Discharging Zones of Overpressure System in Qiongdongnan Basin, Northern South China Sea: Implications for Favorable Sites of Natural Gas Accumulation
-
摘要: 泄压带是超压系统内部流体向外运移的通道和有利的油气聚集场所, 对水溶相天然气析离成藏更有着重要意义.本文综合应用速度谱、测井、钻井和地层测试等资料预测了琼东南盆地超压系统的分布, 将其划分为3种结构类型; 结合粘土分析等资料识别出了4种类型的泄压带, 并讨论了泄压带的分布与可能的天然气聚集区带.琼东南盆地中央坳陷带整体发育一个超压系统, 其分布格局主要受陆坡带的形成和莺歌海盆地超压传递的影响, 陆坡区的超压明显强于非陆坡区, 西部的超压整体强于东部并在浅部呈现自西向东传递的趋势.泄压带内的天然气成藏主要取决于压力、温度和溶解气量, 需满足溶解气量足够多和溶解度变化量足够大, 相对而言, Ⅱ型泄压带成藏条件最优, 既有断裂沟通深部水溶气和浅部储层, 又有温压条件的显著变化, 因而流体运移最活跃.Ⅲ型泄压带次之, 但分布最广, 该类型最有利部位分布在陵水低凸起和宝岛凹陷北坡.Abstract: Discharging zones are channels for fluid to move out from inside the overpressure system and favorable sites for petroleum accumulation, which are of great significance to the accumulation of water-soluble gas by exsolution. The overpressure system distribution of Qiongdongnan basin is predicted and divided into three types based on the comprehensive analysis of the velocity spectrum, logging, drilling and formation test data. In addition, four types of discharging zones are identified according to the mineral analysis. The distribution of discharging zones and possible sites for petroleum accumulation are finally discussed. There exists only one overpressure system which is effected by the development of continental slop system and the pressure transfer from Yinggehai basin, the pressure along the slop belt is much stronger and the top surface of overpressure system in the west is shallower than that in the east. Accumulation of water soluble gas in the pressure discharging zones is totally determined by pressure, temperature and the amount of dissolved gas, and it is vital whether there is adequate amount of dissolved gas and sufficient changes in solubility.The accumulation conditions of type II discharging zone are the most favorable one, resulting in more active fluid activities. The favorable sites of type III discharging zone are distributed near the Lingshui low uplift and the northern slop of Baodao sag, along boundary faults and close to the normal pressure zone.
-
图 8 典型压力预测剖面揭示的泄压带发育特征(剖面位置见图 1)
Fig. 8. Typical profiles of pressure coefficient showing the characteristics of discharging zones
-
[1] Cai, X.Y., 2009. Overpressure Development and Oil Charging in the Central Junggar Basin, Northwest China: Implication for Petroleum Exploration. Science in China (Series D): Earth Sciences, 52(11): 1791-1802. doi: 10.1007/s11430-009-0188-7 [2] Cai, Z.R., Liu, W.L., Wan, Z.F., et al., 2010. Determination of Cenozoic Tectonic Movement in the Northern South China Sea and the Relationship between Oil-Gas Reservoir and Tectonic Movement. Marine Science Bulletin, 29(2): 161-165 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6392.2010.02.007 [3] Chen, H.H., Sun, Y.C., Ye, J.R., et al., 1994. Unique Burial History of Ying-Qiong Basin. China Offshore Oil and Gas, 8(5): 43-50 (in Chinese with English abstract). [4] Chen, H.H., Fu, X.M., Yang, J.M., 1997. Natural Gases Replenishment in YA13-1 Gas Field in Ying-Qiong Basins, South China Sea. Acta Petrolei Sinica, 18(4): 32-37(in Chinese with English abstract). [5] Chen, H.H., Li, S.T., Sun, Y.C., et