Geochemical Characteristics and Signatures of the Sandstones from Zangxiahe Formation in Qiangtang Basin
-
摘要: 藏夏河组是指发育于北羌塘盆地北部的一套砂、泥质互层的复理石相沉积地层, 其时代为晚三叠世诺利期.由于其形成时间正是羌塘地体与可可西里-松潘地体沿金沙江缝合带进行碰撞、缝合的时期, 因此该套地层对于探讨晚三叠世藏北地质演化具有重要的指示意义.通过对北羌塘盆地多色梁一带藏夏河组砂岩进行X射线衍射, 全岩常量、稀土和微量元素分析, 以及锆石裂变径迹等方法分析该套砂岩的物源、沉积构造背景, 进而探讨晚三叠世羌塘盆地的性质.研究结果表明, 其岩石类型为杂砂岩, 物源主要为长英质火成物质, 另有少量古地壳再循环物质加入, 沉积大地构造背景为活动大陆边缘与大陆岛弧.结合前人研究资料, 推断晚三叠世北羌塘盆地的性质可能为前陆盆地, 藏夏河组为一套造山前或同造山期形成的复理石沉积建造.Abstract: The Qiangtang basin is located between the Jinshajiang suture (JSS) and Bangong-Nujiang suture. It is an important petroliferous basin in the northern Tibet Plateau, China. It is formed by the stacking of many basins of different stages, properties and generations. There have always been a lot of debate about the Late Triassic property of Qiangtang basin, so the Late Triassic Zangxiahe Formation is selected as the research subject in this paper. The Zangxiahe Formation, which is deposited on the northern margin of the Qiangtang basin, is a very thick flysch (> 3 000 m) with sandstone and shale sediments. It is an very important indicator for the Late Triassic property of Qiangtang basin. The X-ray diffraction (XRD), major compositions, rare earth elements and trace elements of the whole rocks and the fission tracks of clastic zircon of the sandstones from Zangxiahe Formation in Qiangtang basin are studied in this paper, which reveals that the tectonic settings of source rock area belong to active continental margin and continental island arc. Combined with the results of previous studies, it is concluded that the main source area is JSS and the major source rocks are the felsic rocks. The felsic rocks are likely the S-COLG which intruded into the JSS in Middle Triassic. The deposition time of the Late Triassic Zangxiahe Formation is the same as the formation time of JSS. So the Late Triassic Qiangtang basin is a peripheral foreland basin.
-
Key words:
- Qiangtang basin /
- Late Triassic /
- Zangxiahe Formation /
- geochemistry /
- sedimentation
-
图 2 砂岩X射线衍射图谱(a)与砂岩分类图解(b)(据Pettijhon et al., 1973)
Fig. 2. X-ray diffraction of sandstones (a) and the type of the sandstones (b)
图 3 主量元素的源区判别图(a)(据Roser and Korsch, 1988)与稀土元素配分模式(b)
Fig. 3. Source rock discrimination on major elements (a) and chondrite-normalized REE patterns (b)
图 4 La/Th-Hf(a)和La/Sc-Co/Th源岩判别图解(b)(据Gu et al., 2002)
Fig. 4. Source rock discrimination for the sandstones of Zangxiahe Formation on La/Th vs.Hf (a) and La/Sc vs.Co/Th (b)
图 6 藏夏河组砂岩主量元素的构造环境判别
图 6a据Blatt et al.(1972);图 6b据Roser and Korsch(1986);图 6c和图 6d据Bhatia(1983).A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘;Fe2O3代表全铁
Fig. 6. Major element composition and the tectonic setting discrimination of the sandstones of Zangxiahe Formation
图 7 微量元素构造环境判别图(据Bhatia and Crook, 1986)
a.La-Th-Sc;b.Th-Co-Zr/10;c.Th-Sc-Zr/10;A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘
Fig. 7. La-Th-Sc, Th-Co-Zr/10 and Th-Sc-Zr/10 plots of the sandstones of the Zangxiahe Formation, for tectonic setting discrimination
表 1 藏夏河组砂岩与典型构造背景沉积盆地杂砂岩的REE特征(据Bhatia,1985)
Table 1. Comparison of REE characteristic parameters of the sandstones of Zangxiahe Formation with the greywackes from various tectonic setting
