• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下水流动对砷迁移的影响: 大同盆地试验场的观测与模拟

    余倩 谢先军 马瑞 吴亚 李俊霞 王焰新

    余倩, 谢先军, 马瑞, 吴亚, 李俊霞, 王焰新, 2013. 地下水流动对砷迁移的影响: 大同盆地试验场的观测与模拟. 地球科学, 38(4): 877-886. doi: 10.3799/dqkx.2013.086
    引用本文: 余倩, 谢先军, 马瑞, 吴亚, 李俊霞, 王焰新, 2013. 地下水流动对砷迁移的影响: 大同盆地试验场的观测与模拟. 地球科学, 38(4): 877-886. doi: 10.3799/dqkx.2013.086
    YU Qian, XIE Xian-jun, MA Rui, WU Ya, LI Jun-xia, WANG Yan-xin, 2013. Impact of Groundwater Flow on Arsenic Transport: A Field Observation and Simulation in Datong Basin. Earth Science, 38(4): 877-886. doi: 10.3799/dqkx.2013.086
    Citation: YU Qian, XIE Xian-jun, MA Rui, WU Ya, LI Jun-xia, WANG Yan-xin, 2013. Impact of Groundwater Flow on Arsenic Transport: A Field Observation and Simulation in Datong Basin. Earth Science, 38(4): 877-886. doi: 10.3799/dqkx.2013.086

    地下水流动对砷迁移的影响: 大同盆地试验场的观测与模拟

    doi: 10.3799/dqkx.2013.086
    基金项目: 

    国家自然科学基金重点项目 40830748

    详细信息
      作者简介:

      余倩(1986-), 女, 博士研究生, 地下水科学与工程专业.E-mail: yuqian308@126.com

      通讯作者:

      王焰新, E-mail: yx.wang@cug.edu.cn

    • 中图分类号: X141

    Impact of Groundwater Flow on Arsenic Transport: A Field Observation and Simulation in Datong Basin

    • 摘要: 地下水流动特征对水文地球化学特征具有重要控制作用, 研究分析了大同盆地地下水流动特征对高砷水迁移的影响.以山阴县桑干河南岸地下水试验场(SYFS)的监测数据为基础, 建立了河岸带三维非稳定地下水流模型.结果表明, 灌溉在很大程度上影响着地下水位动态变化.灌溉活动减慢了地下水埋深和水平地下水流速, 加速了不同岩性地层之间的垂向水量交换.粉土(L1、L2、L3和L4)、粘土1(L5)和砂1(L6)之间始终存在由上至下的垂向水量交换, 粘土2(L7)、砂2(L8)、粘土3(L9)和砂3(L10)以水平水量交换为主.灌溉水和大气降水从地表向下垂直入渗至含水层的过程中, 推动了地表和包气带沉积物中的砷逐渐向下迁移; 到达含水层后, 水平交换量占主导, 地下水在水平方向上频繁的水量交换促使As在含水层中发生水平迁移.

       

    • 图  1  (a) 山阴试验场平面图和监测井;(b)穿过桑干河的地层剖面;(c)平行桑干河的地层平面

      Fig.  1.  (a) Plan view of the SY field site and the experimental wells; (b) Hydrogeologic cross section across Sanggan river; (c) Hydrogeologic cross section paralle Sanggan river

      图  2  (a) 2011年5月份试验场地地下水位等值线图;(b)地下水位随时间的波动,well1-2, well 2-2, well 3-2, well 4-2, well5-2

      Fig.  2.  (a) Contour map of water level observed in May 2011; (b) Temporal change of water level at well 1-2, well 2-2, well 3-2, well 4-2 and well 5-2, respectively

      图  3  模拟区概化

      a为平面示意;b为剖面示意

      Fig.  3.  Model domain

      图  4  模型校正结果(S、M、D分别代表浅层、中层和深层监测井)

      Fig.  4.  Model calibrations results to the tube wells

      图  5  2011年2月—2011年11月间地面以下13m深度处的水平地下水流速特征

      Fig.  5.  Horizontal groundwater flow velocities simulated at z=-13m from February to November, 2011