al., 1998. Two Petroleum Systems Charge the YA13-1 Gas Field in Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 82(5A): 757-772. [6] Fan, H.C., Huang, Z.L., Yuan, J., et al., 2011. Experiment on Solubility of CH4 and CO2 at High Temperature and High Pressure. Journal of China University of Petroleum(Edition of Natural Science), 35(2): 6-11, 19. (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2011.02.002 [7] Gong, Z.S., Li, S.T., Xie, T.J., 1997. Basin Analysis and Petroleum Accumulation of the Northern South China Sea Continental Margin Basin. Science Press, Beijing, 534 (in Chinese). [8] Gong, Z.S., Yang, J.M., Hao, F., et al., 2001. Difference in Natural Gas Accumulation Conditions Between Yinggehai and Qiongdongnan Basins and Its Implications for Natural Gas Exploration. Earth Science—Journal of China University of Geosciences, 26(3): 286-290 (in Chinese with English abstract). [9] Hao, F., Jin, Z.J., Zhou, H.Y., 2005. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins. Science Press, Beijing, 406(in Chinese). [10] Hao, S.S., Zhang, Z.Y., 1993. The Characteristic of the Solubility of Natural Gas in Formation Waters and It's Geological Significance. Acta Petrolei Sinica, 14(2): 12-22(in Chinese with English abstract). [11] Hunt, J.M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12. doi: 10.1306/0C9B21EB-1710-11D7-8645000102C1865D [12] Jin, B., Liu, Z., Li, X., et al., 2007. Genesis and Petroleum Geology Significance of the Stable Compaction Belts of Mud Layer in Yinggehai Basin. Journal of Xi'an Shiyou University (Natural Science Edition), 22(3): 9-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-064X.2007.03.002 [13] Kong, M., 2010. The Analysis of Overpressure and Hydrocarbon Migration in Qiongdongnan Basin. China University of Geosciences, Wuhan(in Chinese). [14] Law, B.E., Ulmishek, G.F., Slavin, V.I., 1998. Abnormal Pressures in Hydrocarbon Environments. American Association of Petroleum Geologists, Tulsa, USA, 258. [15] Leach, W.G., 1993a. Maximum Hydrocarbon Window Determination in South Louisiana. Oil and Gas Journal, 91(13): 81-84. [16] Leach, W.G., 1993b. New Exploration Enhancements in South Louisiana Tertiary Sediments. Oil and Gas Journal, 91(9): 83-87. [17] Leach, W.G., 1993c. Fluid Migration, Hydrocarbon Concentration in South Louisiana Tertiary Sands. Oil and Gas Journal, 91(11): 71-74. [18] Lei, C., Ren, J.Y., Pei, J.X., et al., 2011. Tectonic Framework and Multiple Episode Tectonic Evolution in Deepwater Area of Qiongdongnan Basin, Northern Continental Margin of South China Sea. Earth Science—Journal of China University of Geosciences, 36(1): 151-162 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.016 [19] Li, X.X., Zhong, Z.H., Dong, W.L., et al., 2006. Paleogene Rift Structure and Its Dynamics of Qiongdongnan Basin. Petroleum Exploration and Development, 33(6): 713-721 (in Chinese with English abstract). [20] Liu, F.N., Yang, J.H., Wen, W.M., 1994. The Geopressure Field and Its Relation to Petroleum Migration in Qiongdongnan Basin. China Offshore Oil and Gas (Geology), 8(6): 3-16(in Chinese with English abstract). [21] Ru, K., Pigott, J.D., 1986. Episodic Rifting and Subsidence in the South China Sea. AAPG Bulletin, 70(9): 1136-1155. [22] Shi, W.Z., Xie, Y.H., Wang, Z.F., et al., 2013. Characteristics of Overpressure Distribution and Its Implication for Hydrocarbon Exploration in the Qiongdongnan Basin. Journal of Asian Earth Sciences, 66(8): 150-165. doi: 10.1016/j.jseaes.2012.12.037 [23] Tissot, B.P., Welte, D.H., Schwartz, W., 1984. Petroleum Formation and Occurrence. 