不同构造背景源区类型 La Ce ∑REE La/Yb (La/Yb)N LREE/HREE δEu 大洋岛弧 8.0 19.0 58.0 4.2 2.8 3.8 1.04 大陆岛弧 27.0 59.0 146.0 11.0 7.5 7.7 0.79 活动大陆边缘 37.0 78.0 186.0 12.5 8.5 9.1 0.60 被动大陆边缘 39.0 85.0 210.0 15.9 10.8 8.5 0.56 研究区样品平均值 24.2 49.8 142.6 14.4 9.7 8.5 0.76 注:表中量纲为10-6. 表 2 藏下河组砂岩的主量元素、稀土元素和微量元素数据
Table 2. Major compositions, rare earth elements and trace elements of the whole rocks from the sandstones of Zangxiahe Formation in Qiangtang basin
元素 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 ZrO2 烧失量 Total Rb Sr Ba Nb Zr Hf Th S24-1 76.81 0.53 6.41 1.03 0.92 0.095 1.37 3.99 2.22 1.81 0.083 2.53 3.59 101.39 60.5 192 553 8.56 280 6.51 6.94 S24-2 75.42 0.56 6.43 1.06 1.30 0.084 1.51 4.10 2.26 1.83 0.086 2.51 4.06 101.21 54.0 195 526 7.98 183 4.92 5.79 S24-3 78.93 0.57 7.57 1.89 0.20 0.071 0.95 2.14 2.86 1.86 0.120 2.84 2.75 101.75 63.0 134 618 11.40 325 8.10 8.99 S24-4 76.82 0.55 6.34 1.06 1.14 0.075 1.47 3.82 2.24 1.80 0.086 2.53 4.39 101.32 54.9 195 576 8.36 243 5.77 5.58 S24-5 76.79 0.52 6.35 1.08 0.98 0.093 1.35 3.97 2.25 1.77 0.084 2.43 4.59 101.26 60.5 192 553 8.56 280 6.51 6.94 S24-6 75.30 0.55 6.48 0.94 1.32 0.082 1.54 4.40 2.24 1.80 0.084 2.48 5.06 101.28 54.0 195 526 7.98 183 4.92 5.79 S24-7 77.63 0.58 6.51 2.03 0.39 0.067 1.55 3.08 2.27 1.82 0.089 3.58 3.86 102.46 57.0 167 646 8.75 251 6.04 6.41 元素 Cr Co Ni Sc U La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y V S24-1 135.0 9.60 53.8 8.34 1.62 24.8 49 5.82 20.2 3.97 0.84 3.16 0.52 2.85 0.55 1.72 0.25 1.64 0.23 16.8 54.5 S24-2 146.0 11.90 65.1 7.81 1.40 21.4 40.6 5.01 17.4 3.58 0.88 3.02 0.48 2.71 0.57 1.71 0.23 1.62 0.25 15.7 54.2 S24-3 55.1 7.58 21.0 7.40 2.14 32.6 65.4 7.59 26.3 5.15 1.01 4.05 0.67 3.74 0.75 2.37 0.30 2.00 0.31 22.9 49.3 S24-4 155.0 11.60 67.0 8.14 1.43 20.1 38.9 4.87 16.8 3.36 0.79 2.99 0.47 2.61 0.52 1.61 0.22 1.58 0.25 16.3 54.8 S24-5 135.0 9.60 53.8 8.34 1.62 24.8 49.0 5.82 20.2 3.97 0.84 3.16 0.52 2.85 0.55 1.72 0.25 1.64 0.23 16.8 54.5 S24-6 146.0 11.90 65.1 7.81 1.40 21.4 40.6 5.01 17.4 3.58 0.88 3.02 0.48 2.71 0.57 1.71 0.23 1.62 0.25 15.7 54.2 S24-7 174.0 12.90 74.4 8.48 1.59 24.2 46.9 5.63 20.0 4.01 0.84 3.39 0.51 2.85 0.58 1.81 0.24 1.64 0.26 17.7 55.7 注:表中主量元素量纲为10-2,微量元素为10-6. -
[1] Bhatia, M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. Journal of Geology, 91(6): 611-627. doi: 10.1086/628815 [2] Bhatia, M.R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Greywackes and Mudstones: Provenance and Tectonic Control. Sedimentary Geology, 45: 97-113. doi: 10.1016/0037-0738(85)90025-9 [3] Bhatia, M.R., Crook, K.A.W., 1986. Trace Element Characteristics of Greywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contrib. Mineral. Petrol. , 92: 181-193. doi: 10.1016/1359-0189(90)90036-W [4] Blatt, H., 1985. Provenance Studies and Mudrocks. Journal of Sedimentary Petrology, 1985, 55(1): 69-75. doi: 10.1306/212F8611-2B24-11D7-8648000102C1865D [5] Blatt, H., Middleton, G., Murray, R., 1972. Oringin of Sedimentary Rocks. New Jersey: Prentice Hall [6] Brandon, M.T., 1992. Decomposition of Fission-Track Grain age Distributions. American Journal of Science, 292(8): 