Deformation Microstructures and Mechanism of Ultrahigh-Pressure Garnet Wehrlite from Bixiling, Dabie Mountains
-
摘要: 对超高压变质带中橄榄岩变形显微构造的研究, 有助于了解板块边界构造环境中地幔物质的流变性质和变形机制, 进而探讨其在深俯冲/折返过程中的地球动力学过程的作用.采用光学显微镜、电子探针、红外光谱、电子背散射衍射(EBSD)、位错氧化缀饰等多种方法系统研究了来自中国大别碧溪岭的石榴异剥橄榄岩中的变形显微构造.研究结果表明: (1)碧溪岭石榴异剥橄榄岩发育较好的形状优选方位, 但只有单斜辉石显示了强晶格优选方位, 而橄榄石晶格优选方位很弱, 与常见上地幔橄榄岩中单斜辉石组构弱而橄榄石组构强的特点差异显著, 反映了单斜辉石经历位错蠕变而橄榄石经历位错调节的颗粒边界滑移变形; (2)碧溪岭异剥橄榄岩中单斜辉石和橄榄石均含有一定量的结构水, 其中单斜辉石含水量124×10-6~274×10-6, 橄榄石含水量38×10-6~80×10-6, 高于常见造山带橄榄岩中各矿物的含水量, 可能反映了壳源物质混染引起的高含水量变形环境; (3)橄榄石中发育显著位错显微构造, 根据位错显微构造计算的变形差异应力为230~600 MPa, 高于正常上地幔稳态流变应力, 反映了俯冲带中的相对低温变形环境.综合分析研究表明, 超高压变质带中的高压、低温、高差异应力和高结构水含量是形成碧溪岭相对独特的橄榄石、单斜辉石变形显微构造的原因.Abstract: Studies of deformed microstructures of peridotite in ultrahigh-pressure metamorphic belt are conductive to understand rheological property and deformation mechanism of mantle materials derived from plate boundary, then further to explore the effect of microstructures during geodynamic process of the deep subduction and exhumation. Deformed microstructures of garnet wehrlite from Bixiling, Dabie Mountains are systematically studied through optical microscope, electron probe, infrared spectroscopy, electron back scattered diffraction (EBSD) technique and the method of oxidation decoration. Results show that: (1) garnet wehrlite from Bixiling with strong shape preferred orientation (SPO), but only clinopyroxene with strong lattice preferred orientation (LPO) and olivine with weak lattice preferred orientation, which is obviously different from the common characteristics of mantle peridotite which exhibits the stronger fabric in olivine than in clinopyroxene and in addition, reflects that clinopyroxene deforms through dislocation creep but olivine through grain boundary sliding with the adjustment of dislocation; (2) certain content of structural water are contained in clinopyroxene and olivine of garnet wehrlite from Bixiling, clinopyroxene with 124×10-6-247×10-6 and olivine with 38×10-6-80×10-6, which are higher than that in minerals of general peridotite in orogenic belt and may reflect the environment with high water content caused by the contamination of crust material; (3) significant dislocation microstructures developed in olivine and 230-600 MPa of differential stress calculated by the dislocation microstructures which is higher than the steady flow stress of normal upper mantle and indicates that our samples once have experienced the relative low-temperature deforming environment in subduction zone. Comprehensive study shows that the relatively special deforming microstructures in olivine and clinopyroxene from Bixiling attribute to the high pressure, low temperature, high differential stress and structural water content in ultrahigh-pressure metamorphic belt.