2nd ed. Springer-Verlag, Berlin Heidelberg, 699. doi: 10.1007/978-3-642-96446-6 [24] Wan, Z.F., Xia, B., Lu, B.F., et al., 2012. Yinggehai Basin Gas Exploration: Comparison with Jiyang Depression. Journal of Earth Science, 23(3): 359-372. doi: 10.1007/s12583-012-0256-3 [25] Webster, M., O'Connor, S., Pindar, B., et al., 2011. Overpressures in the Taranaki Basin: Distribution, Causes, and Implications for Exploration. AAPG Bulletin, 95(3): 339-370. doi: 10.1306/06301009149 [26] Yin, X.Y., Ren, J.Y., Lei C., et al., 2011. Postrift Rapid Subsidence Characters in Qiongdongnan Basin, South China Sea. Journal of Earth Science, 22(2): 273-279. doi: 10.1007/s12583-011-0180-y [27] Zhang, Q.M., Hao, F., 1997. Evolution and Petroleum Systems of the Ying-Qiong Basin. Science in China (Series D): Earth Sciences, 40(5): 553-560. doi: 10.1007/BF02877623 [28] Zhang, Q.M., 1999. Evolution of Ying-Qiong Basin and Its Tectonic-Thermal System. Natural Gas Industry, 19(1): 12-18 (in Chinese with English abstract). [29] Zhang, Q.M., 2002. Deep Overpressure Gas Accumulation. Chinese Science Bulletin, 47(S1): 78-84. doi: 10.1007/BF02902822 [30] 蔡周荣, 刘维亮, 万志峰, 等, 2010. 南海北部新生代构造运动厘定及与油气成藏关系探讨. 海洋通报, 29(2): 161-165. doi: 10.3969/j.issn.1001-6392.2010.02.007 [31] 陈红汉, 付新明, 杨甲明, 1997. 莺-琼盆地YA13-1气田成藏过程分析. 石油学报, 18(4): 32-37. doi: 10.3321/j.issn:0253-2697.1997.04.006 [32] 陈红汉, 孙永传, 叶加仁, 等, 1994. 莺-琼盆地的独特埋藏史. 中国海上油气(地质), 8(5): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199405006.htm [33] 范泓澈, 黄志龙, 袁剑, 等, 2011. 高温高压条件下甲烷和二氧化碳溶解度试验. 中国石油大学学报(自然科学版), 35(2): 6-11, 19. doi: 10.3969/j.issn.1673-5005.2011.02.002 [34] 龚再升, 李思田, 谢泰俊, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社, 534. doi: 10.3321/j.issn:0479-8023.1997.04.018 [35] 龚再升, 杨甲明, 郝芳, 等, 2001. 莺歌海盆地与琼东南盆地成藏条件的比较及天然气勘探方向. 地球科学——中国地质大学学报, 26(3): 286-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103010.htm [36] 郝芳, 金之钧, 邹华耀, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社, 406. [37] 郝石生, 张振英, 1993. 天然气在地层水中的溶解度变化特征及地质意义. 石油学报, 14(2): 12-22. doi: 10.3321/j.issn:0253-2697.1993.02.004 [38] 金博, 刘震, 李绪深, 等, 2007. 莺歌海盆地泥岩稳定压实带成因及石油地质意义. 西安石油大学学报(自然科学版), 22(3): 9-13. doi: 10.3969/j.issn.1673-064X.2007.03.002 [39] 孔敏, 2010. 琼东南盆地油气运移动力特征分析. 武汉: 中国地质大学. [40] 雷超, 任建业, 裴健翔, 等, 2011. 琼东南盆地深水区构造格局和幕式演化过程. 地球科学——中国地质大学学报, 36(1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101017.htm [41] 李绪宣, 钟志洪, 董伟良, 等, 2006. 琼东南盆地古近纪裂陷构造特征及其动力学机制. 石油勘探与开发, 33(6): 713-721. doi: 10.3321/j.issn:1000-0747.2006.06.014 [42] 刘福宁, 杨计海, 温伟明, 1994. 琼东南盆地地压场与油气运移. 中国海上油气(地质), 8(6): 3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199406000.htm [43] 张启明, 1999. 莺-琼盆地的演化与构造一热体制. 天然气工业, 19(1): 12-18. doi: 10.3321/j.issn:1000-0976.1999.01.004