Source-Ward Retro-Gradational Stacking Patterns of Sequence Stratigraphic Architectures of Intra-Cratonic Basin: One Example from Shanxi Formatin of Ordos Basin, China
-
摘要: 陆内克拉通盆地是我国重要的含油气盆地类型之一, 其层序地层学研究相对薄弱.以我国典型的陆内克拉通盆地-鄂尔多斯盆地山西组的层序地层学研究为例, 提出陆内克拉通盆地长期持续退积、短期进积"溯源退积"层序构型的模式.其涵义是指陆内克拉通盆地所形成的三级层序的层序构型均以LST为主, TST和HST相对不发育, 对应的基准面旋回具有长期持续退积(水进)、短期进积(水退)旋回特征; 不同级别层序地层格架控制下的砂体, 自下而上(从老到新), 具有向北部物源区依次退积叠置的"溯源退积"特征.Abstract: Intra-cratonic basins are the important hydrocarbon-bearing basins in China. However, the previous research of sequence stratigraphy is insufficient to intra-cratonic basin. Based on the sequence stratigraphic research of Shanxi Formation of Ordos basin, one typical intra-cratonic basins of China, the authors develop the source-ward retro-gradational stacking patterns with long-term retrogradation and short-term progradation. The model indicates that (1) sequence stratigraphic architecture of third-order sequence within intra-cratonic basins mainly consists of lowstand systems tract (LST), and lack of transgressive systems tract (TST) and highstand systems tract(HST); (2) the third-order base level cycle has the characteristics of long term transgression and short term regression; (3) the sand-bodies controlled by various order sequence stratigraphic framework show the model of source-ward retro-gradational stacking patterns from base to top.
-
图 3 S209-S1井南北向层序地层连井及砂体指示的“溯源退积”层序构型
Fig. 3. Sequence stratigraphic correlation section and reservoir sand-body distribution from Well S209 to S1 of the member 2 of the Shanxi Formation along the N-S direction, showing source-ward retro-gradational stacking patterns of sequence stratigraphic architecture. See Fig. 1 for the location of the cross-section
图 4 过井地震剖面指示的SQ1-SQ3层序的“溯源退积”层序构型
Fig. 4. Seismic cross-section (S-N direction) of the sequences SQ1-SQ3, showing source-ward retro-gradational stacking patterns of sequence stratigraphic architecture. See Fig. 1 for the location of the cross-section
-
[1] Burgess, P.M., Gurnis. M., Moresi, L., 1997. Formation of Sequences in the Cratonic Interior of North America by Interaction between Mantle, Eustatic, and Stratigraphic Processes. Geological Society of America Bulletin, 109 (12): 1515-1535. doi: 10.1130/0016-7606(1997)109<1515:FOSITC>2.3.CO [2] Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam. [3] Cross, T.A., 1988. Controls on Coal Distribution in Transgressive-Regressive Cycles, Upper Cretaceous, Western Interior, USA. SEPM Sepcial Publication, 42: 371-380. http://www.researchgate.net/publication/224962305_Controls_on_Coal_Distribution_in_transgressive-Regressive_Caycles_Upper_Cretaceous_Western_Interior_USA [4] Escalona, A., Mann, P., 2006. Sequence-Stratigraphic Analysis of Eocene Clastic Foreland Basin Deposits in Central Lake Maracaibo Using High-Resolution Well Correlation and 3-D Seismic Data. AAPG Bulletin, 90(4): 581-623. doi: 10.1306/10130505037 [5] Fairbridge, R.W., 1988. Cyclical Patterns of Exposure, Weathering and Burial of Craonic Surfaces, with Some Examples from North America and Australia. Geografiska Annaler, 70(4): 277-283. doi: 10.2307/521259 [6] Feng, Y.L., Zhou, H.M., Li, S.T., et al., 2004. Sequence Types