-
图 1 碧溪岭石榴异剥橄榄岩岩石学特征
a.样品BXL-1手标本,显示面理和蛇纹石化作用;b.样品BXL-2标本,黑色方框中为蛇纹石化较轻微区域;c.被蛇纹石隔离成孤岛状的橄榄石和石榴石中的钛斜硅镁石包裹体;d.单斜辉石和其中的钛斜硅镁石包裹体;e.发生了亚颗粒化的单斜辉石;f.样品BXL-10中显示强形状优选方位的单斜辉石和橄榄石,同一橄榄石被蛇纹石切割为若干小颗粒;Ol.橄榄石;Cpx.单斜辉石;Grt.石榴石;Serp.蛇纹石;Chu.钛斜硅镁石
Fig. 1. Petrographic characteristics of the garnet wehrlite from Bixiling
表 1 碧溪岭石榴异剥橄榄岩中主要矿物化学成分平均值(%)
Table 1. The averaged chemical composition of major constituent minerals in the garnet wehrlite from Bixiling
样品号 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O 总量 BXL-1 Ol 39.906 0.031 0.034 0.001 13.895 0.057 45.690 0.005 0.005 0.008 99.632 Fo=85 Cpx 54.665 0.050 1.977 0.735 5.601 0.031 14.082 18.915 3.314 0.001 99.370 Grt 39.686 0.056 21.388 1.208 17.672 0.550 15.084 3.863 0.015 0.004 99.526 Di=75 Mt 0.081 0.833 1.332 5.210 84.587 0.180 0.392 0.000 0.012 0.005 92.633 Pyr=57 Serp 42.730 0.031 0.832 0.001 3.298 0.006 37.939 0.045 0.011 0.003 84.895 BXL-10 Ol 40.109 0.031 0.035 0.002 13.995 0.063 45.453 0.002 0.012 0.010 99.712 Fo=84 Cpx 49.160 0.148 8.834 0.410 6.613 0.078 19.791 10.262 2.188 0.387 97.420 Grt 39.760 0.054 20.849 1.601 17.960 0.607 14.513 4.168 0.023 0.011 99.545 Di=69 Mt 0.082 0.905 1.665 6.152 82.900 0.124 0.791 0.000 0.017 0.004 92.640 Phy=55 Serp 43.172 0.029 0.801 0.002 3.311 0.019 38.107 0.036 0.022 0.009 85.507 BXL-14 Ol 39.818 0.031 0.023 0.001 14.715 0.062 45.077 0.005 0.001 0.001 99.733 Fo=84 Cpx 54.960 0.061 2.696 0.841 6.070 0.032 12.937 17.775 4.024 0.036 99.434 Grt 39.585 0.057 21.581 1.073 18.038 0.631 14.553 3.980 0.017 0.009 99.524 Di=69 Mt 0.081 0.816 1.213 5.234 84.472 0.076 0.752 0.000 0.016 0.004 92.664 Serp 43.268 0.033 0.830 0.001 2.782 0.003 38.283 0.049 0.011 0.009 85.267 Pyr=55 Chu 37.537 4.119 0.057 0.041 14.296 0.071 43.578 0.015 0.056 0.026 99.796 注:样品中各矿物的的电子探针成分分析(%);Fo.橄榄石镁值, Mg# =100×Mg/(Mg+Fe);Di.单斜辉石中透辉石成分,Di=100×[Ca-(Al-Na-K+Fe3+)/2];Pyr.石榴石镁铝质成分,Pyr=100×Mg/(F2++Ca+Mn+Mg);Ol.橄榄石;Cpx.单斜辉石;Grt.石榴石;Mt.磁铁矿(Fe2+和Fe3+同时存在);Serp.蛇纹石;Chu.钛斜硅镁石. 测试单位为中国地质大学(武汉)地质过程与矿产资源国家重点实验室电子探针实验室,仪器型号为JXA-8100. 表 2 碧溪岭石榴异剥橄榄岩中橄榄石和单斜辉石的含水量
Table 2. Water contents of olivine and clinopyroxene in the garnet wehrlite from Bixiling
样品号 矿物种类 颗粒数 含水量(10-6) 最大值 最小值 平均值 BXL-1 Ol 13 196 11 70 Cpx 24 501 31 236 BXL-2 Ol 15 66 17 38 Cpx 13 369 30 124 BXL-10 Ol 27 136 34 80 Cpx 25 539 92 274 BXL-14 Ol 12 127 16 54 Cpx 14 407 59 174 注:Ol.橄榄石;Cpx.单斜辉石. 表 3 碧溪岭石榴异剥橄榄岩中橄榄石差异应力计算
Table 3. Calculations of differential stress on olivine in the garnet wehrlite from Bixiling
取值 位错壁间距d(μm) 差异应力σ(MPa) σ=1 000/d σ=(d/280)-1/0.67 σ=100×(d/15)-1/0.69 σ=1 462.5/d 几何平均值 4.36 230±17 499±57 600±66 336±25 算术平均值 5.19 193±12 384±38 465±44 282±18 计算公式来源 Durhanm et al., 1977 Karato et al., 1980 Ross et al., 1980 Toriumi, 1979 -
[1] Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5): 465-474. doi: 10.1029/2001JB000679 [2] Bell, D.R., Rossman, G.R., Maldener, J., et al., 2003. Hydroxide in Olivine: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. Journal of Geophysical Research, 108(B2): 2105. doi: 10.1029/2001JB000679 [3] Ben, I.W., Mainprice, D., 1998. An Olivine Fabric Database: An Overview of Upper Mantle Fabrics and Seismic Anisotropy. Tectonophysics, 269(1-2): 145-157. doi: 10.1016/S0040-1951(98)00141-3 [4] Boullier, A.M., Nicolas, A., 