• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原中-新生代沉积盆地热体制与古地温梯度演化

    陈红汉 吴悠 肖秋苟

    陈红汉, 吴悠, 肖秋苟, 2013. 青藏高原中-新生代沉积盆地热体制与古地温梯度演化. 地球科学, 38(3): 541-552. doi: 10.3799/dqkx.2013.054
    引用本文: 陈红汉, 吴悠, 肖秋苟, 2013. 青藏高原中-新生代沉积盆地热体制与古地温梯度演化. 地球科学, 38(3): 541-552. doi: 10.3799/dqkx.2013.054
    CHEN Hong-han, WU You, XIAO Qiu-gou, 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science, 38(3): 541-552. doi: 10.3799/dqkx.2013.054
    Citation: CHEN Hong-han, WU You, XIAO Qiu-gou, 2013. Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China. Earth Science, 38(3): 541-552. doi: 10.3799/dqkx.2013.054

    青藏高原中-新生代沉积盆地热体制与古地温梯度演化

    doi: 10.3799/dqkx.2013.054
    基金项目: 中石化前瞻性课题"青藏高原侏罗-白垩系海相盆地烃源岩特征及保存条件评价研究"
    详细信息
      作者简介:

      陈红汉(1962-), 教授、博士生导师, 中国科学院地质与地球物理研究所"百人计划"入选者, 主要从事油气成藏过程与流体包裹体系统分析研究.E-mail: hhchen@cug.edu.cn

    • 中图分类号: P624

    Thermal Regime and Paleogeothermal Gradient Evolution of Mesozoic-Cenozoic Sedimentary Basins in the Tibetan Plateau, China

    • 摘要: 尽管前人对青藏高原隆升机制、地块拼合和陆内俯冲、中-下地壳流动以及岩浆活动等过程做了大量研究, 但对工区发育众多的中-新生代沉积盆地热体制和古地温梯度演化很少涉及, 而这些对中生代海相烃源岩油气生成过程以及已生成的油气命运具有重要影响.在总结前人有关青藏高原温度场背景和盆地类型演化成果基础之上, 运用流体包裹体均一温度测定数据, 综合建立了高原腹部中生代海相盆地古地温梯度演化曲线, 认为在中生代至古近纪的被动陆缘-弧后盆地-前陆盆地演化过程中, 中生代海相盆地处于相对低的地温梯度条件下(<3.0 ℃/100 m)有利于成熟油的生成; 在新近纪至第四纪的青藏高原隆升阶段, 这些中生代海相盆地不仅演化成残留盆地, 而且还伴随着新的热事件使得盆地地温梯度不均匀急剧上升(~6.5 ℃/100 m), 同时会导致大部分中生代海相烃源岩生成的油再度裂解成气和存在二次生烃(气)的可能性.因此, 古地温梯度演化决定了在"冷盆"区域可能还存在找油潜力, 但在大部分的"热盆"区域只能以找气为主.

       

    • 图  1  青藏高原构造分区和沉积盆地分布

      Fig.  1.  Tectonic division and distribution of sedimentary basin in the Tibetan plateau

      图  2  青藏地区各地块低速低阻体分布及管状流流动方向(据Klemperer, 2006修改)

      Fig.  2.  Distribution of low-speed and conductor block and direction of channel flow in the Tibetan plateau

      图  3  青藏地区各地块大地热流值分布(据付孝悦, 2004修改)

      Fig.  3.  Distribution of geothermal data of different blocks in the Tibetan plateau

      图  4  运用流体包裹体均一温度求取古地温梯度方法

      Fig.  4.  Obtain paleogeothermal gradient using homogenous temperature of fluid inclusion

