Coupling Processes of Xunhua-Hualong Basin-Orogenic Belt Since Late Cretaceous: Evidence from Apatite Fission Track Geochronology and Source Analysis
-
摘要: 循化-化隆盆地新生代沉积及盆地基底和周缘山系磷灰石裂变径迹年代学分析揭示了青藏高原东北缘晚白垩世以来经历过3期隆升剥露事件: (1)盆地基底及拉脊山和西秦岭北缘构造带磷灰石裂变径迹年龄分析普遍记录了晚白垩世-始新世中期相对快速的区域性的隆升剥露事件, 西秦岭北缘快速抬升的起始时间为84Ma, 受控于向北的逆冲抬升; 向北到循化-化隆盆地中部的拉目峡抬升的起始时间为69Ma; 更北的拉脊山一带快速抬升期主要为40~50Ma, 从而反映晚白垩世-始新世中期的快速抬升由南向北逐渐扩展.这一期构造隆升事件导致循化-化隆盆地和临夏盆地缺失了北部西宁-民和盆地古近纪所具有的西宁群沉积.隆升剥露结束于31Ma左右, 此时化隆-循化盆地向东与同时期的临夏盆地相连为一个统一的大型西秦岭山前盆地, 两者具有相同的构造、沉积演化史, 因此循化-化隆盆地他拉组底部地层年龄最老不会超过临夏盆地最老地层的古地磁年龄, 即29Ma.(2)渐新世晚期约26Ma拉脊山开始双向逆冲隆升, 并可能延续到中新世早期约21Ma, 隆升作用使循化-化隆盆地成为挟持于拉脊山逆冲带和西秦岭构造带之间的山前挤压型前陆盆地, 循化-化隆盆地开始大规模沉积巨厚的他拉组冲积扇相粗碎屑岩.(3)通过循化-化隆盆地咸水河组和临夏组的沉积相分析、古流方向和砾石成分分析, 揭示出拉脊山构造带在中新世8Ma左右发生的最大规模的双向逆冲隆升事件, 这次事件直接导致循化-化隆盆地由前陆挤压盆地转变为山间盆地, 形成现今青藏高原东北缘的盆山地貌基本格局.Abstract: Xunhua-Hualong basin Cenozoic sedimentary strata, basement and surrounding mountains analysis of apatite fission track geochronology reveals the Northeast margin of Qinghai-Tibet plateau experienced three periods of uplift and exhumation events since Late Cretaceous: (1) Basin basement, Laji mountain and West Qinling orogenic belt apatite fission track ages generally record a Late Cretaceous-Eocene relatively rapid regional uplift and exhumation event. Northern margin of West Qinling rapidly uplift at 84Ma, which was controlled by the uplift of the northward thrust; to the North Lamu Gorge in central of Xunhua-Hualong basin uplift at 69Ma; further north rapid uplift stages along Laji mountain is mainly between 40-50Ma, reflecting Paleocene-Eocene rapid uplift gradually extending from south to north. This tectonic uplift event resulted in Xunhua-Hualong basin and Linxia basin missing Paleogene Xining group sedimentary strata that deposits in northern Xining-Minhe basin. The first period of uplift and exhumation ended at about 31Ma, when Xunhua-Hualong basin connected with eastern Linxia basin to a large unified foreland basin of West Qinling, both experience the same tectonic and sedimentary evolution history, therefore Cenozoic oldest Tala group sedimentary strata age in Xunhua-Hualong basin won't exceed the oldest sedimentary strata with Paleomagnetic age of 29Ma in Linxia basin. (2) Late Oligocene about 26Ma Laji mountain began bi-directionally thrust-uplift and may have continued to Early Miocene about 21Ma, and uplifting made Xunhua-Hualong basin become piedmont extrusion foreland basin between Laji mountain and West Qinling, when Xunhua-Hualong basin began to deposit Tala group alluvial fan of thick coarse clastic rocks. By analyzing sedimentary facies, the ancient flow direction and gravel composition of Xianshuihe group and Linxia group sedimentary strata in Xunhua-Hualong basin, it is concluded that Laji mountains experienced the largest bi-directional thrust-uplift event in the Miocene about 8Ma, which led directly to the event of Xunhua-Hualong piedmont extrusion foreland basin turning into mountain basin, which formed basic pattern of basin-mountain landform in northeastern margin of Qinghai-Tibet plateau nowadays.
