Contrast of Huangshandong and Xiangshan Mafic-Ultramafic Complex, East Tianshan
-
摘要: 黄山东与香山镁铁质-超镁铁质杂岩体隶属于东天山北部黄山-镜儿泉镁铁质-超镁铁质岩带, 受北东东走向的黄山-镜儿泉韧性剪切带控制, 二者岩石组成差异较大, 黄山东杂岩主要由辉石橄榄岩和辉长岩组成, 主量元素化学组成属钙碱性-拉斑玄武系列, 而香山杂岩主要由辉石橄榄岩、橄榄辉石岩、角闪辉长岩、辉绿岩组成, 属拉斑玄武系列.微量元素地球化学特征显示二者相对富集大离子亲石元素(K、Sr、Ba), 高场强元素(Pb、U), 而相对亏损高场强元素(Nb、P), 适度亏损(Zr、Hf), 但其稀土配分模式不同, 黄山东杂岩显示轻稀土弱富集, 具OIB型的特征, 而香山岩体为平坦型.二者均为尖晶石稳定域不同熔融程度的产物, 侵位过程中主要发生了橄榄石、辉石、斜长石的分离结晶和不同程度的地壳混染.采用LA-ICP-MS法获得黄山东辉长岩与香山角闪辉长岩锆石U-Pb年龄分别为277±1.1 Ma、285±1.1 Ma.二者形成于相同的构造背景下, 是岩石圈地幔根部发生拆沉, 软流圈地幔物质底侵并导致岩石圈地幔发生部分熔融的产物, 构造环境为后碰撞向板内阶段转变的岩石圈间歇性伸展期.Abstract: Controlled by the NEE-trending Huangshan-Jingerquan ductile sheer zone, the Huangshandong and Xiangshan mafic-ultramafic complex belongs to the Huangshan-Jingerquan mafic-ultramafic rock belt located in the north of East-Tianshan. Huangshandong is characterized by being of calc-alkalic and tholeiitic series and being composed of pyroxene peridotite and gabbro, whereas Xiangshan mafic-ultramafic rocks are made up of pyroxene peridotite, olivine pyroxenite, hornblende gabbro and diabase, belonging to the tholeiitic series. Both rocks are enriched in large ion lithophile elements (such as K, Sr, Ba) and high field strength elements (such as Pb, U), depleted in high field strength elements (such as Nb, P) and slightly depleted in high field strength elements (such as Zr, Hf). However, they are different in the REE pattern, with Huangshandong showing the enrichment of LREE, similar to OIB features, while the Xiangshan rocks presenting the flat pattern of REE. They are the result of partial melting from the spinel source region and magma experienced olivine, pyroxene, plagioclase and amphibole. But they are subject to crust assimilation contamination to a different extent.Using the LA-ICP-MS method, we obtain the age of Huangshandong and Xiangshan at 277±1.1 Ma and 285±1.1 Ma respectively, which demonstrates they generated from the same tectonic setting, resulted from the lithospheric delamination at the root and the upwelling of asthenosphere in the partial melting of lithospheric mantle, corresponding to post-collision intermittent extension setting.