      图  5  青藏高原中-新生代盆地烃类包裹体观察结果

      a.措勤盆地洞错-措勤AA'剖面, 丁青湖组(E3d)含砾粗砂岩石英颗粒内裂纹和石英次生加大边中分别发育浅黄色和蓝白色荧光油包裹体, 指示成熟和高成熟两期油充注;b.措勤盆地洞错-措勤AA'剖面, 丁青湖组(E3d)含砾粗砂岩石英颗粒内裂纹和穿石英颗粒裂纹中分别发育浅黄色和蓝白色荧光油包裹体, 指示成熟和高成熟两期油充注;c.措勤盆地洞错-措勤AA'剖面, 下拉组(P2x), 重结晶灰岩中方解石脉裂纹中见发弱蓝白色荧光凝析油和纯气相包裹体;d.昌都盆地肯通(T3bg)地层剖面, 巴贡组(T3bg)灰色细砂岩.穿石英颗粒裂纹中见不发荧光纯气相包裹体

      Fig.  5.  Hydrocarbon fluid inclusion in the Mesozoic-Cenozoic sedimentary basins of Tibetan plateau

      表  1  青藏高原地温梯度结果统计

      Table  1.   Geothermal gradient data statistics in the Tibetan plateau

      地区 今地温梯度
      (℃/100 m)
      古地温梯度
      (℃/100 m)
      方法 资料来源
      岗巴地区 6.5 3.0(>40 Ma) TTI法 曾华盛和王津义, 2003
      藏南普莫雍湖 13.83~32.43 实测 沈显杰, 1989
      藏南羊卓雍湖 13.83~32.43 实测 沈显杰, 1989
      冈底斯弧后逆掩带和
      前陆盆地
      3.5~4.5
      (早侏罗世, 195.9±3 Ma)
      206Pb/238U法 Pullen et al., 2008
      拉萨河谷 3.8 实测 李廷栋, 1995
      羊八井热田 1.94~5.88
      (810~1 580 m)
      ZK308孔实测 徐纪人等, 2005
      拉多岗地热区 6.53~12.48
      (20~200 m)
      ZK203孔实测 徐纪人等, 2005
      羊应乡热田 16~53
      (40~230 m)
      ZK201和CHK2孔实测 Francheteau et al., 1984
      当雄-南木林断裂带 4.0 实测 潘作枢, 1984
      5.0~7.0 Ro-Tmax模型法 付孝悦, 2004
      伦坡拉盆地 4.5~6.0 实测 付孝悦, 2004
      6.0~7.2 7.0~9.0(渐新世) Ro-Tmax模型法 袁彩萍和徐思煌, 2000
      5.0~6.3 7.0~8.5(始新世) Ro-Tmax模型法 袁彩萍和徐思煌, 2000
      羌塘盆地拉雄错、董怀桑、隆鄂尼、野牛沟及安多及雀莫错等地区 1.5 T~J: 2.63~2.65
      3.0(>1.6 Ma)
      1.5(<1.6 Ma)
      Ro-Tmax模型法
      Ro-Tmax模型法
      Ro-Tmax模型法
      王剑等, 2004
      王剑等, 2004
      王剑等, 2004
      北羌塘坳陷东部雀莫错剖面 2.7 1.72~1.86(51~38 Ma)
      2.7(<3.5 Ma)
      Ro模拟、流体包裹体和
      裂变径迹法
      许怀先和秦建中, 2004
      南羌塘坳陷东部 1.58~1.66(>81 Ma)
      1.72(51~38 Ma)
      Ro模拟、流体包裹体和
      裂变径迹法
      秦建中, 2006
      羌塘盆地 2.73 2.73(中-新生代) Ro-Tmax模型法 王纪祥等, 2003
      1.5~1.8(中生代) 流体包裹体法 王纪祥等, 2003
      羌塘盆地赤布张错多 2.76(侏罗纪) 流体包裹体法 王成善等, 2001
      尔索洞错 2.72(侏罗纪) 王成善等, 2001
      依仓玛剖面 4.0~4.5(侏罗纪) 磷灰石裂变径迹技术和
      包裹体法
      王成善等, 2001
      乌兰乌拉湖地区 3.7~5.4(白垩纪) 王成善等, 2001
      依仓玛-毛毛山剖面 2.45~5.20 Ro-Tmax模型法 王成善等, 2001
      全区热模拟值 2.54~2.82 综合方法 王成善等, 2001
      全区平均值 2.47~2.49 王成善等, 2001
      3.0 3.0(中-新生代) 类比方法 吴孔友等, 1999
      K: 2.73 流体包裹体法 高瑞祺和赵政璋, 2001
      措勤盆地 3.4~4.0 K1d: 2.28~2.66
      (96.4~88.9 Ma)

