• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    与挠曲作用相关的一种特殊裂缝形成机制

    董有浦 肖安成 吴磊 毛黎光 徐波

    董有浦, 肖安成, 吴磊, 毛黎光, 徐波, 2013. 与挠曲作用相关的一种特殊裂缝形成机制. 地球科学, 38(4): 755-762. doi: 10.3799/dqkx.2013.073
    引用本文: 董有浦, 肖安成, 吴磊, 毛黎光, 徐波, 2013. 与挠曲作用相关的一种特殊裂缝形成机制. 地球科学, 38(4): 755-762. doi: 10.3799/dqkx.2013.073
    DONG You-pu, XIAO An-cheng, WU Lei, MAO Li-guang, XU Bo, 2013. Mechanism of Formation of Special Fold Accommodation Fractures. Earth Science, 38(4): 755-762. doi: 10.3799/dqkx.2013.073
    Citation: DONG You-pu, XIAO An-cheng, WU Lei, MAO Li-guang, XU Bo, 2013. Mechanism of Formation of Special Fold Accommodation Fractures. Earth Science, 38(4): 755-762. doi: 10.3799/dqkx.2013.073

    与挠曲作用相关的一种特殊裂缝形成机制

    doi: 10.3799/dqkx.2013.073
    基金项目: 

    "十一五"国家重大科技专项 2008ZX05009-001

    详细信息
      作者简介:

      董有浦(1983-), 男, 博士, 主要从事构造地质学研究.E-mail: dongypzju@gmail.com

      通讯作者:

      肖安成, E-mail: xiaoanch@zju.edu.cn

    • 中图分类号: P546

    Mechanism of Formation of Special Fold Accommodation Fractures

    • 摘要: 浙江省临安市上侏罗统劳村组火山凝灰岩露头中发育了很多与挠曲相关的裂缝, 地层构造简单、露头良好, 为研究与挠曲相关裂缝提供了良好的条件.通过对两处野外露头的精细测量, 发现裂缝面平直、且未被充填, 均为构造裂缝, 在剖面上裂缝的组合呈扇形.裂缝面与岩层层面夹角为44°~80°, 裂缝密度随着地层厚度的增加而增加.根据裂缝面与层面的交切关系, 将两组裂缝分别命名为: 锐夹角指示邻层相对运动方向的D裂缝和锐夹角指示本层相对运动方向的D’裂缝.通过对地层挠曲变形的几何分析, 发现两组裂缝的形成是为了调节核部地层在变形过程中产生缩短量和剩余剪切, 地层厚度与地层中产生剩余剪切成正比.结果表明, 地层厚度越大, 形成的裂缝也越多.

       

    • 图  1  研究区位置(据朱光等,1999)

      Ⅰ.华北板块;Ⅱ.扬子板块;Ⅱ1-1.大别山造山带;Ⅱ1.胶南造山带,Ⅱ2.滁全坳陷;Ⅱ3.沿江坳陷;Ⅱ4.皖南-苏南坳陷;Ⅱ5.江南隆起带;Ⅱ6.钱塘台褶带;Ⅲ.华南板块;JSF.嘉山-响水断裂;CHF.滁河断裂;JNF.江南断裂;TBS.天目山-白际山剪切带,1.断裂;2.缝合线;3.边界断层;4.研究区

      Fig.  1.  The geological map of study area

      图  2  建德群劳村组挠曲地层野外露头1简图

      Fig.  2.  Map showing the overview of the outcrop1

      图  3  露头1裂缝产状特征(下半球投影)

      Fig.  3.  Stereographic projection of fractures in outcrop 1

      图  4  建德群劳村组挠曲地层野外露头2简图

      Fig.  4.  Map showing the overview of the outcrop 2

      图  5  露头2裂缝产状特征(下半球投影)

      Fig.  5.  Stereographic projection of fractures in outcrop 2

      图  6  地层厚度与裂缝密度的关系(X轴代表地层厚度、Y轴代表裂缝密度)

      Fig.  6.  Map shows that the thickness to fracture density ratio

      图  7  D和D'裂缝的形成机制

      a.下部地层轴面为ACBC,上部地层轴面为CD,导致上部地层曲率增加;b.上下地层夹角的变化是剩余剪切(ΔSS1S2)形成的原因;c,d剩余剪切致使D和D'裂缝的形成