-
Key words:
- mafic-ultramafic complex /
- Huangshandong /
- Xiangshan /
- zircon /
- magma source /
- post-collision extension /
- geochemistry
-
图 1 新疆与岩浆型Cu-Ni(PGE)硫化物矿床有关的镁铁-超镁铁岩体分布(据王京彬和徐新,2006)
Fig. 1. Distribution of magmatic Cu-Ni (PGE) sulphide-bearing mafic-ultramafic intrusions in northern Xinjiang
图 5 镁铁质-超镁铁质岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b) (标准化数据Sun and McDonough, 1989)
Fig. 5. Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element patterns (b)
表 1 黄山东与香山镁铁质-超镁铁质杂岩常量元素(%)和微量元素(10-6)分析结果
Table 1. The major elements (%) and trace elements (10-6) of the Huangshan mafic-ultramafic rocks
矿点 黄山东 香山 样号 D017-3 D001-1 D001-2 D003-1 D010 D017-1 D017-2 XS2-2 XS2-5 XS1-5 XS2-3 XS2-6 XS2-4 岩性 辉石橄榄岩 辉长岩 辉石橄榄岩 橄榄辉石岩 角闪辉长岩 辉绿岩 SiO2 39.20 47.80 46.50 50.00 50.50 54.30 46.30 36.82 41.56 46.34 42.32 46.37 47.65 TiO2 0.29 0.30 0.32 0.53 2.86 1.08 2.29 0.20 0.35 1.92 4.18 2.25 1.99 Al2O3 4.83 3.19 3.35 15.70 14.00 16.80 21.60 12.12 8.94 17.43 14.81 16.87 17.16 Fe2O3T 11.25 9.78 9.52 7.35 12.80 7.34 7.05 10.46 10.57 9.91 15.32 7.30 10.43 MnO 0.15 0.17 0.17 0.13 0.20 0.14 0.09 0.15 0.16 0.17 0.28 0.12 0.18 MgO 31.80 25.90 26.10 9.83 4.57 5.97 6.26 24.22 22.90 7.00 7.64 9.90 8.27 CaO 1.96 8.89 7.96 10.30 7.24 8.46 11.60 5.06 6.97 9.30 10.00 8.22 10.57 Na2O 0.28 0.44 0.54 2.49 4.03 3.32 2.69 0.20 0.59 4.12 3.46 4.29 2.60 K2O 0.19 0.15 0.09 0.08 1.74 1.12 0.08 0.03 0.12 0.29 0.23 0.19 0.28 P2O5 0.050 0.050 0.020 0.070 0.530 0.160 0.020 0.001 0.022 0.342 0.001 0.051 0.002 LOI 2.87 4.82 9.36 2.74 1.14 1.00 1.71 8.91 6.14 2.09 1.64 3.72 0.84 Total 99.54 99.39 99.36 99.22 99.61 99.69 99.69 98.17 98.32 98.91 99.88 99.28 99.97 FeO 5.51 5.18 7.25 4.50 5.43 5.67 5.60 8.00 8.08 7.58 11.72 5.58 7.98 Mg# 86.1 86.5 86.8 75.7 45.4 65.5 67.4 84.4 83.5 62.2 53.8 76.0 64.9 δ 0.07 0.11 -0.06 0.94 4.44 1.74 2.33 -0.01 -0.35 -20.00 1.80 5.80 5.90 La 4.0 7.4 4.2 4.9 22.9 10.8 3.0 0.5 1.8 1.8 1.8 7.6 5.0 Ce 7.3 13.1 6.3 9.9 50.9 23.8 5.0 0.9 4.4 4.8 5.6 22.1 14.1 Pr 1.00 1.31 0.76 1.29 6.98 3.29 0.70 0.14 0.67 0.82 1.07 3.54 2.30 Nd 4.6 5.3 3.8 6.2 30.7 14.6 3.5 0.6 3.2 4.6 6.6 17.9 12.1 Sm 1.13 1.20 1.13 1.75 7.19 3.88 1.13 0.20 0.96 1.75 2.36 5.55 4.25 Eu 0.32 0.40 0.41 0.77 2.32 1.30 0.88 0.10 0.38 1.10 1.08 1.92 2.22 Gd 1.21 1.34 1.41 2.09 6.92 4.19 1.43 0.25 1.18 2.29 3.23 6.81 5.46 Tb 0.19 0.23 0.24 0.35 1.05 0.71 0.23 0.04 0.19 0.36 0.50 1.01 0.91 Dy 1.20 1.46 1.53 2.22 5.89 4.27 1.42 0.25 1.22 2.45 3.34 7.13 6.25 Ho 0.24 0.30 0.31 0.43 1.09 0.82 0.28 0.06 0.25 0.50 0.68 1.34 1.18 Er 0.71 0.85 0.91 1.33 3.06 2.47 0.81 0.17 0.70 1.37 1.87 3.86 3.30 Tm 0.11 0.13 0.14 0.19 0.43 0.35 0.11 0.03 0.11 0.21 0.28 0.54 0.45 Yb 0.65 0.78 0.87 1.20 2.75 2.35 0.66 0.17 0.61 1.23 1.62 3.16 2.67 Lu 0.09 0.11 0.12 0.18 0.40 0.32 0.08 0.03 0.09 0.19 0.24 0.46 0.36 Rb 6.4 2.5 1.7 1.5 26.5 33.7 1.3 0.4 3.3 2.1 1.3 1.3 3.3 Ba 49.9 33.9 26.1 26.8 279.0 209.0 53.8 4.7 17.7 90.4 105.5 182.5 116.5 Th 0.63 0.38 0.40 0.76 1.93 2.21 0.19 0.05 0.37 0.39 