      K1d: 2.07~2.25
      (80.4~63.1 Ma)
      流体包裹体法
      流体包裹体法
      本文
      本文
      K1d: 3.08 流体包裹体法 本文
      比如盆地 3.5~4.5 J2-3l: 3.15 流体包裹体法 本文
      (128.2~113.0 Ma)
      T: 2.22~2.39 流体包裹体法 本文
      (188.6~181.8 Ma)
      T: 2.54 流体包裹体法 本文
      (174.0~156.9 Ma)
      昌都盆地 5.0~6.0 T: 2.02~2.39 流体包裹体法 本文
      (149~135 Ma)
      T: 1.86~2.07 流体包裹体法 本文
      (127.1~115.9 Ma)
      松潘-阿坝地区 2.7 6.0~7.0(晚三叠世) Ro-Tmax模型法 赵永庆, 2008
      柴达木盆地 2.0~3.3 实测 Qiu et al., 2003
      下载: 导出CSV

      表  2  措勤盆地盐湖-捷嘎剖面多尼组(K1d)古地温数据

      Table  2.   Paleogeothermal data of Duoni Formation (K1d) in the Yanhu-Jiega Section in Cuoqin basin

      样品编号 层位 古埋深(m) 第二期盐水包裹体 第三期盐水包裹体
      Thmin(℃) Thmax(℃) Thmin(℃) Thmax(℃)
      XZ-4-3 K1d 1 980 115.6 142.0 164.0 170.0
      QZ-8 K1d 2 400 118.9 126.9 177.5 181.1
      XZ-4-2 K1d 3 200 136.1 156.9 193.3 198.7
      XZ-4-4 K1d 3 200 139.7 - - 198.9
      XZ-4-1 K1d 3 800 156.9 163.3 206.1 208.0
      XZ-5-1 K1d 3 800 - - - 212.2
      下载: 导出CSV

      表  3  比如盆地拉孜剖面多尼组(K1d)和央青剖面拉贡塘组(J2-3l)古地温数据

      Table  3.   Paleogeothermal data of Duoni Formation (K1d) in the Lazi Section in Biru basin

      样品编号 层位 古埋深(m) 第一期盐水包裹体 第一期古地温梯度(℃/100 m)
      Thmin(℃) Thmax(℃)
      QZ-64 K1d 1 200 90.8 107.6 3.08
      QZ-65 J2-3l 1 600 103.1 120.2 3.15
      下载: 导出CSV

      表  4  昌都盆地侏罗系剖面(J1ch)、肯通剖面(T3bg)、都兰多剖面(T3b)和妥坝剖面(T3j)古地温数据

      Table  4.   Paleogeothermal data of Jurassic Section (J1ch), Kentong Section (T3bg), Duolanduo Section (T3b) and Tuoba Section (T3j) in Changdu basin