-
Key words:
- Xunhua-Hualong basin /
- source /
- fission-track /
- Laji mountain /
- West Qinling
-
图 1 青藏高原东北缘构造分区(a)、研究区地质简图(b)和样品分布图(c)
1.第四系;2.新近系;3.古近系;4.白垩系;5.三叠系;6.二叠系;7.奥陶系;8.寒武系;9.元古太古界;10.三叠纪侵入岩;11.奥陶纪石英闪长岩;12.奥陶纪花岗闪长岩;13.主要逆冲断层;14.一般断层;15.裂变径迹采样位置;16.剖面位置
Fig. 1. Tectonic framework of northeast Qinghai-Tibet plateau (a), Geological sketch map (b) and sample locations of research area (c)
图 2 循化县渐新统-上新统地层序列(据张楗钰等,2010修改)
Fig. 2. Stratigraphic sequence of Oligocene-Pliocene in Xunhua
表 1 循化-化隆盆地磷灰石裂变径迹样品及年龄测试结果
Table 1. Apatite fission track dating ages in Xunhua basin
采样位置 样品号 高程(m) 颗数(N) ρd (106cm-2) (Nd) ρs (105cm-2) (Ns) ρi (105cm-2) (Ni) U (μg·g-1) P(χ2) (%) P1 (Ma±1σ) (%) P2 (Ma±1σ) (%) P3 (Ma±1σ) (%) 中值年龄(Ma±1σ) 岩性 拉目峡 T51-1 2705 15 3.449(3524) 19.0(705) 16.3(606) 58 45.3 69.0±4.8 砂岩 T51-2 2698 15 3.431(3520) 6.69(297) 7.82(326) 23 79.2 50.6±4.7 片麻岩 T51-3 2567 15 3.413(3516) 24.4(2007) 26.0(2138) 89 1.4 54.6±3.4 片麻岩 T51-4 2425 15 3.396(3511) 7.57(635) 10.2(854) 34 1.7 42.7±3.6 片麻岩 T51-5 2303 15 3.378(3507) 6.02(377) 7.12(446) 24 53.6 49.2±4.0 片麻岩 T51-6 2195 15 3.360(3503) 7.21(398) 10.6(587) 38 4.7 39.3±3.7 混合花岗岩 T51-7 2115 15 3.343(3498) 9.98(581) 18.4(1070) 67 0 31.0±2.9 片麻岩 西秦岭尕楞口 T51-9 2624 50 3.325(3494) 28.1(4982) 16.9(2989) 62 0 69.3±6.8(22.3) 97.0±8.0(57.2) 144.4±18.9(20.5) 97.0±5.9 砂岩 T51-10 2703 51 3.307(3490) 17.7(4862) 10.2(2817) 38 0 60.6±5.1(9.5) 95.1±6.3(9.5) 121.7±9.3(35.2) 98.5±5.8 砂岩 T51-11 2794 55 3.289(3486) 16.1(4681) 7.50(2178) 29 0 55.7±8.7(7.2) 112.7±12.6(56.2) 146.9±24.7(36.2) 118.8±6.9 砂岩 T51-12 2959 50 3.272(3481) 23.8(4332) 13.9(2531) 52 0 73.5±5.6(32.1) 109.6±6.5(67.9) 96.2±5.6 砂岩 T51-13 3097 15 3.254(3477) 34.3(2100) 26.0(1591) 97 0.1 73.9±4.0 花岗岩 T51-14 3205 50 3.236(3473) 11.3(2753) 7.15(1741) 27 53.7 88.0±4.6(100) 88.0±4.6 砂岩 拉脊山 T53-1 3670 15 3.219(3468) 28.5(1926) 15.2(1029) 58 24.5 103.4±5.9 花岗闪长岩 T53-4 3700 50 3.165(3456) 6.09(1048) 5.65(972) 22 28.5 50.1±6.4(51.6) 71.9±10.9(48.4) 59.9±4.0 砂岩 T53-5 3603 48 3.148(3451) 6.95(1185) 7.29(1243) 27 11.8 40.7±2.7(92) 81.2±15.0(8) 43.2±3.1 砂岩 T53-6 3480 15 3.112(3443) 2.87(199) 3.49(242) 14 95.6 44.2±4.6 花岗斑岩 T53-8 3227 51 3.077(3434) 6.44(1134) 6.96(1225) 28 91.6 49.1±2.9(100) 49.1±2.9 砂岩 T53-10 2935 50 3.041(3426) 9.14(1373) 11.6(1744) 46 0 25.8±4.5(23.6) 43.7±3.3(70.3) 81.9±13.2(6.1) 40.4±2.9 砂岩 注:N样品测试颗粒数;ρd铀标准玻璃径迹密度,Nd铀标准玻璃诱发径迹数;ρs自发径迹密度,Ns自发径迹数;ρi诱发径迹密度,Ni诱发径迹数;P(χ2)自由度为N-1时χ2值的概率. -
[1] Bernet, M., Brandon, M., Garver, J., et al., 2002. Determining the Zircon Fission-Track Closure Temperature. Abstracts with Programs-Geological Society of America, 34(5): 18. [2] Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State. Geological Society of America Bulletin, 110(8): 985-1009. doi:10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2 [3] Brandon, M.T., Vance, J.A., 1992. Age and Tectonic Evolution of the Olympic Subduction Complex as Inferred from Fission-Track Ages for Detrital Zircons. Abstracts with Programs-Geological Society of America, 24(5): 9. http://www.sciencedirect.com/science/article/pii/135901899390269F [4] Chen, H.L., Fang, X.M., Li, J.J., et al., 1996. Fission Track Dating of Cenozoic Strata in Linxia Basin. Nuclear Techniques, 19(10): 632-634(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU610.016.htm [5] Chen, Y., Chen, S.Y., Zhang, P.F., et al., 2008. Discussion on Research Methods of Paleocurrent Direction. Fault-Block Oil & Gas Field, 15(1): 37-40(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT200801015.htm [6] Clark, M.K., Farley, K.A., Zheng, D.W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1-2): 78-88. doi: 10.1016/j.epsl.2010.04.051 [7] Deng, Z.L., Hou, Y.C., Gu, F.B., et al., 2000. Filling Characteristics, Sporopolen Assemblage and Palaeoclimate Variation of Tertiary Basins in the Northeastern Qinghai-Tibet Plateau. Qinghai Geology, (1): 43-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL200001006.htm [8] Dupont-Nivet, G., Horton, B.K., Butler, R.F., et al., 2004. Paleogene Clockwise Tectonic Rotation of the Xining-Lanzhou Region, Northeastern Tibetan Plateau. Journal of Geophysical Research, B (Solid Earth and Planets), 109(4): B04401. doi: 10.1029/2003JB002620 [9] Fan, M.J., Song, C.H., 2003. A Sedimentary Environment Analysis and the Tectonic Uplift of Linxia Basin in the Northeast Margin of Tibetan Plateau. Journal of Lanzhou University, 39(3): 84-89(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDZK200303022.htm [10] Fang, X.M., Li, J.J., Zhu, J.J., et al., 1997. Cenozoic Sedimentary Strata Dating and Division of Linxia Basin in Gansu Province. Chinese Science Bulletin, 42(14): 1457-1471(in Chinese). doi: 10.1360/csb1997-42-14-1457 [11] Fang, X.M., Song, C.H., Dai, S., et al., 2007. Cenozoic Deformation and Uplift of the NE Qinghai-Tibet Plateau: Evidence from High-resolution Magnetostratigraphy and Basin Evolution. Earth Science Frontiers, 14(1): 230-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200701024.htm [12] Fang, X.M., Song, C.H., Gao, J.P., et al., 2002. Late Cenozoic Mammalian Fossil Magnetostratigraphy in the Northeast Margin of Qinghai-Tibet Plateau. Chinese Science Bulletin, 47(23): 1824-1828(in Chinese). doi: 10.1360/csb2002-47-23-1824 [13] Fang, X.M., Song, C.H., Yan, M.D., et al., 2004. High-precision Magnetic Stratigraphy of Guide Basin in Qinghai Records Late Cenozoic Uplift Stage of the Process in Northeastern Qinghai-Tibet Plateau. Chinese Geophysical Society 20th Annual Meeting, Xi'an (in Chinese). [14] Fang, X.M., Yan, M.D., Van der Voo, R., et al., 2005. Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau: Evidence from High-resolution Magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geological Society of America Bulletin, 117(9-10): 1208-1225. doi: 10.1130/B25727.1 [15] Gansu Province Bureau of Geology and Mineral Resources, 1989. Regional Geology of Gansu Province. Geological Publishing House, Beijing (in Chinese). [16] Gleadow, A.J.W., Duddy, I.R., Vella, P., 1981. Early Cretaceous Volcanism and the Early Breakup History of Southeastern Australia: Evidence from Fission Track Dating of Volcaniclastic Sediments. International Gondwana Symposium, (5): 295-300. [17] Green, P.F., Duddy, I.R., Laslett, G.M., et al., 1989. Thermal Annealing of Fission Tracks in Apatite 4. Quantitative Modelling Techniques and Extension to Geological Timescales. Chemical Geology, Isotope Geoscience Section, 79(2): 155-182. doi: 10.1016/0168-9622(89)90018-3 [18] Gu, Z.G., Bai, S.H., Zhang, X.T., et al., 1992. Division and Correlation of the