535-564. doi: 10.2475/ajs.292.8.535 [7] Brandon, M.T., 1996. Probability Density Plot for Fission-Track Grain-Age Samples. Radiation Measurements, 26(5): 663-676. doi: 10.1016/S1350-4487(97)82880-6 [8] Bureau of Geology and Mineral Resources of Tibet Autonomous Region, 1993. Regional Geology of the Tibet Autonomous Region. Geological Publ. House, Beijing (in Chinese). [9] Cai, G.Q., Guo, F., Liu, X.T., et al., 2006. Clastic Sediment Geochemistry: Implications for Provenance and Tectonic Setting and Its Influential Factors. Earth and environment, 34(4): 75-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200604013.htm [10] Chen, W.X., Wang, J., 2009. The Formation and Evolution of the Qiangtang Basin During the Late Triassic-Middle Jurassic Period in Northern Tibet. Geology in China, 36(3): 682-693 (in Chinese with English abstract). http://www.researchgate.net/publication/287523902_The_formation_and_evolution_of_the_Qiangtang_Basin_during_the_Late_Triassic-Middle_Jurassic_period_in_northern_Tibet [11] Crook, K.A.W., 1974. Lithogenesis and Geotectonics: The Significance of Compositional Variation in Flysch Arenites (Graywackes). In: Dott, R.H., Shaver, R.H., eds., Modernand Ancient Geosynclinal Sedimentation(SP19). SEPM Special Publication, Tulsa: 304-310. [12] Dickson, W.G., Suczek, C.A., 1979. Plate Tectonic and Sandstone Composition. Amer. Assor. Petrol. Geol. Bull. , 63(12): 2164-2182. doi: 10.1306/2F9188FB-16CE-11D7-8645000102C1865D [13] Dunkl, I., Giulio, A.D., 2001. Kuhlemann Combination of Single-Grain Fission-Track Chronology and Morphological Analysis of Detrital Zircon Crystals in Provenance Studies Sources of the Macigno Formation(Apennines, Italy). Journal of Sedimentary Research, 71(4): 516-525. doi: 10.1306/102900710516 [14] Galbraith, R.F., 1997. The Radio Plot: Graphical Assessment of Spread in Ages. Nucl. Tracks Radiat. Meas. , 17(3): 197-206. doi: 10.1016/1359-0189(90)90036-W [15] Gu, X.X., Liu, J.M., Zheng M.H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. doi: 10.1306/081601720393 [16] Haughton, D.W., Morton, A.C., Todd S.P., 1991. Developments in Sedimentary Provenance Studies. Oxford University Press, London. [17] He, Z.H., Li, C., Yang, D.M., et al., 2000. The Tectonic Sedimentary Feature and Evolution of Qiangtang Basin in Northern Tibet. Journal of Changchun University of Science and Technology, 30(4): 347-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200004007.htm [18] Huang, J.J., 2000. Nature of the Qiangtang Baisn and Its Tectonic Evolution. Journal of Geomechanics, 6(4): 58-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200004008.htm [19] Huang, J.Q., Chen, B.W., 1987. The Evolution of the Tethys in China and Adjacent Regions. Geological Publ. House, Beijing(in Chinese). [20] Li, Y., Wang, C.S., Yi, H.S., 2002. Filled Sequence and Evolution of the Mesozoic Qiangtang Composite Foreland Basin in the Qinghai-Tibet Plateau. Journal of Stratigraphy, 26(1): 62-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200201009.htm [21] Li, Y., Wang, C.S., Yi, H.S., 2003. The Late Triassic Collision and Sedimentary Responses at Western. Acta Sedimentologica Sinica, 21(2): 