      图  6  (a) L1~L6各层之间垂向地下水流净交换量(正值表示方向垂直向下);(b)X=17.5m和X=57.5m位置处,L6~L10各层之间水平地下水流净交换量(正值表示交换量方向由A'到A,负值表示由AA')

      Fig.  6.  (a) Net vertical groundwater flux between L1-L6 (the positive values indicate movement downwards through the model layers); (b) Net horizontal groundwater flux at AA' profile from L6 to L10 with X=17.5m and X=57.7m, respectively

      图  7  AA'剖面地下水砷含量的分布特征(实线箭头示意地下水流向,垂向坐标轴放大两倍)

      Fig.  7.  Simulated flow field overlain with As concentration. As concentrations are shown as shaded counters, and values in parentheses indicate range of intervals

      表  1  地下水流模型中的水力学参数

      Table  1.   Hydraulic properties of aquifers used in model simulations

      水力传导系数K(m/d)a 单位储水系数Ssb 单位给水度Sya 有效孔隙度a 总孔隙度a
      粉土 0.5 1E-4 0.16 0.22 0.35
      粘土 8.64E-4 5E-4 0.01 0.2 0.45
      15 1E-4 0.22 0.25 0.25
      a.据Fetter, 1994;b.据Thangarajan et al., 1999.
      下载: 导出CSV
    • [1] Benner, S.G., Polizzotto, M.L., Kocar, B.D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072-3087. doi: 10.1016/j.apgeoche.2008.06.013
      [2] Berg, M., Stengel, C., Trang, P.T.K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2-3): 413-425. doi: 10.1016/j.scitotenv.2006.09.010
      [3] Charlet, L., Polya, D.A., 2006. Arsenic in Shallow, Reducing Groundwaters in Southern Asia: An Environmental Health Disaster. Elements, 2(2): 91-96. doi: 10.2113/gselements.2.2.91
      [4] Dong, S.G., Tang, Z.H., Liu, B.W., 2008. Numerical Simulation for the Groundwater in Datong Basin and Evaluation of the Optimization of Water Resources. Geotechnical Investigation & Surveying, 3: 30-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC200803011.htm
      [5] Guo, H.M., Wang, Y.X., Shpeizer, G.M., et al., 2003. Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 38(11): 2565-2580. doi: 10.1081/ESE-120024447
      [6] Guo, H.M., Wang, Y.X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3): 109-120. doi: 10.1016/j.gexplo.2005.08.002
      [7] Fetter, C.W., 1994. Applied Hydrogeology (Third Edition). Merrill Pubishing Company, University of Wisconsin, Oshkosh, 75-85.
      [8] Harvey, C.F., Ashfaque, K.N., Yu, W., et al, ,2006. Groundwater Dynamics and Arsenic Contamination in Bangladesh. Chemical Geology, 228(1-3): 112-136. doi: 10.1016/j.chemgeo.2005.11.025
      [9] Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, 430(6995): 68-71. doi: 10.1038/nature02638
      [10] Klump, S., Kipfer, R., Cirpka, O.A., et al., 2006. Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed Using Noble Gases and Tritium. Environmental Science Technology, 40(1): 243-250. doi: 10.1021/es051284w
      [11] Li, J., Wang, Z.H., Cheng, X.T., et al., 2005. Investigation of the Epidemiology of Endemic Arsenism in Ying County of Shanxi Province and the Content Relationship between Water Fluoride and Water Arsenic in Aquatic Environment. Chinese Journal of Endemiology, 24(2): 183-185(in Chinese with English abstract). http://europepmc.org/abstract/CBA/572099
      [12] McArthur, J.M., Banerjee, D.M., Hudson-Edwards, K.A., et al., 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1253-1293. doi: 10.1016/j.apgeochem.2004.02.001
      [13] McDonald, M.G., Harbaugh, A.W., 1988. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. US Geological Survey Technology Water-Resources Investigation.