Neogene Rocks in the Guide and Hualong Basins in Qinghai Province. Journal of Stratigraphy, 16(2): 96-104(in Chinese). [19] Guo, J.J., Han, W.F., 2008. Division of the Tectonic Sequences and Tectonic Evolution of Late Mesozoic-Cenozoic in Western Qinling. Geological Survey and Research, 31(4): 285-290(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200804001.htm [20] Horton, B.K., Dupont-Nivet, G., Zhou, J., et al., 2004. Mesozoic-Cenozoic Evolution of the Xining-Minhe and Dangchang Basins, Northeastern Tibetan Plateau; Magnetostratigraphic and Biostratigraphic Results. Journal of Geophysical Research, B (Solid Earth and Planets), 109(4): B04402. doi: 10.1029/2003JB002913 [21] Huang, C.S., Li, C.A., Tang, X.M., et al., 1998. Asymmetric Landform in Huangshui River Basin and Uplift of Qinghai-Tibet Plateau-Qilian Mountains. Jiangxi Geology, 12(4): 251-256(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXDZ804.002.htm [22] Hurford, A.J., 1986. Cooling and Uplift Patterns in the Lepontine Alps, South-Central Switzerland, and an Age of Vertical Movement on the Insubric Fault Line. Contributions to Mineralogy and Petrology, 92(4): 413-427. doi: 10.1007/BF00374424 [23] Ji, J.L., Zhang, K.X., Qiang, T., et al., 2010. Magnetostratigraphy of the Neogene Strata in Xunhua Basin, Qinghai Province. Earth Science—Journal of China University of Geosciences, 35(5): 803-810(in Chinese with English abstract). doi: 10.3799/dqkx.2010.093 [24] Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics, 343(1-2): 111-134. doi: 10.1016/S0040-1951(01)00196-2 [25] Lease, R.O., Burbank, D.W., Clark, M.K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4): 359-362. doi: 10.1130/G31356.1 [26] Li, J.J., Fang, X.M., Ma, H.Z., et al., 1996. Late Cenozoic Landscape Evolution of the Yellow River and Uplift of Qinghai-Tibet Plateau. Science in China(Series D), 26(4): 316-322(in Chinese). [27] Liu, M.R., 1992. Stratigraphic Sequence and Fossil Assemblage of Neogene System in Xinning-Minhe Basin. Qinghai Geology, (2): 1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL199202000.htm [28] Liu, S.F., Zhang, G.W., Heller, P.L., 2007. Cenozoic Basin Development and Indication of Plateau Growth in Xunhua-Guide. Science in China (Series D), 37(S1): 235-248(in Chinese). [29] Lu, H.Y., An, Z.S., Wang, X.Y., et al., 2004. Recent 14Ma Geomorphological Evidence Staged Uplift in Northeastern Margin of Qinghai-Tibet Plateau. Science in China(Series D): Earth Sciences, 34(9): 855-857(in Chinese). [30] Naeser, C.W., 1979. Thermal History of Sedimentary Basins: Fission-track Dating of Subsurface Rocks. Special Publication-Society of Economic Paleontologists and Mineralogists, (26): 109-112. http://www.researchgate.net/publication/264739313_Thermal_history_of_sedimentary_basins_Fission_track_dating_of_subsurface_rocks [31] Pan, B.T., 1994. A Study on the Geomorphic Evolution and Development of the Upper Reaches of Yellow River in Guide Basin. Arid Land Geography, 17(3): 43-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL199403005.htm [32] Pan, B.T., Li, J.J., Cao, J.X., et al., 1996. Study on the Geomorphic Evolution and Development of the Yellow River in the Hualong Basin. Mountain Research, 14(3): 153-158(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA603.002.htm [33] Song, C.H., Fang, X.M., Gao, J.P., et al., 2001. Tectonic Uplift and Sedimentary Evolution of the Guide Basin in the Northeast Margin of Tibetan Plateau in Cenozoic Era. Acta Sedimentologica Sinica, 19(4): 493-500(in Chinese with English abstract). [34] Song, C.H., Fang, X.M., Li, J.J., et al., 2003a. Pliocene Sedimentary Environment of the Guide Basin on the Northeast Margin of the Qinghai-Tibetau Plateau and Its Significance. Quaternary Sciences, 23(1): 92-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200301010.htm [35] Song, C.H., Fang, X.M., Li, J.J., et al., 2003b. Sedimentary Evolution of the Guide Basin in the Late Cenozoic and the Uplift of the Qinghai-Tibet Plateau. Geological Review, 49(4): 337-346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200304000.htm [36] Sun, X.Y., Zhao, Y.N., He, Z.S., 1984. The Oligocene-Miocene Palynological Assemblages from the Xining-Minhe Basin, Qinghai Province. Geological Review, 30(3): 207-216(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10016304045 [37] Wagner, G.A., Gleadow, A.J.W., Fitzgerald, P.G., 1989. The Significance of the Partial Annealing Zone in Apatite Fission-Track Analysis: Projected Track Length Measurements and Uplift Chronology of the Transantarctic Mountains. Chemical Geology, Isotope Geoscience Section, 79(4): 295-305. doi: 10.1016/0168-9622(89)90035-3 [38] Wan, J.L., Wang, Y., Li, Q., et al., 2001. FT Evidence of Northern Altyn Uplift in Late-Cenozoic. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 222-224(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200104003.htm [39] Wang, A., Wang, G.C., Zhang, K.X., et al., 2010. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology. Earth Science—Journal of China University of Geosciences, 35(5): 737-746(in Chinese with English abstract). doi: 10.3799/dqkx.2010.088 [40] Wang, E.Q., Zhang, Q., Burchfiel, C.B., 2000. The Lajishan Fault Belt in Qinghai Province: A Mult-Staged Uplifting Structural Window. Scientia Geologica Sinica, 35(4): 493-500(in Chinese with English abstract). http://www.researchgate.net/publication/294532691_The_Lajishan_Fault_Belt_in_Qinghai_Province_a_multi-staged_uplifting_structural_window [41] Wang, G.C., 2002. A New Approach to Determine the Exhumation History of the Sediment Provenance: Detrital Ziron and Apatite Fission-Track Thermochronology. Geological Science and Technology Information, 21(4): 35-40(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200204007.htm [42] Wang, G.C., Zhang, K.X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science—Journal of China University of Geosciences, 35(5): 713-727(in Chinese with English abstract). doi: 10.3799/dqkx.2010.086 [43] Wang, X.X., Li, J.J., Song, C.H., et al., 2006. Cenozoic Uplift of West Qinling, Northeast Margin of Tibetan Plateau: The Tecord of Detrital Apatite Fission Track Data in Tianshui Basin. Acta Sedimentologica Sinica, 24(6): 783-789(in Chinese with English abstract). [44] Wang, Z.C., Zhang, P.Z., Zhang, G.L., et al., 2006. Tertiary Tectonic Activities of the North Frontal Fault Zone of the West Qinling Mountains: Implications for the Growth of the Northeastern Margin of the Qinghai-Tibetan Plateau. Earth Science Frontiers, 13(4): 