Seismic Facies Classification Based on Bayesian Networks
-
摘要: 为了解决传统多地震属性的地震相分类方法中"难以引入先验信息用以指导分类,难以给出地震相分类结果可靠程度的定量估计,且各分类参数的权值较难确定"这3个问题,提出了一种新的基于贝叶斯网络的地震相分类方法.该分类方法有效地融合了先验信息和训练样本的分布特征,对提取的多种地震属性进行智能分析,以概率推理的方式得到各地震相类别的概率值,并根据概率分布估计分类结果的可靠程度.详述了贝叶斯网络用于地震相分类的原理与方法,并结合理论地震数据,验证了该方法的可行性和正确性.Abstract: There are three challenging issues in traditional seismic facies classification based on seismic attributes. Firstly, it is difficult to introduce priori-information into the processing of classification to enhance the result of seismic facies classification. Secondly, it is difficult to quantitatively evaluate reliability of the result for seismic facies classification. Thirdly, it is difficult to determine the weights of all parameters of Bayesian networks in classification. In order to solve the above-mentioned problems, this paper proposes a new approach of seismic facies classification based on Bayesian networks, which effectively combines the priori-information and probability distribution of the training samples to construct a reasonable classification model, and deduce the probability for each of seismic facies. According to the probability distribution of each seismic facies, we could estimate the reliability of the classification results in a quantitative manner. The principles and workflow are presented in detail for applying Bayesian networks to seismic facies classification. The numerical experiment proves that this method is correct and feasible.
-
Key words:
- Bayesian networks /
- seismic facies classification /
- seismic attribute /
- data mining
-
图 3 塔里木一间房组生物礁滩露头剖面(据焦养泉等, 2011)
a.剖面照片;b.剖面写实
Fig. 3. Reef outcrop of Bachu Yijianfang Formation in northwest Tarim
图 5 地震属性
a.绝对平均振幅;b.均方根振幅;c.瞬时振幅;d.瞬时频率;e.绝对距离;f.欧氏距离;g.互相关距离;h.相似系数
Fig. 5. Seismic attributes computed from Fig. 4(b)
表 1 岩石物性测量结果
Table 1. Results of petrophysical measurement
成因相组合 成因相 纵波波速(m/s) 密度(kg/m3) 均值 标准差 均值 标准差 生物礁 礁核 4 771 734.7(±15.4%) 2 690 24.2(±0.9%) 礁基 3 057 596.1(±19.5%) 2 627 63.0(±2.4%) 生物滩 内滩 2 221 417.5(±18.8%) 2 595 67.5(±2.6%) 外滩 3 054 910.1(±29.8%) 2 616 65.4(±2.5%) 台缘背景沉积 台地 4 374 852.9(±19.5%) 2 613 78.4(±3%) 下伏地层 5 500 - 2 700 - 表 2 贝叶斯网络节点定义
Table 2. The categories of nodes in Bayesian networks
变量名 分类结果 瞬时振幅 瞬时频率 均方根振幅 平均绝对振幅 绝对距离 欧式距离 互相关 相似系数 编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ -
[1] Cooper, G.F., Herskovits, E., 1992. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9(4): 309-347. [2] de Matos, M.C., Osorio, P.L.M., Johann, P.R.S., 2007. Unsupervised Seismic Facies Analysis Using Wavelet Transform and Self-organizing Maps. Geophysics, 72(1): 9-21. doi: 10.1190/1.2392789 [3] Dumay, J., Fournier, F., 1988. Multivariate Statistical Analyses Applied to Seismic Facies Recognition. Geophysics, 53(9): 1151-1159. doi: 10.1190/1.1442554 [4] Grammer, G.M., Harris, P.M., Eberli G.P., 2004. Integration of Outcrop and Modern Analogs in Reservoir Modeling. AAPG Memoir, 80: 1-22. http://www.researchgate.net/publication/284648391_Integration_of_outcrop_and_modern_analogs_in_reservoir_modeling_Overview_with_examples_from_the_Bahamas [5] Heckerman, D., 1990. Probabilistic Similarity Networks. Networks, 20(5): 607-636. doi: 10.1002/net.3230200508 [6] Jiao, Y.Q., Rong, H., Wang, R., et al., 2011. Reservoir