      [14] Nakaya, S., Natsume, H., Masuda, H., et al. 2011. Effect of Groundwater Flow on Forming Arsenic Contaminated Groundwater in Sonargon, Bangladesh. Journal of Hydrology, 409(3-4): 724-736. doi: 10.1016/j.jhydrol.2011.09.006
      [15] Nickson, R.T., McArthur, J.M., Burgess, W.G., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338. doi: 10.1038/26387
      [16] Nickson, R.T., McArthur, J.M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bangal. Applied Geochemistry, 15(4): 403-413. doi: 10.1016/S0833-2927(99)00086-4
      [17] Pei, Y.H., Liang, S.X., Ning, L.Y., 2005. A Discussion of the Enrichment and Formation of Arsenic in Groundwater in Datong Basin. Hydrogeology and Engineering Geology, 4: 65-69(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200504017.htm
      [18] Postma, D., Larsen, F., Hue, N.T.M., et al., 2007. Arsenic in Groundwater of the Red River Flood Plain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. Geochemical et Cosmochimica Acta, 71(21): 5054-5071. doi: 10.1016/j.gca.2007.08.020
      [19] Smedley, P.L., Kinniburgh, D.G., 2002. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0083-2927(02)00018-5
      [20] Smedley, P.L., Zhang, M., Zhang, G., et al., 2003. Moblization of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of The Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18(9): 1453-77. doi: 10.1016/S0883-2927(03)00062-3
      [21] Smith, A.H., Lingas, E.Q., Rahamn, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull of the World Health Organization, 78(9): 1093-1103. doi: 10.1590/S0042-96862000000900005
      [22] Stute, M., Zheng, Y., Schlosser, P., et al., 2007. Hydrological Control of As Concentrations in Bangladesh Groundwater. Water Resources Research, 43(9). doi: 10.1029/2005WR004499
      [23] Thangarajan, M., Linn, F., Bakaya, U.V., et al., 1999. Modeling an Inland Delta Aquifer System to Evolve Pre-Development Management Schemes: A Case Study Upper Thamalakane River Valley, Botswana, Southern Africa. Environ. Geol. , 38(4), 285-295. doi: 10.1007/s002540050426
      [24] Ven Geen, A., Zheng, Y., Stute, M., et al., 2003. Comments on "Arsenic mobility and Groundwater Extraction in Bangladesh" (Ⅱ). Science, 300(5619): 584-584c. doi: 10.1126/science.1081057
      [25] Wang, Y.X., Ge, M.S., 2000. Hydrogeochemistry of Medical Mineral Water in the East Asian Continental Rift, Take Shanxi and the Begall Valley as an Example. China Environmental Science Press, Beijing (in Chinese).
      [26] Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. doi: 10.1016/j.apgeochem.208.12.015
      [27] Xie, X.J., Wang, Y.X., Su, C.L., et al., 2008. Arsenic Mobilization in Shallow Aquifers of Datong Basin: Hydrochemical and Mineralogical Evidences. Joural of Geochemical Exploration, 98(3): 107-115. doi: 10.1016/j.gexplo.2008.01.002
      [28] 董少刚, 唐仲华, 刘白薇, 等, 2008. 大同盆地地下水数值模拟及水资源优化配置评价. 工程勘察, 3: 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200803011.htm
      [29] 李军, 王正辉, 程晓天, 等, 2005. 山西省应县地方性砷中毒流行病学调查报告. 中国地方病学杂志, 24(2): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDFB20050200S.htm
      [30] 裴捍华, 梁树雄, 宁联元, 2005. 大同盆地地下水中砷的富集规律及成因探讨. 水文地质工程地质, 4: 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200504017.htm
      [31] 王焰新, 葛·马·斯贝泽尔, 2000. 东亚大陆裂谷医疗矿水水文地球化学研究——以山西和贝加尔裂谷系为例. 北京: 中国环境科学出版社.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3143
    • HTML全文浏览量:  121
    • PDF下载量:  334
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-11-02
    • 刊出日期:  2013-07-01

    目录

      /

      返回文章
      返回