119-135(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200604009.htm [45] Yang, Z.X., 1993. On the Overthrust Zone in the North Margin of the Lajishan, the Southern Qilian Mountains. Petroleum Geology & Experiment, 15(2): 138-145(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199302003.htm [46] Yin, A., Rumelhart, P.E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257-1295. doi:10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2 [47] Yuan, D.Y., Zhang, P.Z., Fang, X.M., et al., 2007. Late Cenozoic Tectonic Deformation of the Linxia Basin, Northeastern Nargin of the Qinghai-Tibet Plateau. Earth Science Frontiers, 14(1): 243-250(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy200701023 [48] Yuan, D.Y., Zhang, P.Z., Lei, Z.S., et al., 2005. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province. Earthquake Research in China, 21(1): 93-102(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdzyj-e200504005 [49] Yuan, W.M., Dong, J.Q., Wang S.C., et al., 2005. Apatite Fission Track Analysis for Revealing Tectonic Evolution of the South-Block in Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau. Nuclear Techniques, 28(9): 707-711(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_nuclear-techniques_thesis/0201229426042.html [50] Yue, L.P., Heller, F., Qiu, Z.X., et al., 2000. Tertiary Magnetostratigraphy and Paleoclimatic Records in Lanzhou Basin. Chinese Science Bulletin, 45(18): 1998-2003(in Chinese). doi: 10.1360/csb2000-45-18-1998 [51] Zeng, G.C., Qiu, J.X., Zhu, Y.H., 1997. Ophiolitic Suite of Lajishan Orogenic Belt and Its Paleotectonic Setting. Qinghai Geology, (1): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL199701000.htm [52] Zhang, J.Y., Zhang, K.X., Ji, J.L., et al., 2010. Oligocene-Pliocene Sedimentary Facies Analysis and Sedimentary Evolution of Xunhua Basin in Northeastern Margin of Qinghai-Tibet Plateau. Earth Science—Journal of China University of Geosciences, 35(5): 774-788(in Chinese with English abstract). doi: 10.3799/dqkx.2010.091 [53] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic Main Uplift Event of the Tibetan Plateau: Sedimentary Response and Record of Thermochronology. Science in China (Series D), 38(12): 1575-1588(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200812011 [54] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science in China (Series D), 40(12): 1632-1654(in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=1003592358 [55] Zhang, P.Z., Zheng, D.W., Yin, G.M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13(in Chinese with English abstract). [56] Zhang, W.S., Feng, G.S., Gao, S., et al., 2003. Metamorphic Core Complex Structure and Uplifting Mechanism in Lajishan-Hualong Area. Earth Science—Journal of China University of Geosciences, 28(4): 407-413(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200304008.htm [57] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2003. Late Cenozoic Tectonic Deformation Sequence in the Northeast Margin of Qinghai-Tibet Plateau-Debris Apatite Fission Track Record of Linxia Basin. Science in China(Series D), 33(S1): 190-198(in Chinese). [58] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2005. Apatite Fission Track Evidence for the Thermal History of the Liupanshan Basin. Chinese