1975. Classification of Textures and Fabrics of Peridotite Xenoliths from South African Kimberlites. Physics and Chemistry of the Earth, 9: 467-475. doi: 10.1016/0079-1946(75)90034-8 [5] Carter, N.L., Avé Lallemant, H.G., 1970. High Temperature Flow of Dunite and Peridotite. Geol. Soc. Am. Bull. , 81(8): 2181-2202. doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2 [6] Chen, S., Hiraga, T., Kohlstedt, D.L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 111(B8): 1-14. doi: 10.1029/2005JB003885 [7] Durhanm, W.B., Goetze, C., Black, B., 1977. Plastic Flow of Oriented Single Crystals of Olivine 2, Observation and Interpretation of the Dislocation Structure. Journal of Geophysical Research, 82(36): 5755-5770. doi: 10.1029/JB082i036p05755 [8] Frese, K., Trommsdorf, V., Kunze, K., 2003. Olivine [100] Normal to Foliation: Lattice Preferred Orientation in Prograde Garnet Peridotite Formed at High H2O Activity, Cima di Gagnone(Centre Apls). Contribution to Mineralogy and Petrology, 145(1): 75-86. doi: 10.1007/s00410-002-0434-x [9] Han, Y., Lu, F.X., Yang, S.W., 2009. Microstructure Characteristics of Olivines from Nanshanlong Peridotite and Bixiling Peridotite, Dabie Mountains. Journal of Chinese Electron Microscopy Society, 28(4): 371-379(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXV200904014.htm [10] Hansen, L.N., Zimmerman, M.E., Kohlstedt, D.K., 2011. Grain Boundary Sliding in San Carlos Olivine: Flow Law Parameters and Crystallographic Preferred Orientation. Journal of Geophysical Research, 116(B8): 1-16. doi: 10.1029/2011JE008220 [11] Hirth, G., Kohlstedt, D., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Geophys. Monogr. Ser. , 138: 83-105. doi: 10.1029/138GM06 [12] Hirth, G., Kohlstedt, D.L., 1995a. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle: Deformation in the Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 100(B2): 1981-2001. doi: 10.1029/94JB02128 [13] Hirth, G., Kohlstedt, D.L., 1995b. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle: 2. Deformation in the Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 100(B8): 15441-15449. doi: 10.1029/95JB01292 [14] Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., et al., 2003. Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow. Science, 301(5637): 1227-1230. doi: 10.1126/science.1087132 [15] Hu, L., Liu, J.L., Ji, M., et al., 2009. Atlas of Identifying Microstructures Deformed. Geological Press, Beijing(in Chinese). [16] Jiao, S.Q., Wang, Q., Tan, Z.S., 1999. Rheological Research into Bixiling Ultrahigh-Pressure Peridotite in Dabie Mountains. Earth Science—Journal of China University of Geosciences, 24(6): 595-600(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199906008.htm [17] Jin, Z.M., GreenⅡ, H.W., Borch, R.S., 1989. Microstructures of Olivine and Flow Stresses in the Upper Mantle beneath Eastern China. Earth Science—Journal of China University of Geosciences, 14(Suppl. ): 69-79(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/0040195189901819 [18] Jin, Z.M., GreenⅡ, H.W., Chen, X.H., 1991. A Study of Dislocation in Olivine Using a Scanning Electron Microscope. Acta Petrologica et Mineralogical, 10(1): 44-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW199101005.htm [19] Jin, Z.M., Jin, S.Y., Gao, S., et al., 1998. Whether the Formation Depth of Ultrahigh-Pressure Rocks in Dabie were Limited in 100-150 km? Discovery of Needle Magnetite Containing Titanium and Chrome and the Consideration of its Dynamic Implication. Chinese Science Bulletin, 43(1): 767-771(in Chinese). [20] Jung, H., 2009. Deformation Fabrics of Olivine in Val Malenco Peridotite Found in Italy and Implications for the Seismic Anisotropy in the Upper Mantle. Lithos, 109(3-4): 341-349. doi: 10.1016/j.lithos.2008.06.007 [21] Jung, H., Karato, S., 2001. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460-1463. doi: 10.1126/science.1062235 [22] Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice Preferred Orientation of Olivine. Tectonophysics, 421: 1-22. doi: 10.1016/j.tecto.2006.02.011 [23] Karato, S., 1986. Does Partial Melting Reduce the Creep Strength of the Upper Mantle? Nature, 319: 309-310. dio: 10.1038/319309a0 doi: 10.1038/319309a0 [24] Karato, S., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet Sci. , 36: 59-95. doi: 10.1146/annurev.earth.36.031207.124120 [25] Karato, S., Toriumi, M., Fujii, T., 1980. Dynamic Recrystallization of Olivine Single Crystals during High-Temperature Creep. Geophys. Res. Lett. , 7(9): 649-652. doi: 10.1029/GL007i009p00649 [26] Katayama, I., Jung, H., Karato, S., 2004. A New Type of Olivine Fabric from Deformation Experiments at Modest Water Content and Low Stress. Geology, 32(12): 1045-1048. doi: 10.1130/G20805.1 [27] Katayama, I., Karato, S.I., 2006. Effect of Temperature on the B- to C-Type Olivine Fabric Transition and Implication for Flow Pattern in Subduction Zones. Physics of the Earth and Planetary Interiors, 157(1-2): 33-45. doi: 10.1016/j.pepi.2006.03.005 [28] Liu, X.W., Jin, Z.M., Green, H.W., 2007. Clinoenstatite Exsolution in Diopsidic Augite of Dabieshan: Garnet Peridotite from Depth of 300 km. American Mineralogist, 92(4): 546-552. doi: 10.2138/am.2007.2232 [29] Mackwell, S.J., Kohlstedt, D.L., Paterson, M.S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res. , 90(B13): 11319-11333. doi: 10.1029/JB090iB13p11319 [30] Mainprice, D., Tommasi, A., Couvy, H., et al., 2005. Pressure Sensitivity of Olivine Slip Systems and Seismic Anisotropy of Earth's Upper Mantle. Nature, 433: 731-733. doi: 10.1038/nature03266 [31] Mei, S., Kohlstedt, D.L., 2000a. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research, 105(B9): 21457-21469. doi: 10.1029/2000JB900179 [32] Mei, S., Kohlstedt, D.L., 2000b. Influence of Water on Plastic Deformation of Olivine Aggregates: 2. Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21471-21481. doi: 10.1029/2000JB900180 [33] Mercier, J.C.C., 1985. Olivine and Pyroxenes. In: Wenk, H.R., ed., Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis. Academic Press, New York, 407-430. [34] Michibayashi, K., Kusafuka, Y., Satsukawa, T., et al., 2012. Seismic Properties of Peridotite Xenoliths as a Clue to Imaging the Lithospheric Mantle beneath NE Tasmania, Australia. Tectonophysics, 522-523: 218-223. doi: 10.1016/j.tecto.2011.12.002 [35] Mizukami, T., Wallis, S.R., Yarnamoto, J., 2004. Natural Examples of Olivine Lattice Preferred Orientation Patterns with a Flow