0.08 0.33 0.05 U 0.22 0.17 2.16 0.28 1.59 0.83 0.06 200.00 1 000.00 2 200.00 1 900.00 1 500.00 2 500.00 Nb 1.2 0.5 0.8 1.2 14.2 3.4 1.2 0.2 0.7 4.2 3.8 2.6 1.9 Ta 0.1 0.1 0.1 0.3 1.1 0.3 0.1 0.1 0.1 0.3 0.3 0.2 0.1 Pb 10 21 36 12 8 15 5 5 5 6 5 14 5 Sr 76.9 66.5 82.7 474.0 625.0 393.0 719.0 126.5 119.5 1 045.0 897.0 1 420.0 497.0 Nd 4.6 5.3 3.8 6.2 30.7 14.6 3.5 0.6 3.2 17.9 4.6 12.1 6.6 P 210 110 120 270 2 380 710 80 40 140 1 620 30 270 40 Zr 36 18 22 46 199 117 17 4 23 50 35 45 25 Hf 1.1 0.6 0.8 1.4 5.7 3.4 0.6 0.2 0.7 1.8 1.1 1.7 0.9 Ti 1 690.00 1 760.00 1 870.00 3 030.00 14 900.00 5 850.00 1.13 360.00 1 610.00 11 000.00 23 900.00 12 100.00 11 850.00 Tb 0.19 0.23 0.24 0.35 1.05 0.71 0.88 0.04 0.19 1.01 0.36 0.91 0.50 Y 7.1 8.1 8.6 12.6 30.9 23.8 11 500.0 1.5 7.4 36.7 13.1 31.8 17.7 注:δ=[w(K2O+Na2O)2]/[w(SiO2)-43];Mg#=(MgO/40.31)/(MgO/40.31+Fe2O3T×0.899 8/71.85×0.85)×100. 表 2 单颗粒锆石LA-ICP-MS测年结果
Table 2. LA-ICP-MS dating results for zircon grains
测点 含量(10-6) 年龄(Ma) Pb Th U Th/U 206Pb/238U σ 207Pb/235U σ 207Pb/206Pb σ D003-01 24.3 197.4 467.3 0.42 276.9 3.0 267.0 7.2 183.4 77.8 D003-02 72.1 746.9 1 316.6 0.57 276.6 2.4 293.3 5.3 416.7 48.1 D003-03 21.3 195.5 393.4 0.50 276.1 2.8 292.3 7.9 433.4 72.2 D003-04 29.3 263.0 552.8 0.48 276.8 2.9 280.4 6.8 305.6 63.0 D003-05 44.9 309.0 862.0 0.36 276.8 3.2 307.2 8.3 1 133.0 350.5 D003-06 87.3 1 153.3 1 542.6 0.75 276.3 3.3 265.3 5.4 164.9 45.4 D003-07 24.7 165.0 493.8 0.33 276.4 3.5 265.8 7.6 172.3 70.4 D003-08 69.9 785.4 1 278.0 0.61 276.9 2.5 277.3 5.2 276.0 43.5 D003-09 23.2 171.1 445.7 0.38 279.7 3.8 324.3 10.9 638.9 76.7 D003-10 101.3 1 394.8 1 756.8 0.79 276.7 3.7 277.2 5.5 361.2 111.1 D003-11 78.3 1 256.5 1 317.6 0.95 276.8 2.7 262.8 5.4 146.4 55.5 D003-12 66.9 797.2 1 210.0 0.66 276.9 2.6 272.2 5.5 233.4 53.7 D003-13 26.2 190.3 507.3 0.38 276.0 3.0 276.0 7.6 261.2 70.4 D003-14 45.8 495.3 869.5 0.57 276.5 3.3 275.9 6.2 255.6 53.7 D003-15 72.9 726.2 1 351.0 0.54 276.6 3.0 272.8 5.6 233.4 59.2 D003-16 48.7 512.0 892.8 0.57 276.5 3.0 277.2 6.3 264.9 58.3 D003-17 51.5 560.1 930.7 0.60 276.3 3.7 284.8 8.5 598.2 260.2 D003-18 19.1 138.3 367.8 0.38 277.7 3.3 275.7 7.9 261.2 75.0 D003-19 61.2 701.0 1 109.6 0.63 279.1 2.8 271.1 5.3 190.8 19.4 D003-20 30.3 287.1 564.8 0.51 277.1 2.6 272.5 6.5 227.8 67.6 XS1-1-01 35.8 264.8 692.5 0.38 284.7 2.4 282.4 5.2 333.4 44.4 XS1-1-02 13.1 111.0 243.3 0.46 284.2 2.3 280.7 8.6 261.2 77.8 XS1-1-03 26.7 219.8 525.0 0.42 284.4 2.5 265.1 5.7 101.9 49.1 XS1-1-04 39.3 357.2 744.8 0.48 284.1 1.8 263.4 4.9 76.0 44.4 XS1-1-05 67.0 676.9 1 268.8 0.53 284.2 1.9 281.1 4.0 253.8 33.3 XS1-1-06 51.7 462.1 1 002.5 0.46 284.5 2.0 272.9 3.7 172.3 2.8 XS1-1-07 93.3 1 043.2 1 743.4 0.60 284.9 2.0 276.9 3.6 211.2 27.8 XS1-1-08 26.0 286.2 499.5 0.57 284.6 2.1 282.6 4.7 257.5 40.7 XS1-1-09 51.3 523.8 960.5 0.55 284.8 1.6 305.0 4.3 461.2 34.3 XS1-1-10 34.4 272.0 685.7 0.40 284.7 1.8 266.0 4.3 98.2 42.6 XS1-1-11 69.0 794.7 1 290.9 0.62 284.8 2.4 269.8 3.7 200.1 31.5 XS1-1-12 