      样品编号 层位 古埋深(m) 第一期盐水包裹体 第二期盐水包裹体 第三期盐水包裹体 第四期盐水包裹体
      Thmin(℃) Thmax(℃) Thmin(℃) Thmax(℃) Thmin(℃) Thmax(℃) Thmin(℃) Thmax(℃)
      QZ-52 J1ch 3 900 - - - - 112.1 122.8 141.4 156.2
      QZ-47 T3bg 4 800 - - - - 130.4 144.4 153.3 167.9
      QZ-48 T3bg 4 800 - - - - - - 157.7 168.8
      QZ-51 T3bg 5 180 - - - - 137.9 153.4 170.2 182.3
      QZ-37 T3b 5 440 92.0 105.2 112.1 - - - - -
      QZ-44 T3j 5 900 103.0 115.4 123.8 - - - - -
      下载: 导出CSV
    • [1] Alsdorf, D., Nelson, D., 1999. Tibetan Satellite Magnetic Low: Evidence for Widespread Melt in the Tibetan Crust. Geology, 27(10): 943-946. doi:10.1130/0091-7613(1999)027<0943:TSMLEF>2.3.CO;2
      [2] Brookfield, M.E., 1993. The Himalayan Passive Margin from Precambrian to Cretaceous Times. Sedimentary Geology, 84(1-4): 1-35. doi: 10.1016/0037-0738(93)90042-4
      [3] Chen, H.H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150 (in Chinese with English abstract). http://www.cqvip.com/QK/95357X/20072/24496620.html
      [4] Crouzet, C., Dunkl, I., Paudel, L., et al., 2007. Temperature and Age Constraints on the Metamorphism of the Tethyan Himalaya in Central Nepal: A Multidisciplinary Approach. Journal of Asian Earth Sciences, 30: 113-130. doi: 10.1016/j.jseaes.2006.07.014
      [5] DeCelles, P.G., Kapp, P., Ding, L., et al., 2007. Late Cretaceous to Middle Tertiary Basin Evolution in the Central Tibetan Plateau: Changing Environments in Response to Tectonic Partitioning, Aridification, and Regional Elevation Gain. Geological Society of America Bulletin, 119(5-6): 654-680. doi: 10.1130/B26074.1
      [6] Francheteau, J., Jaupart, C., Shen, X.J., et al., 1984. High Heat Flow in Southern Tibet. Nature, 307: 32-36. doi: 10.1038/307032a0
      [7] Fu, X.Y., 2004. Tethyan Plate Structures and Petroliferous Basins in the Qinghai-Tibet Plateau. Petroleum Geology & Expeximent, 26(6): 507-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200406000.htm
      [8] Gaillard, F., Scaillet, B., Pichavant, M., 2004. Evidence for Present-Day Leucogranite Pluton Growth in Tibet. Geology, 32(9): 801-804. doi: 10.1130/G20577.1
      [9] Gao, R.Q., Zhao, Z.Z., 2001. The Qinghai-Tibet Plateau Petroleum Geology. Petroleum Industry Press, Beijing (in Chinese).
      [10] Hacker, B.R., Gnos, E., Ratschbacher, L., et al., 2000. Hot and Dry Deep Crustal Xenolith from Tibet. Science, 287(5462): 2463-2466. doi: 10.1126/science.287.5462.2463
      [11] Harrison, T.M. Copeland, P., Kidd, W.S.F., et al., 1992. Raising Tibet. Science, 255(5052): 1663-1670. doi: 10.1126/science.255.5052.1663
      [12] Horton, B.K., Yin, A., Spurlin, M.S., et al., 2002. Paleocene-Eocene Syncontractional Sedimentation in Narrow, Lacustrine-Dominated Basins of East-Central Tibet. GSA Bulletin, 114(7): 771-786. doi:10.1130/0016-7606(2002)114<0771:PESSIN>2.0.CO;2
      [13] Huang, J.Q., Chen, B.W., 1987. The Evolution of Tethys in China and Adjacent Areas. Geological Publishing House, Beijing (in Chinese).
      [14] Huerta, A.D., Royden, L.H., Hodges, K.V., 1996. The Interdependence of Deformational and Thermal Processes in Mountain Belts. Science, 273(5275): 637-639. doi: 10.2307/2891153
      [15] Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219-1221. doi: 10.1126/science.1078115