      Fig.  7.  Mechanism of formation of D and D'fracture

      图  8  ΔS/t值与Ф12的关系

      Fig.  8.  Map shows that the ΔS/t to the layer thickness ratio

      图  9  左旋剪切作用下的裂缝的类型(Bartlett et al., 1981; Keller et al., 1997; Ahlgren, 2001)

      SZ代表相对滑动面,R和R'代表里德尔型裂缝,T代表张裂缝

      Fig.  9.  A characteristic array of shear fractures of sinistral shear

    • [1] Ahlgren, S.G., 2001. The Nucleation and Evolution of Riedel Shear Zones as Deformation Bands in Porous Sandstone. Journal of Structural Geology, 23(8): 1203-1214. doi: 10.1016/S0191-8141(00)00183-8
      [2] Bartlett, W.L., Friedman, M., Logan, J.M., 1981. Experimental Folding and Faulting of Rocks under Confining Pressure. Part IX. Wrench Faults in Limestone Layers. Tectonophysics, 79(3-4): 255-277. doi: 10.1016/0040-1951(81)90116-5
      [3] Bellahsen, N., Fiore, P., Pollard, D.D., 2006. The Role of Fractures in the Structural Interpretation of Sheep Mountain Anticline, Wyoming. Journal of Structural Geology, 28(5): 850-867. doi: 10.1016/j.jsg.2006.01.013
      [4] Chen, H.S., 2002. Exploration Prospects and Strategies of Reconstruct Marine Oil and Gas in Lower Yangtze Area. Marine Origin Petroleum Geology, 7(2): 33-41 (in Chinese). http://www.researchgate.net/publication/302558901_Exploration_prospects_and_strategies_of_reconstruct_marine_oil_and_gas_in_lower_Yangtze_Area
      [5] Dresen, G., 1991. Stress Distribution and the Orientation of Riedel Shears. Tectonophysics, 188(3-4): 239-247. doi: 10.1016/0040-1951(91)90458-5
      [6] Fischer, M.P., Wilkerson M.S., 2000. Predicting the Orientation of Joints from Fold Shape Results of Pseudo-Three-Dimension Modeling and Curvature Analysis. Geology, 28(1): 15-18. doi:10.1130/0091-7613(2000)28<15:PTOOJF>2.0.CO;2
      [7] Florez-Nino, J., Aydin, A., Mavko, G., et al., 2005. Fault and Fracture Systems in a Fold and Thrust Belt an Example from Bolivia. AAPG Bull. , 89(4): 471-493. doi: 10.1306/11120404032
      [8] Kajari, G., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bull. , 93(8): 995-1014. doi: 10.1306/04020908115
      [9] Keller, J.V.A., Hall, S.H., McClay K.R., 1997. Shear Fracture Pattern and Microstructural Evolution in Transpressional Fault Zones from Field and Laboratory Studies. Journal of Structural Geology, 19(9): 1173-1187. doi: 10.1016/S0191-8141(97)00042-4
      [10] Lacazette, A., 2009. Paleostress Analysis from Image Logs Using Pinnate Joints as Slip Indicators. AAPG Bulletin, 93(11): 1489-1501. doi: 10.1306/08110909087
      [11] Lin, X., Chen, H., Cheng, X., et al., 2010. Conceptual Models for Fracturing in Fault Related Folds. Minging Science and Technology, 20(1): 103-108. doi: 10.1016/S1674-5264(09)60169-1
      [12] Ma, Q., Zhao S., Liao Y., et al., 2012. Sequence Architectures of Paleogene Liushagang Formation and Its Significance in Fushan Sag of the Beibuwan Basin. Earth Science—Journal of China University of Geosciences, 37(4): 667-678 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.076
      [13] Misra, S., Mandal, N., Chakraborty, C., 2009. Formation of Riedel Shear Fractures in Granular Materials: Findings from Analogue Shear Experiments and Theoretical Analyses. Tectonophysics, 471(3-4): 253-259. doi: 10.1016/j.tecto.2009.02.017