21.7 177.2 427.9 0.41 284.3 2.4 282.7 6.2 264.9 55.5 XS1-1-13 17.1 161.2 329.9 0.49 284.9 2.2 273.2 7.0 183.4 67.6 XS1-1-14 76.1 1 028.1 1 357.3 0.76 284.4 1.7 291.4 6.1 346.4 33.3 XS1-1-15 32.1 255.4 632.3 0.40 284.9 1.8 265.9 7.2 109.4 36.1 XS1-1-16 20.7 207.5 393.7 0.53 284.2 2.1 268.1 9.4 146.4 62.0 XS1-1-17 35.2 340.4 670.9 0.51 284.3 1.8 263.7 8.1 101.9 50.0 XS1-1-18 69.8 516.0 1 398.4 0.37 284.3 2.1 268.0 6.5 200.1 31.5 XS1-1-19 19.7 134.6 397.6 0.34 284.6 2.4 267.7 7.5 124.2 55.6 XS1-1-20 44.8 450.2 784.0 0.57 305.1 1.7 290.9 5.3 183.4 37.0 XS1-1-21 80.2 1 030.5 1 424.0 0.72 287.5 2.2 289.4 4.2 322.3 35.2 -
[1] Allegre, C.J., Minster, J.F., 1978. Quangtitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1 [2] Bai, Y.L., 1993. Geological-Geochemical Characteristics and Tectonic Significance of the Ophiolites Block in Huangshan Area, Xinjiang. Xinjiang Geology, 11(1): 34-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI199301003.htm [3] Cai, T.C., 1999. Lithostratigraphy of the Xinjiang Uygur Autonomous Region. China University of Geosciences Press, Wuhan, 239-241 (in Chinese). [4] Chen, B., Xia, M.Z., Wang, B.Y., et al., 2011. Lithogeochemistry and Petrogenesis of Huangshan Intrusion, East Tianshan, Xinjiang. Mineral Petrol, 31(1): 11-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201101002.htm [5] Cox, K.G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. doi: 10.1093/petrology/21.4.629 [6] Eby, G.N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1-2): 115-134. doi: 10.1016/0024-4937(90)90043-Z [7] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [8] Gu, L.X., Zhu, J.L., Guo, J.C., et al., 1994. The East Xinjiang-Type Mafic-Ultramafic Complexes in Orogenic Environments. Acta Petrologica Sinica, 10(4): 339-356 (in Chinese with English abstract). [9] Gu, L.X., Zhang, Z.Z., Wu, C.Z., et al., 2006. Some Problems on Granites and Vertical Growth of the Continental Crust in the Eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103-1120 (in Chinese with English abstract). http://www.researchgate.net/publication/235353475_Some_problems_on_granites_and_vertical_growth_of_the_continental_crust_in_the_eastern_Tianshan_Mountains_NW_China [10] Gu, L.X., Zhang, Z.Z., Wu, C. Z, et al., 2007. Permian Geological, Metallurgical and Geothermal Events of the Huangshan-Jingerquan Area, Eastern Tianshan: Indications for Mantle Magma Intraplating and Its Effect on the Crust. Acta Petrologica Sinica, 23(1): 2869-2880 (in Chinese with English abstract). http://www.researchgate.net/publication/235353477_Permian_geological_metallurgical_and_geothermal_events_of_the_Huangshan-Jing'_erquan_area_eastern_Tianshan_Indications_for_mantle_magma_intraplating_and_its_effect_on_the_crust [11] Gu, X.W., Guo, Q., 2007. Geological Characteristics and Metallogeny of East Tianshan Mountain Jinshan. Xinjiang Geology, 25(3): 274-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200703010.htm [12] Guo, J.C., Hu, S.X., Gu, L.X., et