and Subtle Trap Exploration in Continental Rift Basin: A Case Study of Lower Tertiary of the Nanpu Depression. Earth Science—Journal of China University of Geosciences, 29(5): 603-608 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S030192680300264X [7] He, D.F., Dong, D.Z., Lv, X.X., et al., 1996. Cratonic Basin Analysis. Petroleum Industry Press, Beijing (in Chinese). [8] Hoffmann, K.L., Totterdell, J.M., Dixon, O., et al., 2009. Sequence Stratigraphy of Jurassic Strata in the Lower Surat Basin Succession, Queensland. Australian Journal of Earth Sciences, 56: 461-476. doi: 10.1080/08120090802698737 [9] Ji, Y.L., 1996. Sequence Stratigraphy of Continental Rift Basins. Petroleum Industry Press, Beijing (in Chinese). [10] Kanygin, A., Dronov, A., Timokhin, A., et al., 2010. Depositional Sequences and Palaeoceanographic Change in the Ordovician of the Siberian Craton. Palaeogeography, Palaeoclimatology, Palaeoecology, 3: 285-296. doi: 10.1016/j.palaeo.2010.02.014 [11] Li, S.T., Pan, Y.L., Lu, Y.C., et al., 2002. Key Technology of Prospecting and Exploration of Subtle Traps in Lacustrine Fault Basins; Sequence Stratigraphic Researches on the Basis of High Resolution Seismic Survey. Earth Science—Journal of China University of Geosciences, 27(5): 592-598 (in Chinese with English abstract). http://www.researchgate.net/publication/286179161_Key_technology_of_prospecting_and_exploration_of_subtle_traps_in_lacustrine_fault_basins_Sequence_stratigraphic_researches_on_the_basis_of_high_resolution_seismic_survey [12] Liang, J.W., Li, W.H., Zhang, F., et al., 2007. Coal Accumulation of Lower Member of Shanxi Formation in Northeastern Ordos Basin. Coal Geology & Exploration, 35(1): 7-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT200701001.htm [13] Liang, X.W., Zheng, R.C., Zhou, Y., et al., 2006. Sequence Patterns and Evaluation of Source Rocks in Cratonic Basins-by Taking Sinian and Cambrian Systems in Mid-Yangze Area for Example. Journal of Oil and Gas Technology, 28(2): 17-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX200602004.htm [14] McLaughlin, P.I., Brett, C.E., Taha, S. L, et al., 2010. High-Resolution Sequence Stratigraphy of a Mixed Carbonate-Siliciclastic, Cratonic Tamp (Upper Ordovician; Kentucky-Ohio, USA): Insights into the Relative Influence of Eustasy and Tectonics through Analysis of Facies Gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 267-294. doi: 10.1016/j.palaeo.2004.02.039 [15] Petty, D.M., 2010. Sequence Stratigraphy and Sequence Boundary Characteristics for Upper Tournaisian (Mississippian) Strata in the Greater Williston Basin Area: An Analysis of a Third-Order Cratonic Carbonate-Evaporite Depositional Cycle. Bulletin of Canadian Petroleum Geology, 58(4): 375-402. doi: 10.2113/gscpgbull.58.4.375 [16] Weimer, R.J., 1992. Developments in Sequence Stratigraphy: Foreland and Cratonic Basins. AAPG Bulletin, 76(7): 965-982. [17] Xie, X.N., Cheng, S.T., Lu, Y.C., 1996. Epsodic Tectonic Cycles and Internal Architectures of Sequence in Continental Basin. Earth Science—Journal of China University of Geosciences, 21(1): 27-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX601.003.htm [18] Xie, X.N., Li, S.T., 