Normal a-Axis Maximum. Nature, 427: 432-436. doi: 10.1038/nature02179 [36] Möckel, J.R., 1969. Structural Petrology of the Garnet Peridotite of Alpe Arami(Ticino Switzerland). Leidse Geol. Med., 42: 61-130. [37] Ohuchi, T., Kawazoe, T., Nishihara, Y., et al., 2011. High Pressure and Temperature Fabric Transitions in Olivine and Variations in Upper Mantle Seismic Anisotropy. Earth Planet. Sci. Lett. , 304(1-2): 55-63. doi: 10.1016/j.epsl.2011.01.015 [38] Paterson, M.S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bulletin de Mineral, 1: 20-29. [39] Poirier, J.P., 1985. Creep of Crystals. Cambridge Univ. Press, New York. [40] Raterron, P., Amiguet, E., Chen, J.H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 172(1-2): 74-83. doi: 10.1016/j.pepi.2008.07.026 [41] Raterron, P., Chen, J., Li, L., et al., 2007. Pressure-Induced Slip System Transition in Forsterite: Single Crystal Rheological Properties at Mantle Pressure and Temperature. American Mineralogist, 92(8-9), 1436-1445. doi: 10.2138/am.2007.2474 [42] Raterron, P., Jaoul, O., 1991. High-Temperature Deformation of Diopside Single Crystal: 1. Mechanical Data. J. Geophys. Res. , 96(B9): 14277-14286. doi: 10.1029/91JB01205 [43] Ross, J.V., Avè-Lallemant, H.G., Carter, N.L., 1980. Stress Dependence of Recrystallized-Grain and Subgrain size in Olivine. Tectonophysics, 70(1-2): 39-61. doi:org/ 10.1016/0040-1951(80)90020-7 [44] Sawaguchi, T., 2004. Deformation History and Exhumation Process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379(1-4): 109-126. doi: 10.1016/j.tecto.2003.10.011 [45] Scott, T., Kohlstedt, D.L., 2006. The Effect of Large Melt Fraction on the Deformation Behavior of Peridotite. Earth and Planetary Science Letters, 246(3-4): 177-187. doi: 10.1016/j.epsl.2006.04.027 [46] Skemer, P., Katayama, I., Karato, S.I., 2006. Deformation Fabrics of the Cima di Gagnone Peridotite Massif, Central Alps, Switzerland: Evidence of Deformation at Low Temperatures in the Presence of Water. Contrib. Mineral. Petrol. , 152(1): 43-51. doi: 10.1007/s00410-006-0093-4 [47] Smith, D.C., 1984. Coesite in Clinopyroxene in the Caledonides and its Implications for Geodynamics. Nature, 310: 641-644. doi: 10.1038/310641a0 [48] Song, Y.R., Jin, S.Y., Ye, K., 2007. Olivine Fabric in Garnet Iherzolite from Rongcheng and Bixiling of Sulu-Dabie Ultrahigh-Pressure(UHP) Metamorphic Belt, Eastern China. Act Petrologica Sinica, 23(5): 1153-1159(in Chinese with English abstract). [49] Tommasi, A., Vauchez, A., Ionov, D.A., 2008. Deformation, Static Recrystallization, and Reactive Melt Transport in Shallow Subcontinental Mantle Xenoliths (Tok Cenozoic Volcanic Field, SE Siberia). Earth Planet. Sci. Lett. , 272(1-2): 65-77. doi: 10.1016/j.epsl.2008.04.020 [50] Toriumi, M., 1979. Relation between Dislocation Density and Subgrain Size in Naturally Deformed Olivine in Peridotite. Contrib. Mineral. Petrol. , 68(2): 181-186. doi: 10.1007/BF00371899 [51] Van Roermund, H.L.M., Drury, M.R., 1998. Ultrahigh Pressure (P > 6 Gpa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from > 185 km Depth. Terra Nova, 10(6): 295-301. doi: 10.1046/j.1365-3121.1998.00213.x [52] Wang, Q., 2010. A Review of Water Contents and Ductile Deformation Mechanisms