al., 1992. Geological Features and Tectonic Evolution of East Tianshan Caledonian Trench-Arc-Basin Fold Belt. Journal of Nanjing University (Natural Sciences Edition), 28(3): 431-438 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ199203011.htm [13] Han, B.F., Wang, S.G., Jahn, B.M., et al., 1997. Depeleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implication for Phanerozoic Crustal Growth. Chemical Geology, 138(3-4): 135-159. doi: 10.1016/S0009-2541(97)00003-X [14] Han, B.F., Ji, J.Q., Sun, B., et al., 2004. SHRIMP Zircon U-Pb Ages of Kalatongke No. 1 and Huangshandong Cu-Ni-Bearing Mafic-Ultramafic Complexes, North Xinjiang, and Geological Implications. Chinese Science Bulletin, 49(2): 2424-2429. doi: 10.1007/BF03183432 [15] Han, C.M., Mao, J.W., Yang, J.M., et al., 2002. Type of Late Palaeozoic Endogenetic Metal Deposits and Related Geodynamical Evolution in the East Tian. Acta Geologica Sinica, 76(2): 222-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200202013.htm [16] Han, C.M., Xiao, W.J., Zhao, G.C., et al., 2010. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3): 547-562. doi: 10.1016/j.lithos.2010.09.019 [17] Hess, P.C., 1993. Phase Equilibria Constraints on the Origin of Ocean Floor Basalts. Geophysical Monograph-American Geophysical Union, 71: 67-67. doi: 10.1029/GM071p0067 [18] Hole, M.J., Saunders, G.F., Marriner, T.J., 1984. Subduction of Pelagic Sediments: Implication for the Origin of Ce-Anomalous Basalts from the Mariana Island. Journal of the Geological Society, 141: 453-472. doi: 10.1144/gsjgs.141.3.0453 [19] Horn, I., Rudnick, R.L., Mcdonough, W.F., 2000. Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and LA-ICP-MS: Application to U-Pb Geochronology. Chemical Geology, 167: 405-425. doi: 10.1016/S0009-2541(99)00168-0 [20] Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05 [21] Ji, J.S., Feng, Y.C., Zhang, L.C., 1998. The Metallogeny of Metallogenic Areas in Eastern Tianshan. Mineral Deposits, 17: 197-200 (in Chinese). [22] Kosler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies—A Comparison of Laser Ablation ICP-MS and SIMS Techniques. Chemical Geology, 182: 605-618. doi: 10.1016/S0009-2541(01)00341-2 [23] Li, J.L., Sun, S., Hao, J., et al., 1999. Time Limit of Collision Event of Collision Orogens. Acta Petrologica Sinica, 15(2): 315-32 (in Chinese with English abstract). http://www.oalib.com/paper/1473027 [24] Li, J.X., Qin, K.Z., Xu, X.W., et al., 2007. Geochemistry of Baishiquan Cu-Ni-Bearing Mafic-Ultramafic Complex in East Tianshan, Xinjiang, Constraints on Ore Genesis and Tectonic Setting. Mineral Deposits, 26(1): 43-57 (in Chinese with English abstract). [25] Li, J.Y., He, G.Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjing and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601020.htm [26] Li, J.Y., Xiao, X.C., Tang, Y.Q., et al., 1990. Main Characteristics of Late Paleozoic Plate Tectonic in the Southern Part of East Junggar, Xinjiang. Geological Review, 36(4): 305-316 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199004002.htm [27] Loiselle, M.C., Wones, D.R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468. http://ci.nii.ac.jp/naid/10019593683 [28] Mao, J.W., Pirajno, F., Zhang, Z.H., et al., 2008. A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 32(2-4): 184-203. doi: 10.1016/j.jseaes.2007.10.006 [29] Mao, J.W., Yang, J.M., Qu, W.J., et al., 2003. Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica, 77(2): 220-226. doi: 10.1111/j.1755-6724.2003.tb00565.x [30] McKenzie, D., Bickle, M.J., 1998. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. doi: 10.1093/petrology/29.3.625 [31] Muhetaer, Z., Zhang, X.F., Chen, B., et al., 2010. The Structure Evolution of Easten Tianshan Mts Orogenic Zone in Late Paleozoic and Polymetal Mineral Resources Metallogenic Regularity. Journal of Xinjiang University (Natural Science Edition), 27(1): 5-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJDZ201001004.htm [32] Qin, K.Z., Fang, T.H., Wang, S.L., et al., 2002. Plate Tectonics Division, Evolution and Metalogenic Settings in Eastern Tianshan Mountains, NW-China. Xinjiang Geology, 20(4): 222-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200204002.htm [33] Qin, K.Z., Peng, X.M., San, J.Z., et al., 2003. Type Major Ore Deposits, Division of Metallogenic Belts in Eastern Tianshan, and Discrimination of Potential Prospects of Cu, Au, Ni Mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English abstract). http://www.researchgate.net/publication/313608375_Types_of_major_ore_deposits_division_of_metallogenic_belts_in_eastern_Tianshan_and_discrimination_of_potential_prospects_of_Cu_Au_Ni_mineralization [34] Spath, A., Leroex, A., Akech, N.O., 2001. Plume-Lithosphere Interaction and the Origin of Continental Rift-Related Alkaline Volcanism—The Chyulu Hills Volcanic Province, Southern Kenya. Journal of Petrology, 42(4): 765-787. doi: 10.1093/petrology/42.4.765 [35] Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [36] Wang, J.B., Xu, X., 2006. Post-Collision Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200601002.htm [37] Wang, Y., Li, J.Y., Li, W.Q., 2002. 40Ar-39Ar Chronological Evidence of Dextral Shear and Tectonic Evolution of the Eastern Tianshan Orogenic Belt. Xinjiang Geology, 20(4): 315-319 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_xinjiang-geology_thesis/0201254388098.html [38] Wang, Y.W., Wang, J.B., Wang, L.J., et al., 2004. REE Characteristics of Cu-Ni Sulfide Deposits in the Hami Area Xinjiang. Acta Petrologica Sinica, 20(4): 935-948 (in Chinese with English abstract). http://www.researchgate.net/publication/282395701_REE_characteristics_of_Cu-Ni_sulfide_deposits_in_the_Hami_area_Xinjiang [39] Wang, Y.W., Wang, J.B., Wang, L.J., et al., 2010. PGE Metallogenesis Related to Mafic-Ultramafic Complex in North Xinjiang. Earth Science Frontiers, 17(1): 137-152 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DXQY201001014&dbcode=CJFD&year=2010&dflag=pdfdown [40] Whalen, J.B., Jenner, G.A., Longstaffe, F.J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37(6): 1463-1489. doi: 10.1093/petrology/37.6.1463 [41] Xia, M.Z., 2009. The Mafic-Ultramafic Intrusions in the Huangshan Region Eastern Tianshan, Xinjiang: Petrogenesis and Mineralization Implication (Dissertation) Chang'an University, Xi'an, 22-46 (in Chinese with English abstract). [42] Xia, M.Z., Jiang, C.Y., Qian, Z.Z., et al., 2008. Geochemistry and Petrogenesis for Hulu Intrusion in East Tianshan, Xinjiang. Acta Petrologica Sinica, 24(12): 2749-2760 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200812010.htm [43] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2002. Some Thoughts on the Characteristics of Paleozoic Ocean-Continent Transition from Tianshan Mountains. Northwestern Geology, 35(4): 9-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xbdz200204002 [44] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Geological Bulletin of China, 23(9): 903-910 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=10407789 [45] Xiao, Q.H., Qin, K.Z., Tang, D.M., et al., 2010. Xiangshanxi Composite Cu-Ni-Ti-Fe Deposite Belongs to Comagmatic Evolution Product: Evidence from Ore Microscopy, Zircon U-Pb Chronology and Petrological Geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 26(2): 503-522. http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252023977.html [46] Zhang, L.C., 1999. Study and Prognosis on Geological-Geochemical Dynamics of Mineralization in Kanggultag Gold Copper Ore Belt, East Tianshan (Dissertation). China University of Geosciences, Beijing, 31-34 (in Chinese with English abstract). [47] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008a. Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281. doi: 10.1016/j.chemgeo.2008.01.005 [48] Zhang, Z.H., Mao, J.W., Du, A.D., et al., 2008b. Re-Os Dating of two Cu-Ni Sulfide Deposits in Northern Xinjiang, NW China and Its Geological Significance. Journal of Asian Earth Sciences, 2(2-4): 204-217. doi: 10.1016/j.jseaes.2007.10.005 [49] Zhou, M.F., Lesher, C.M., Yang, Z.X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. doi: 10.1016/j.chemgeo.2004.05.005 [50] Zhu, B.Q., Feng, Y.M., 1994. Plate Tectonics and Evolution in West Junggar of Xinjiang. Xinjiang Geology, 12(2): 91-105 (in Chinese with English abstract). [51] Zhu, W.B., Ma, R.S., Wang, C.Y., 1996. Tectonic Attribute of Huangshan-Jingerquan Complex in Eastern Xinjiang, China. Scientica Geologica Sinica, 31(1): 22-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX601.002.htm [52] 白云来, 1993. 新疆黄山地区蛇绿岩块的地质、地球化学特征及构造意义. 新疆地质, 11(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199301003.htm [53] 蔡土赐, 1999. 新疆维吾尔自治区岩石地层. 武汉: 中国地质大学出版社, 239-241. [54] 陈波, 夏明哲, 王帮耀, 等, 2011. 新疆东天山黄山岩体岩石地球化学特征及岩石成因. 矿物岩石, 31(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201101002.htm [55] 顾连兴, 张遵忠, 吴昌志, 等, 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605005.htm [56] 顾连兴, 张遵忠, 吴昌志, 等, 2007. 