      [16] Klemperer, S.L., 2006. Crustal Flow in Tibet: Geophysical Evidence for the Physical State of Tibetan Lithosphere, and Inferred Patterns of Active Flow. In: Law, R.D., Searle, M.P., Godin, L., eds., Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London (Special Publications), 268: 39-70.
      [17] Kosarev, G., Kind, R., Sobolev, S.V. et al., 1999. Seismic Evidence for a Detached Indian Lithospheric Mantle beneath Tibet. Science, 283(5406): 1306-1309. doi: 10.1126/science.283.5406.1306
      [18] Lenardic, A., Moresi, L., 2000. A New Class of Equilibrium Geotherms in the Deep Thermal Lithosphere of Continents. Earth and Planetary Science Letters, 176(3-4): 331-338. doi: 10.1016/S0012-821X(00)00025-X
      [19] Li, H.L., Qiu, N.S., Jin, Z.J., et al., 2005. Geothermal History of Tarim basin. Oil & Gas Geology, 26(5): 613-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200505010.htm
      [20] Li, J.G., Batten, D.J., Zhang, Y.Y., 2008. Palynological Indications of Environmental Changes during the Late Cretaceous-Eocene on the Southern Continental Margin of Laurasia, Xizang (Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2): 78-86. doi: 10.1016/j.palaeo.2008.04.017
      [21] Li, T.D., 1995. The Uplifting Process and Mechanism of the Qinghai-Tibet Plateau. Acta Geoscience Sinica, (1): 1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/291215937_The_uplifting_process_and_mechanism_of_the_Qinhai-Tibet_Plateau
      [22] Lin, D., Kapp, P., Yue, Y.H., et al., 2007. Postcollisional Calc-Alkaline Lavas and Xenoliths from the Southern Qiangtang Terrane, Central Tibet. Earth and Planetary Science Letters, 254(1-2): 28-38. doi: 10.1016/j.epsl.2006.11.019
      [23] Lister, C.R.B., 1996. Thermal Losses from Fluids Upwelling in a Conduit, and the Effect on Surface Heat Flow. Tectonophysics, 257(1): 39-53. doi: 10.1016/0040-1951(95)00119-0
      [24] Liu, J.D., Zhou, W., Li, Y., et al., 2007. Analysis and Evaluation of Oil and Gas Resource Potential in the Qinghai-Tibet Region. Geological Publishing House, Beijing (in Chinese).
      [25] Luo, J.N., Peng, Y.M., Pan, G.T., 1996. Plate Convergent Margins and Island-Arc Orogenesis in Eastern Tethys. Sedimentary Facies and Palaeogeography, 16(3): 1-51, 46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199603002.htm
      [26] Ma, X.B., Kong, X.R., Liu, H.B., et al., 2005. The Electrical Structure of Northeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 48(3): 689-697 (in Chinese with English abstract). http://www.oalib.com/paper/1567036
      [27] Owens, T.J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387: 37-43. doi: 10.1038/387037a0
      [28] Pan, G.T., 1994. An Evolution of Tethys in Global Ocean-continent Transformation. Sedimentary Geology and Tethyan Geology, 18: 23-40 (in Chinese with English abstract). http://www.researchgate.net/publication/309532265_An_evolution_of_Tethys_in_global_ocean-continent_transformation
      [29] Pan, Z.S., 1984. Curie ISO Thermal Surface and Heat Flow Analysis of the Adjacent Region of the Nianqing Tanggula Piedmont Faulted Zones. Geophysical Prospecting for Petroleum, 23(2): 38-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYWT198402002.htm
      [30] Pandey, O.P., Agrawal, P.K., 2000. Thermal Regime, Hydrocarbon Maturation and Geodynamic Events Along the Western Margin of India since Late Cretaceous. Journal of Geodynamics, 30(4): 439-459. doi: 10.1016/S0264-3707(00)00002-8