Depositional System Analysis of Ordovician Carbonate Platform Margin in Yijianfang Outcrops of Western Tarim Basin. Acta Petrologica Sinica, (1): 285-296 (in Chinese with English abstract). [7] Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2012. Paleoecology of the Ordovician Reef-Shoal Depositional System in the Yijianfang Outcrop of the Bachu Area, West Tarim Basin. Journal of Earth Science, 23(4): 408-420. doi: 10.1007/s12583-012-0264-3 [8] John, A., Lake, L., Torres-Verdin, C., et al., 2008. Seismic Facies Identification and Classification Using Simple Statistics. SPE Reservoir Evaluation & Engineering, 11(6): 984-990. doi: 10.2118/96577-PA [9] Korb, K.B., Nicholson, A.E., 2004. Bayesian Artificial Intelligence. CRC Press, Boca Raton, 28. [10] Langley, P., 1993. Induction of Recursive Bayesian Classifiers. Machine Learning, 667: 153-164. doi: 10.1007/3-540-56602-3_134 [11] Neapolitan, R.E., 2004. Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle River, New Jersey, 13-15. [12] Pearl, J., 1986. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 29(3): 241-288. doi: 10.1016/0004-3702(86)90072-X [13] Porwal, A., Carranza, E.J.M., Hale, M., et al., 2006. Bayesian Network Classifiers for Mineral Potential Mapping. Computers & Geosciences, 32(1): 1-16. doi: 10.16/j.cageo.2005.03.018 [14] Saggaf, M., Toksoz, M., Marhoon, M., 2003. Seismic Facies Classification and Identification by Competitive Neural Networks. Geophysics, 68(6): 1984-1999. doi: 10.1190/1.1635052 [15] Sun, L.L., Shenoy, P.P., 2007. Using Bayesian Networ-ks for Bankruptcy Prediction: Some Method-ological Issues. European Journal of Operational Research, 180(2): 738-753. doi: 10.1016/j.ejor.2006.04.019 [16] Zeng, F.P., Zhu, P.M., Jiao, Y.Q., et al., 2009. Relations-hip Between Sedimentary System and Acoustic Velocity of Rocks from Marine Strata in Keping-Bachu Area. Acta Sedimentologica Sinica, 27(2): 312-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200902015.htm [17] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2011. High Resolution Three-Dimensional Facies Architecture Delineation Using Sequence Stratigraphy, Seismic Sedimentology: Example from Dongying Formation in BZ3-1 Block of Western Slope of Bozhong Sag, Bohai Bay Basin. Earth Science—Journal of China University of Geosciences, 36(6): 1073-1084 (in Chinese with English abstract). [18] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2013. Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data: An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science—Journal of China University of Geosciences, 38(1): 121-129 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.012 [19] 焦养泉, 荣辉, 王瑞, 等, 2011. 塔里木盆地西部一间房露头区奥陶系台缘储层沉积体系分析. 岩石学报, (1): 285-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101021.htm [20] 曾凡平, 朱培民, 焦养泉, 等, 2009. 柯坪-巴楚露头区海相地层声波速度与沉积体系的关系. 沉积学报, 27 (2): 312-318. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902015.htm [21] 朱红涛, 杨香华, 周心怀, 等, 2011. 基于层序地层学和地震沉积学的高精度三维沉积体系: 以渤中凹陷西斜坡BZ3-1区块东营组为例. 地球科学——中国地质大学学报, 36(6): 1073-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106013.htm [22] 朱红涛, 杨香华, 周心怀, 等, 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学——中国地质大学学报, 38(6): 1073-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301016.htm