东天山黄山-镜儿泉地区二叠纪地质-成矿-热事件: 幔源岩浆内侵及其地壳效应. 岩石学报, 23(11): 2869-2880. doi: 10.3969/j.issn.1000-0569.2007.11.017 [57] 顾连兴, 诸建林, 郭继春, 等, 1994. 造山带环境中的东疆型镁铁-超镁铁杂岩. 岩石学报, 10(4): 339-356. doi: 10.3321/j.issn:1000-0569.1994.04.009 [58] 古学伟, 郭全, 2007. 东天山尖山铜矿床地质特征及成矿规律. 新疆地质, 25(3): 274-278. doi: 10.3969/j.issn.1000-8845.2007.03.009 [59] 郭继春, 胡受奚, 顾连兴, 等, 1992. 加里东造山带在东天山(E 85°~95°)构造格架中的重要地位及其地质特征. 南京大学学报(自然科学), 28(3): 431-438. [60] 韩春明, 毛景文, 杨建明, 等, 2002. 东天山晚古生代内生金属矿床类型和成矿作用的动力学演化规律. 地质学报, 76(2): 222-234. doi: 10.3321/j.issn:0001-5717.2002.02.010 [61] 姬金生, 丰成友, 张连昌, 1998. 东天山成矿区成矿规律研究. 矿床地质, 17: 197-200. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101005.htm [62] 李继亮, 孙枢, 郝杰, 等, 1999. 碰撞造山带的碰撞事件时限的确定. 岩石学报, 15(2): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.019.htm [63] 李金祥, 秦克章, 徐新旺, 等, 2007. 新疆东天山白石泉Cu-Ni硫化物矿床杂岩体的地球化学特征及其对矿床成因和构造背景的制约. 矿床地质, 26(1): 43-57. doi: 10.3969/j.issn.0258-7106.2007.01.004 [64] 李锦轶, 何国琦, 徐新, 等, 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017 [65] 李锦轶, 肖序常, 汤耀庆, 等, 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003 [66] 木合塔尔·扎日, 张晓帆, 陈斌, 等, 2010. 东天山造山带晚古生代构造演化与多金属矿产成矿规律. 新疆大学学报(自然科学版), 27(1): 5-12. doi: 10.3969/j.issn.1000-2839.2010.01.002 [67] 秦克章, 方同辉, 王书来, 等, 2002. 东天山板块构造分区, 演化与成矿地质背景研究. 新疆地质, 20(4): 302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002 [68] 秦克章, 彭晓明, 三金柱, 等, 2003. 东天山主要矿床类型, 成矿区带划分与成矿远景区优选. 新疆地质, 21(2): 143-150. doi: 10.3969/j.issn.1000-8845.2003.02.001 [69] 王京彬, 徐新, 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm [70] 王瑜, 李锦轶, 李文铅, 2002. 东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据. 新疆地质, 20(4): 315-319. doi: 10.3969/j.issn.1000-8845.2002.04.004 [71] 王玉往, 王京彬, 王莉娟, 等, 2004. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义. 岩石学报, 20(4): 935-948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404015.htm [72] 王玉往, 王京彬, 王莉娟, 等, 2010. 新疆北部镁铁-超镁铁质岩的PGE成矿问题. 地学前缘, 17(1): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001014.htm [73] 夏明哲, 2009. 新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用(博士学位论文). 西安: 长安大学, 22-46. [74] 夏明哲, 姜常义, 钱壮志, 等, 2008. 新疆东天山葫芦岩体岩石学与地球化学研究. 岩石学报, 24(12): 2749-2760. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812010.htm [75] 夏林圻, 夏祖春, 徐学义, 等, 2002. 天山古生代洋陆转化特点的几点思考. 西北地质, 35(4): 9-20. doi: 10.3969/j.issn.1009-6248.2002.04.002 [76] 夏林圻, 夏祖春, 徐学义, 等, 2004. 天山石炭纪大火成岩省与地幔柱. 地质通报, 23(9-10): 903-910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2011.htm [77] 肖庆华, 秦克章, 唐冬梅, 等, 2010. 新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物——矿相学、锆石U-Pb年代学及岩石地球化学证据. 岩石学报, 26(2): 503-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002015.htm [78] 张连昌, 1999. 东天山康古尔塔格金铜矿带成矿地质地球化学动力学研究及预测(博士学位论文). 北京: 中国地质大学, 31-34. [79] 朱宝清, 冯益民, 1994. 新疆西准噶尔板块构造及演化, 新疆地质, 12(2): 91-105. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI402.000.htm [80] 朱文斌, 马瑞士, 王赐银, 1996. 论新疆东部黄山-镜儿泉杂岩带的构造属性. 地质科学, 31(1): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.002.htm