      [31] Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008. Gangdese Retroarc Thrust Belt and Foreland Basin Deposits in the Damxung Area, Southern Tibet. Journal of Asian Earth Sciences, 33(5-6): 323-336. doi: 10.1016/j.jseaes.2008.01.005
      [32] Qin, J.Z., 2006. Study on Organic Matter's Maturation and Hydrocarbon-Generating History in the Qiangtang Basin. Petroleum Geology & Experiment, 28(4): 350-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200604008.htm
      [33] Qiu, D.Z., 2004. Tibet—A New Take-over Region for Petroleum Resources of 21st Century in West China. Xinjiang Petroleum Geology, 25(3): 233-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200403000.htm
      [34] Qiu, N.S., Kang, Y.S., Jin, Z.J., 2003. Temperature and Pressure Field in the Tertiary Succession of the Western Qaidam Basin, Northeast Qinghai-Tibet Plateau, China. Marine and Petroleum Geology, 20(5): 493-507. doi: 10.1016/S0264-8172(03)00080-1
      [35] Royden, L.H., Burchfiel, B.C., Hilst, R.D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371
      [36] Shen, X.J., Zhang, W.R., Yang, S.Z., et al., 1989. Borehole Heat Flow Measurements in Some Geo-Thermal Areas in Central Tibet. Acta Geologica Sinia, (4): 376-384 (in Chinese with English abstract). http://www.researchgate.net/publication/316929751_Borehole_heat_flow_measurements_in_some_geothermal_areas_in_central_Tibet
      [37] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(23): 1671-1677. doi: 10.1126/science.105978
      [38] Ungerer, P., Pelet, R., 1987. Extrapolation the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327: 52-54. doi: 10.1126/science.105978
      [39] Wang, C.S., Yin, H.S., Li, Y., et al., 2001. Geological Evolution and Evaluation of Oil and Gas Prospects in Qiangtang Basin. Geological Publishing House, Beijing (in Chinese).
      [40] Wang, C.S., Zhang, S.N., 1996. Preliminary Analysis of Petroliferous Basins and Oil-Gas Prospects in Qinghai-Xizang (Tibet) Plateau. Earth Science—Journal of China University of Geosciences, 21(2): 120-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199602004.htm
      [41] Wang, F.Z., Lai, X.N., Guo, T.Y., et al., 1997. Relationship Between the Tertiary Volcanic Rocks and Oil Potential in Qiangtang Area, Tibet. Earth Science—Journal of China University of Geosciences, 22(3): 311-316 (in Chinese with English abstract).
      [42] Wang, J., Tan, F.W., Li, Y.L., et al., 2004. Oil and Gas Resource Potential of the Key Sedimentary Basins in the Tibetan Plateau. Geological Publishing House, Beijing (in Chinese).
      [43] Wang, J.X., Chen, Q.H., Ren, Y.J., 2003. Conditions for the Formation of Oil and Gas Pool in Cuoqin Basin. Advance in Earth Sciences, 18(2): 312-316 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkxjz200302024
      [44] Wang, Y., Zhang, X.M., Sun, L.X., et al., 2007. Cooling History and Tectonic Exhumation Stages of the South-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. Journal of Asian Earth Sciences, 29(2-3): 266-282. doi:10.1016/ j.jseaes.2005.11.001