Journal of Geophysics, 48(1): 157-164(in Chinese with English abstract). [59] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2006. Tectonic Events, Climate and Conglomerate: Example from Jishishan Mountain and Linxia Basin. Quaternary Sciences, 26(1): 63-69(in Chinese with English abstract). http://www.oalib.com/paper/1573429 [60] Zuo, G.Z., Li, Z.L., 2001. Feature and Evolution History of Lajishan Rift Zone. Acta Geologica Gansu, 10(1): 26-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSDZ200101003.htm [61] Zuo, G.Z., Li, Z.L., Zhang, C., 2001. Lajishan Tectonic Zone of Qinghai Province: Rift or Tectonic Window?—To Discuss with Prof. Wang Erqi. Geological Review, 47(6): 561-566(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200106000.htm [62] 陈怀录, 方小敏, 李吉均, 等, 1996. 临夏盆地新生代地层裂变径迹年龄测定. 核技术, 19(10): 632-634. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU610.016.htm [63] 陈妍, 陈世悦, 张鹏飞, 等, 2008. 古流向的研究方法探讨. 断块油气田, 15(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200801015.htm [64] 邓中林, 侯元才, 古凤宝, 等, 2000. 青海东北部第三纪西宁-贵德-化隆盆地充填特征、孢粉组合方式与古气候演变. 青海地质, (1): 43-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL200001006.htm [65] 范马洁, 宋春晖, 2003. 青藏高原东北缘临夏盆地王家山地区沉积环境分析与构造隆升. 兰州大学学报, 39(3): 84-89. doi: 10.3321/j.issn:0455-2059.2003.03.023 [66] 方小敏, 李吉均, 朱俊杰, 等, 1997. 甘肃临夏盆地新生代地层绝对年代测定与划分. 科学通报, 42(14): 1457-1471. doi: 10.3321/j.issn:0023-074X.1997.14.001 [67] 方小敏, 宋春晖, 戴霜, 等, 2007. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录. 地学前缘, 14(1): 230-242. doi: 10.3321/j.issn:1005-2321.2007.01.022 [68] 方小敏, 宋春晖, 高军平, 等, 2002. 青藏高原东北边缘晚新生代哺乳动物化石的磁性地层学. 科学通报, 47(23): 1824-1828. doi: 10.3321/j.issn:0023-074X.2002.23.015 [69] 方小敏, 宋春晖, 颜茂都, 等, 2004. 青海贵德盆地高精度磁性地层记录的晚新生代青藏高原东北部阶段性隆起过程. 西安: 中国地球物理学会第二十届年会. [70] 甘肃省地质矿产局, 1989. 甘肃省区域地质志. 北京: 地质出版社. [71] 谷祖纲, 白生海, 张显庭, 等, 1992. 青海省贵德、化隆两盆地新第三系的划分与对比. 地层学杂志, 16(2): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199202001.htm [72] 郭进京, 韩文峰, 2008. 西秦岭晚中生代-新生代构造层划分及其构造演化过程. 地质调查与研究, 31(4): 285-290. doi: 10.3969/j.issn.1672-4135.2008.04.001 [73] 黄长生, 李长安, 唐小明, 等, 1998. 湟水河流域不对称地貌与青藏高原—祁连山隆升. 江西地质, 12(4): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ804.002.htm [74] 季军良, 张克信, 强泰, 等, 2010. 青海循化盆地新近纪磁性地层学. 地球科学——中国地质大学学报, 35(5): 803-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005008.htm [75] 李吉均, 方小敏, 马海洲, 等, 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑), 26(4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005 [76] 刘梦儒, 1992. 西宁-民和盆地上第三系层序及所含化石. 青海地质, (2): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199202000.htm [77] 刘少峰, 张国伟, Heller, P.L., 2007. 循化-贵德地区新生代盆地发育及其对高原增生的指示. 中国科学(D辑), 37(S1): 235-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1025.htm [78] 鹿化煜, 安芷生, 王晓勇, 等, 2004. 最近14Ma青藏高原东北缘阶段性隆升的地貌证据. 中国科学(D辑), 34(9): 855-857. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200409007.htm [79] 潘保田, 1994. 贵德盆地地貌演化与黄河上游发育研究. 干旱区地理, 17(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199403005.htm [80] 潘保田, 李吉均, 曹继秀, 等, 1996. 化隆盆地地貌演化与黄河发育研究. 山地研究, 14(3): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA603.002.htm [81] 宋春晖, 方小敏, 高军平, 等, 2001. 青藏高原东北部贵德盆地新生代沉积演化与构造隆升. 沉积学报, 19(4): 493-500. doi: 10.3969/j.issn.1000-0550.2001.04.003 [82] 宋春晖, 方小敏, 李吉均, 等, 2003a. 青藏高原东北部贵德盆地上新世沉积环境分析及其意义. 