of the Neoproterozoic Ghimbi-Nedjo Mafic to Intermediate Intrusions of Western Ethiopia: A Record of Passive Margin Magmatism at 855 Ma. International Journal of Earth Sciences, 99(8): 1773-1790. doi: 10.1007/s00531-009-0481-x
      [26] Yang, D.B., Xu, W.L., Pei, F.P., et al., 2009. Petrogenesis of the Paleoproterozoic K-Feldspar Granites in Bengbu Uplift: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotope. Earth Science-Journal of China University of Geosciences, 34(1): 148-164 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.014
      [27] Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm
      [28] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008. Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm
      [29] 郭奎城, 张文龙, 杨晓平, 等, 2011. 黑河市五道沟地区早二叠世A型花岗岩成因. 吉林大学学报(地球科学版), 41(4): 1077-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104017.htm
      [30] 李福林, 谢瑜, 周汉文, 等, 2011. 浙江淳安早白垩世脉岩地球化学特征及成岩动力学背景. 矿物岩石, 31(3): 55-65. doi: 10.3969/j.issn.1001-6872.2011.03.009
      [31] 邵济安, 牟保磊, 朱慧忠, 等, 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景. 岩石学报, 26(3): 649-656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003001.htm
      [32] 谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学—中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm
      [33] 杨德彬, 许文良, 裴福萍, 等, 2009. 蚌埠隆起区古元古代钾长花岗岩的成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素的制约. 地球科学—中国地质大学学报, 34(1): 148-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901016.htm
      [34] 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      [35] 张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27(1): 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  3432
    • HTML全文浏览量:  195
    • PDF下载量:  484
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-07-23
    • 刊出日期:  2014-01-01

    目录

      /

      返回文章
      返回