      [45] Wang, Y.C., Wang, Y.T., 2001. Characteristics and Preliminary Knowledge of Inner-Crustal Low Resistivity Zone in Qiangtang Area. Xingjiang Petroleum Geology, 22(6): 472-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200106006.htm
      [46] Wei, W.B., Jin, S., Ye, G.F., et al., 2006. Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-wide Band Magnetotelluric Sounding. Chinese Journal of Geophysics, 49 (4): 1215-1225 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqwlxb200604038.aspx
      [47] Wu, K.Y., Chen, Q.H., Hong, M., 1999. Main Hydrocarbon Bearing System in Tazicuo Deep Depression of the Cuoqin Basin in Qinghai. Journal of the University of Petroleum, China, 23(4): 13-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX904.003.htm
      [48] Wu, Z.H., Jiang, W., Zhou, J.R., et al., 2001. Thermal-Chronological Dating on the Thermal History of Plutons and Tectonic-Landform Evolution of the Central Tibetan Plateau. Acta Geologica Sinia, 75(4): 468-475, 176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200104007.htm
      [49] Xu, H.X., Qin, J.Z., 2004. Thermal Evolution History of the Mesozoic Marine Source Rock in the Qiangtang Basin, Tibet. Petoleum Exploration and Development, 31(2): 59-63 (in Chinese with English abstract). http://www.researchgate.net/publication/291129006_Thermal_evolution_history_of_the_mesozoic_marine_source_rock_in_the_Qiangtang_Basin_Tibet
      [50] Xu, J.R., Zhao, Z.X., Ishikawa, Yuzo., 2005. Extensional Stress Field in the Central and Southern Qinghai-Tibetan Plateau and Dynamic Mechanism of Geothermic Anomaly in the Yangbajain Area. Chinese Journal of Geophysics, 48(4): 861-869 (in Chinese with English abstract).
      [51] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract). http://www.researchgate.net/publication/284372537_The_Qinghai-Tibet_plateau_and_continental_dynamics_A_review_on_terrain_tectonics_collisional_orogenesis_and_processes_and_mechanisms_for_the_rise_of_the_plateau
      [52] Yang, X.S., Ma, J., Jin, Z.M., 2003. Granite and Partial Melting of Crustal Velocity Structure in Southern Qinghai-Tibet Plateau. Acta Geologica Sinica, 24 (in Chinese).
      [53] Yuan, C.P., Xu, S.H., 2000. Characteristics of Geotemperature Field and Maturity History of Source Rocks in Lunpola Basin, Xizang (Tibet). Experimental Petroleum Geology, 22(2): 156-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200002011.htm
      [54] Zeng, H.S., Wang, J.Y., 2003. Assesment of Hydrocarbon Source Rocks in Xizang Gangba Basin. Natural Gas Industry, 23(6): 16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200306004.htm
      [55] Zhao, W.J., Liu, K., Jiang, Z.T., et al., 2004. Bangong Co-Nujiang Suture Zone, Tibet—A Suggestion Given by Deep Geophysical Structure. Regional Geology of China, 23(7): 623-635 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200407000.htm
      [56] Zhao, Y.Q., 2008. Research on the Thermal Evolution Anomaly in Late Triassic Songpan-Aba Region. Natural Gas Technology, 2(3): 15-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRJJ200803008.htm
      [57] 陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      [58] 付孝悦, 2004. 青藏特提斯板块构造与含油气盆地. 石油实验地质, 26(6): 507-516. doi: 10.3969/j.issn.1001-6112.2004.06.001
      [59] 高瑞祺, 赵政璋, 2001. 青藏高原石油地质. 北京: 石油工业出版社.
      [60] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社.