of Olivine: Implications for the Lithosphere-Asthenosphere Boundary of Continents. Lithos, 120(1-2): 30-41. doi: 10.1016/j.lithos.2010.05.010 [53] Wang, X., Liou, J.G., Mao, H.K., 1989. Coesite Bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085-1088. doi:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2 [54] Wang, Y.F., Jin, Z.M., 2001. Diffusion Creep of Rocks and Its Implication. Geological Science and Technology Information, 20(4): 5-11(in Chinese with English abstract). [55] Wang, Y.F., Zheng, Y.F., Jin, Z.M., 2005. Microstructures and Rheology of Harzburgite from Dongqiao, Northern Tibet. Earth Science—Journal of China University of Geosciences, 30(1): 52-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501007.htm [56] Xu, S., Su, W., Liu, Y.C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. doi: 10.1126/science.256.5053.80 [57] Xu, Z.Q., Zhang, Z.M., Liu, F.L., et al., 2003. Exhumation Structure and Mechanism of the Sulu Ultrahigh-Pressure Metamorphic Belt, Central China. Acta Geologica Sinica, 77(4): 433-450(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200304000.htm [58] Ye, K., Cong, B., Ye, D., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566 [59] Zhang, R.Y., Liou, J.G., 1998. Dual Origin of Garnet Peridotites of the Dabie-Sulu UHP Terrane, Eastern-Central China. Episodes, 21(4): 229-234. doi: 10.18814/epiiugs/1998/v21i4/003 [60] Zhang, R.Y., Liou, J.G., Cong, B.L., 1995. Talc-, Magnesite- and Ti-Clinohumite Bearing Ultrahigh-Pressure Meta-Mafic and Ultramafic Complex in the Dabie Mountains, China. J. Petrology, 36(4): 1011-1037. doi: 10.1093/petrology/36.4.1011 [61] Zheng, Y.F., 2008. Progress of Study on Ultrahigh-Pressure Metamorphism and Collision of Continents: A Case Study from Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(18): 2129-2152(in Chinese). doi: 10.1360/csb2008-53-18-2129 [62] 韩勇, 路凤香, 杨善武, 2009. 大别山碧溪岭及南山岭两岩体中橄榄石的显微构造特征. 电子显微学报, 28(4): 371-379. doi: 10.3969/j.issn.1000-6281.2009.04.013 [63] 胡玲, 刘俊来, 纪沫, 等, 2009. 变形显微构造识别图册. 北京: 地质出版社. [64] 焦述强, 王强, 谭子珊, 1999. 碧溪岭超高压石榴橄榄岩的流变学研究. 地球科学——中国地质大学学报, 24(6): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199906008.htm [65] 金振民, Green, H.W., Borch, R.S., 1989. 橄榄石显微构造和中国东部上地幔流动应力. 地球科学——中国地质大学学报, 14(S1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1989S1013.htm [66] 金振民, GreenII, H.W., Chen, X.H., 1991. 橄榄石位错构造的扫描电子显微镜研究. 岩石矿物学杂志, 10(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199101005.htm [67] 金振民, 金淑燕, 高山, 等, 1998. 大别山超高压岩石形成深度局限于100~150 km吗?——针状含钛铬磁铁矿的发现及动力学意义的思考. 科学通报, 43(1): 767-771. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199807023.htm [68] 宋衍茹, 金淑燕, 叶凯, 2007. 苏鲁-大别山超高压变质带迟家店和碧溪岭石榴二辉橄榄岩橄榄石组构. 岩石学报, 23(5): 1153-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705028.htm [69] 王永锋, 金振民, 2001. 岩石扩散蠕变及其地质意义. 地质科技情报, 20(4): 5-11. doi: 10.3969/j.issn.1000-7849.2001.04.002 [70] 王永锋, 郑有业, 金振民, 2005. 西藏东巧方辉橄榄岩的显微构造特征及其流变学意义. 地球科学——中国地质大学学报, 30(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501007.htm [71] 许志琴, 张泽明, 刘福来, 等, 2003. 苏鲁高压-超高压变质带的折返构造及折返机制. 地质学报, 77(4): 433-450. doi: 10.3321/j.issn:0001-5717.2003.04.001 [72] 郑永飞, 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129-2152. doi: 10.3321/j.issn:0023-074X.2008.18.001