1993. Characteristics of Sequence Stratigraphic Analysis in Terrestrial Basin. Geological Science and Technology Information, 12(1): 22-26 (in Chinese with English abstract). [19] Xue, S.H., Liu, W.L., Xue, L.Q., et al., 2002. Lake Basin Deposit Geology and Petroleum Exploration. Petroleum Industry Press, Beijing, 12-15 (in Chinese). [20] Zhou, Y., Chen, H.D., Wang, C.S., et al., 2004. A Study on the Distribution Model of the Sequence Style on Craton Basin in the Mid-Yangze Area. Geoscience, 18(2): 171-179 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200402004.htm [21] Zhu, H.T., Chen, K.Y., Liu, K.Y., et al., 2007. Evidences for Deposits of Fluvial Facies in Shanxi Formation in Northeastern Ordos Basin. Natural Gas Industry, 27(12): 67-69 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_trqgy200712020.aspx [22] Zhu, H.T., Chen, K.Y., Liu, K.Y., et al., 2008. A Sequence Stratigraphic Model for Reservoir Sand-Body Distribution in the Lower Permian Shanxi Formation in the Ordos Basin, Northern China. Marine and Petroleum Geology, 25: 731-743. doi: 10.1016/j.marpetgeo.2008.03.007 [23] Zhu, H.T., Li, M., Liu, K.Y., et al., 2010. Sequence Stratigraphic Architectures of Intra-Cratonic Basin and Its Controlling Factors. Earth Science—Journal of China University of Geosciences, 35(6): 1035-1040 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.117 [24] Zhu, H.T., Liu, K.Y., Yang, X.H., et al., 2012. The Sequence Stratigraphic Architecture of Continental Lake Basin and Its Significance on Lithofacies Prediction: Taking Huizhou Sag in Zhujiangkou Basin as an Example. Earth Science Frontier, 19(1): 32-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201006.htm [25] 冯有良, 周海民, 李思田, 等, 2004. 陆相断陷盆地层序类型与隐蔽油气藏勘探——以南堡凹陷古近系为例. 地球科学——中国地质大学学报, 29(5): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405015.htm [26] 何登发, 董大忠, 吕修祥, 等, 1996. 克拉通盆地分析. 北京: 石油工业出版社. [27] 纪友亮, 1996. 陆相断陷湖盆层序地层学. 北京: 石油工业出版. [28] 李思田, 潘元林, 陆永潮, 等, 2002. 断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究. 地球科学——中国地质大学学报, 27(5): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205018.htm [29] 梁积伟, 李文厚, 张峰, 等, 2007. 鄂尔多斯盆地东北部山西组下段基准面旋回与聚煤作用. 煤田地质与勘探, 35(1): 7-11. doi: 10.3969/j.issn.1001-1986.2007.01.002 [30] 梁西文, 郑荣才, 周雁, 等, 2006. 克拉通盆地层序样式与烃源岩评价——以中扬子区震旦系、寒武系为例. 石油天然气学报, 28(2): 17-19. doi: 10.3969/j.issn.1000-9752.2006.02.005 [31] 解习农, 程守田, 陆永潮, 1996. 陆相盆地幕式构造旋回与层序构成. 地球科学——中国地质大学学报, 1996, 21(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX601.003.htm [32] 解习农, 李思田, 1993. 陆相盆地层序地层研究特点. 地质科技情报, 12(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199301008.htm [33] 薛叔浩, 刘雯林, 薛良清, 等, 2002. 湖盆沉积地质与油气勘探. 北京: 石油工业出版社, 12-15. [34] 周雁, 陈洪德, 王成善, 等, 2004. 克拉通盆地层序样式分布模式研究——以中扬子区为例. 现代地质, 18(2): 171-179. doi: 10.3969/j.issn.1000-8527.2004.02.005 [35] 朱红涛, 陈开远, Keyu, L., 等, 2007. 鄂尔多斯盆地东北部山西组的河流相沉积证据. 天然气工业, 27(12): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200712023.htm [36] 朱红涛, 李敏, Keyu, L., 等, 2010. 陆内克拉通盆地层序地层构型及其控制因素. 地球科学——中国地质大学学报, 35(6): 1035-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006015.htm [37] 朱红涛, Keyu, L., 杨香华, 等, 2012. 陆相湖盆层序构型及其岩性预测意义: 以珠江口盆地惠州凹陷为例. 地学前缘, 19(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201006.htm