      [61] 李慧莉, 邱楠生, 金之钧, 等, 2005. 塔里木盆地的热史. 石油与天然气地质, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009
      [62] 李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm
      [63] 刘家铎, 周文, 李勇, 等, 2007. 青藏地区油气资源潜力分析与评价. 北京: 地质出版社.
      [64] 罗建宁, 彭勇民, 潘桂棠, 1996. 东特提斯板块会聚边缘与岛弧造山作用. 岩相古地理, 16(3): 1-51, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD603.000.htm
      [65] 马晓冰, 孔祥儒, 刘宏兵, 等, 2005. 青藏高原东北部地区地壳电性结构特征. 地球物理学报, 48(3): 689-697. doi: 10.3321/j.issn:0001-5733.2005.03.029
      [66] 潘桂棠, 1994. 全球洋-陆转换中的特提斯演化. 特提斯地质, 18: 23-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD400.001.htm
      [67] 潘作枢, 1984. 念青唐古拉山前断裂系周围地区的居里等温面与热流分析. 石油物探, 23(2): 38-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT198402002.htm
      [68] 秦建中, 2006. 羌塘盆地有机质热演化与成烃史研究. 石油实验地质, 28(4): 350-358. doi: 10.3969/j.issn.1001-6112.2006.04.009
      [69] 丘东洲, 2004. 西藏—我国西部21世纪新的油气资源接替区. 新疆石油地质, 25(3): 233-239. doi: 10.3969/j.issn.1001-3873.2004.03.001
      [70] 沈显杰, 张文仁, 杨淑贞, 等, 1989. 西藏中部地热区的钻孔热流测量. 地质科学, (4): 376-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198904009.htm
      [71] 王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价. 北京: 地质出版社.
      [72] 王成善, 张哨楠, 1996. 青藏高原含油气盆地分析及油气资源预测. 地球科学—中国地质大学学报, 21(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199602004.htm
      [73] 王方正, 赖旭龙, 郭铁鹰, 等, 1997. 西藏羌塘地区第三系火山岩及与羌塘盆地含油性关系的研究. 地球科学—中国地质大学学报, 22(3): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX703.014.htm
      [74] 王纪祥, 陈清华, 任拥军, 2003. 西藏措勤盆地油气成藏条件分析. 地球科学进展, 18(2): 312-316. doi: 10.3321/j.issn:1001-8166.2003.02.024
      [75] 王剑, 谭富文, 李亚林, 等, 2004. 青藏高原重点沉积盆地油气资源潜力分析. 北京: 地质出版社.
      [76] 王宜昌, 王永涛, 2001. 羌塘地区壳内低阻层特征及初步认识. 新疆石油地质, 22(6): 472-474. doi: 10.3969/j.issn.1001-3873.2001.06.006
      [77] 魏文博, 金胜, 叶高峰, 等, 2006. 藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果. 地球物理学报, 49 (4): 1215-1225. doi: 10.3321/j.issn:0001-5733.2006.04.038
      [78] 吴孔友, 陈清华, 洪梅, 1999. 青藏地区措勤盆地它日错深凹陷主含油气系统. 石油大学学报(自然科学版), 23(4): 13-15. doi: 10.3321/j.issn:1000-5870.1999.04.004
      [79] 吴珍汉, 江万, 周继荣, 等, 2001. 青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析. 地质学报, 75(4): 468-475, 176. doi: 10.3321/j.issn:0001-5717.2001.04.006
      [80] 许怀先, 秦建中, 2004. 羌塘盆地中生界海相烃源层热演化史. 石油勘探与开发, 31(2): 59-63. doi: 10.3321/j.issn:1000-0747.2004.02.016
      [81] 徐纪人, 赵志新, 石川有三, 2005. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制. 地球物理学报, 48(4): 861-869. doi: 10.3321/j.issn:0001-5733.2005.04.018
      [82] 许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm
      [83] 杨晓松, 马瑾, 金振民, 等, 2003. 花岗岩部分熔融及其对青藏高原南部地壳速度结构的约束. 地质学报, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301007.htm
      [84] 袁彩萍, 徐思煌, 2000. 西藏伦坡拉盆地地温场特征及烃源岩热演化史. 石油实验地质, 22(2): 156-160. doi: 10.3969/j.issn.1001-6112.2000.02.012
      [85] 曾华盛, 王津义, 2003. 西藏岗巴盆地烃源岩评价. 天然气工业, 23(6): 16-21. doi: 10.3321/j.issn:1000-0976.2003.06.005
      [86] 赵文津, 刘葵, 蒋忠惕, 等, 2004. 西藏班公湖-怒江缝合带—深部地球物理结构给出的启示. 地质通报, 23(7): 623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001
      [87] 赵永庆, 2008. 松潘-阿坝地区晚三叠世热演化异常原因研究. 天然气技术, 2(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ200803008.htm
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  3140
    • HTML全文浏览量:  147
    • PDF下载量:  648
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-05-28
    • 刊出日期:  2013-05-15

    目录

      /

      返回文章
      返回