      [14] Mitra, S., Namson, J.S., 1989. Equal-Area Balancing. American Journal of Science, 289: 563-599 doi: 10.2475/ajs.289.5.563
      [15] Mitra, S., 2002. Fold-Accommodation Faults. AAPG Bull. , 86(4): 671-693. doi: 10.1306/61EEDB7A-173E-11D7-8645000102C1865D
      [16] Mobasher, K., Babaie, H.A., 2008. Kinematic Significance of Fold- and Fault-Related Fracture Systems in the Zagros Mountains, Southern Iran. Tectonophysics Asia out of Tethys: Geochronologic. Tectonic and Sedimentary Records, 451(1-4): 156-169. doi: 10.1016/j.tecto.2007.11.060
      [17] Price, R.A., 1965. Flathead Map Area. Columbia Geological Society of Canada Memoir, British, 336, 221.
      [18] Silliphant, L.J., Engelder, T., Gross, M.R., 2002. The State of Stress in the Limb of the Split Mountain Anticline, Utah: Constraints Placed by Transected Joints. Journal of Structural Geology, 24(1): 155-172. doi: 10.1016/S0191-8141(01)00055-4
      [19] Suppe, J., 1985. Principles of Structural Geology. Practice-Hall, New Jersey, 537.
      [20] Tang, J., Mei, L., Shen, C., et al., 2012. Response of Hydrocarbon Fluid Source to Tectonic Deformation in Multicycle Superimposed Basin: Example from Palaeozoic and Mesozoic Marine Strata in Yangtze Block. Earth Science—Journal of China University of Geosciences, 37(4): 526-534 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.059
      [21] Wang, H.S., Shang, N., Gao, B.N., et al., 2008. Deforming Responses and Its Identification Characteristics of Flexing. Journal of China University of Petroleum, 32(5): 22-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYDX200805007.htm
      [22] Ye, F., 2009. Structural Analysis of Mesozoic-Palaeozoic in the Lower Yangtze Region (Dissertation). Shanghai Tongji University (in Chinese with English abstract).
      [23] Zhu, G., Xu, J.W., Liu, G.S., et al., 1999. Tectonic Pattern and Dynamic Mechanism of the Foreland Deformation in the Lower Yangtze Region. Regional and Geology of China, 18(1): 73-79(in Chinese with English abstract). http://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=1-s2.0-S1342937X05701945-main.pdf&_piikey=S1342937X05701945&_cdi=273477&_orig=PublicationURL&_zone=rslt_list_item&_fmt=abst&_eid=1-s2.0-S1342937X05701945&_issn=1342937X&_user=12975512&md5=9049d3832b3da3b925dbf10aa4e53307&ie=/excerpt.pdf
      [24] 陈沪生, 2002. 下扬子地区重建型海相烃源油气领域评价及勘探对策. 海相油气地质, 7(2): 33-41. doi: 10.3969/j.issn.1672-9854.2002.02.005
      [25] 马庆林, 赵淑娥, 廖远涛, 等, 2012. 北部湾盆地福山凹陷古近系流沙港组层序地层样式及其研究意义. 地球科学——中国地质大学学报, 37(4): 667-678. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204007.htm
      [26] 汤济广, 梅廉夫, 沈传波, 等, 2012. 多旋回叠合盆地烃流体源与构造变形响应: 以扬子地块中古生界海相为例. 地球科学——中国地质大学学报, 37(3): 526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203016.htm
      [27] 王海荣, 尚楠, 高伯南, 等, 2008. 挠曲作用的形变响应及其识别特征. 中国石油大学学报(自然科学版), 32 (5): 22-27. doi: 10.3321/j.issn:1673-5005.2008.05.005
      [28] 叶芳, 2009. 下扬子地区中古生界构造分析(硕士毕业论文). 上海: 同济大学.
      [29] 朱光, 徐嘉炜, 刘国生, 等, 1999. 下扬子地区前陆变形构造格局及其动力学机制. 中国区域地质, 18(1): 73-79. doi: 10.3969/j.issn.1671-2552.1999.01.012
    • 加载中
    图(9)
    计量
    • 文章访问数:  3347
    • HTML全文浏览量:  133
    • PDF下载量:  558
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-10-21
    • 刊出日期:  2013-07-01

    目录

      /

      返回文章
      返回