第四纪研究, 23(1): 92-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200301010.htm [83] 宋春晖, 方小敏, 李吉均, 等, 2003b. 青海贵德盆地晚新生代沉积演化与青藏高原北部隆升. 地质论评, 49(4): 337-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200304000.htm [84] 孙秀玉, 赵英娘, 何卓生, 1984. 青海西宁-民和盆地渐新世至中新世孢粉组合. 地质论评, 30(3): 207-216. doi: 10.3321/j.issn:0371-5736.1984.03.002 [85] 万景林, 王瑜, 李齐, 等, 2001. 阿尔金山北段晚新生代山体抬升的裂变径迹证据. 矿物岩石地球化学通报, 20(4): 222-224. doi: 10.3969/j.issn.1007-2802.2001.04.004 [86] 王岸, 王国灿, 张克信, 等, 2010. 东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据. 地球科学——中国地质大学学报, 35(5): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005003.htm [87] 王二七, 张旗, Burchfiel, C.B., 2000. 青海拉鸡山: 一个多阶段抬升的构造窗. 地质科学, 35(4): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200004014.htm [88] 王国灿, 2002. 沉积物源区剥露历史分析的一种新途径——碎屑锆石和磷灰石裂变径迹热年代学. 地质科技情报, 21(4): 35-40. doi: 10.3969/j.issn.1000-7849.2002.04.008 [89] 王国灿, 张克信, 曹凯, 等, 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学——中国地质大学学报, 35(5): 713-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005001.htm [90] 王修喜, 李吉均, 宋春晖, 等, 2006. 青藏高原东北缘西秦岭新生代抬升——天水盆地碎屑颗粒磷灰石裂变径迹记录. 沉积学报, 24(6): 783-789. doi: 10.3969/j.issn.1000-0550.2006.06.002 [91] 王志才, 张培震, 张广良, 等, 2006. 西秦岭北缘构造带的新生代构造活动——兼论对青藏高原东北缘形成过程的指示意义. 地学前缘, 13(4): 119-135. doi: 10.3321/j.issn:1005-2321.2006.04.010 [92] 杨中轩, 1993. 南祁连拉脊山北缘逆冲推覆构造带. 石油实验地质, 15(2): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199302003.htm [93] 袁道阳, 张培震, 方小敏, 等, 2007. 青藏高原东北缘临夏盆地晚新生代构造变形及过程. 地学前缘, 14(1): 243-250. doi: 10.3321/j.issn:1005-2321.2007.01.023 [94] 袁道阳, 张培震, 雷中生, 等, 2005. 青海拉脊山断裂带新活动特征的初步研究. 中国地震, 21(1): 93-102. doi: 10.3969/j.issn.1001-4683.2005.01.010 [95] 袁万明, 董金泉, 王世成, 等, 2005. 东昆仑南部带磷灰石裂变径迹分析的地质意义. 核技术, 28(9): 707-711. doi: 10.3321/j.issn:0253-3219.2005.09.016 [96] 岳乐平, Heller, F., 邱占祥, 等, 2000. 兰州盆地第三系磁性地层年代与古环境记录. 科学通报, 45(18): 1998-2003. doi: 10.3321/j.issn:0023-074X.2000.18.019 [97] 曾广策, 邱家骧, 朱云海, 1997. 拉鸡山造山带的蛇绿岩套及古构造环境. 青海地质, (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199701000.htm [98] 张楗钰, 张克信, 季军良, 等, 2010. 青藏高原东北缘循化盆地渐新世-上新世沉积相分析与沉积演化. 地球科学——中国地质大学学报, 35(5): 774-788. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005006.htm [99] 张克信, 王国灿, 曹凯, 等, 2008. 青藏高原新生代主要隆升事件: 沉积响应与热年代学记录. 中国科学(D辑), 38(12): 1575-1588. doi: 10.3321/j.issn:1006-9267.2008.12.011 [100] 张克信, 王国灿, 季军良, 等, 2010. 青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应. 中国科学(D辑): 地球科学, 40(12): 1632-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012003.htm [101] 张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002 [102] 张旺生, 冯光胜, 高山, 等, 2003. 拉脊山-化隆变质核杂岩构造及其隆升机制探讨. 地球科学——中国地质大学学报, 28(4): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304008.htm [103] 郑德文, 张培震, 万景林, 等, 2003. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录. 中国科学(D辑), 33(S1): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1020.htm [104] 郑德文, 张培震, 万景林, 等, 2005. 六盘山盆地热历史的裂变径迹证据. 地球物理学报, 48(1): 157-164. doi: 10.3321/j.issn:0001-5733.2005.01.021 [105] 郑德文, 张培震, 万景林, 等, 2006. 构造、气候与砾岩——以积石山和临夏盆地为例. 第四纪研究, 26(1): 63-69. doi: 10.3321/j.issn:1001-7410.2006.01.008 [106] 左国朝, 李志林, 2001. 拉鸡山裂谷带特征及演化. 甘肃地质学报, 10(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200101003.htm [107] 左国朝, 李志林, 张崇, 2001. 青海拉鸡山构造带是裂谷还是构造窗——与王二七研究员商榷. 地质论评, 47(6): 561-566. doi: 10.3321/j.issn:0371-5736.2001.06.001