191-197 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=7880994 [22] Li, Y., Yi, H.S., Wang, C.S., 1999. The Discovery and Geological Significance of Late Triassic Epigondollella Fauna in Northern Tibet Plateau. Geological Review, 45(6): 628 (in Chinese with English abstract). [23] Li, Y.J., Sun, L.D., Gong, F.H., et al., 2000. A Preliminary Study on the Tectonic Setting of Upper Triassic Flysch at Chasang, North Tibet. Acta Petrologica Sinica, 16(3): 443-448 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200003018.htm [24] Liu, Y.F., 1991. Research Methods in Lab for Sedimentary Rocks. Geological Publ. House, Beijing (in Chinese). [25] Middleton, G.V., 1960. Chemical Composition of Sandstones. Geological Society of America Bulletin, 71(7): 1011. doi: 10.1130/0016-7606(1960)71[1011:CCOS]2.0.CO; 2 [26] Pan, G.T., Chen Z.L., Li X.Z., et al. 1998. Geological-Tectonic Evolution in the Eastern Tethys. Geological Publ. House, Beijing (in Chinese). [27] Pettijhon, F.J., Potter, P.E., Siever, R., 1973. Sand and Sandstone. Springer Verlag, New York. [28] Potter, P.E., 1978. Petrology and Chemistry of Modern Big River Sands. J. Geol. , 86(4): 423-449. doi: 10.1086/649711 [29] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific Technical Press, London. [30] Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. doi: 10.1086/629071 [31] Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major Element Data. Chemical Geology, 67, 119-139. doi: 10.1016/0009-2541(88)90010-1 [32] Sambridge, M.S., Compston, W., 1994. Mixture Modeling of Multi-Component Data Sets With Application to Ionprobe Zircon Ages. Earth and Planetary Science Letters, 128(3-4): 373-390. doi: 10.1016/0012-821X(94)90157-0 [33] Shao, L., Li, W.H., Yuan, M.S., 1999. Characteristic of Sandstone and Its Tectonic Implications of the Turpan Basin. Acta Sedimentologica Sinica, 17(1): 95-99 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB901.014.htm [34] Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. [35] Wang, C.S., Yin, H.S., Li, Y., et al., 2001. The Geological Evolution and Prospective Assessment for Oil and Gas in the Qiangtang Basin, Tibet. Geological Publishing House, Beijing (in Chinese). [36] Wang, J., Ding, J., Tan, F.W., et al., 2009. The Oil-Gas Strategic Precinct Survey and Evaluation of Qinghai-Tibet Pleau. Geological Publ. House, Beijing(in Chinese). [37] Wang, Y.J., Yang, Q., Guo, T.Z., 2005. The Late Middle Triassic Radiolarians Spongoserrula Rarauana Fauna From the Hoh Xil Regiom, Qinghai. Acta Micropalaeontologica Sinica, 22(1): 1-9 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/496026 [38] Yang, J.H., Du, Y.S., Zhu, J., 2006. Geochemical Characteristics of the Lower Silurian Flysch Greywacke in Zhenglu, Jingtai County, Gansu Province. Geological Science and Technology Information, 25(5): 27-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200605004.htm [39] Yi, J.Z., Deng, G.H., Zhang, X.F., 1996. Conditions of Oil and Gas Forming in Qiangtang Basin, Northern Xizang(Tibet). Earth Science—Journal of China University of Geosciences, 21(2): 141-146 (in Chinese with English abstract). [40] Yu, G.M., Wang, C.S., 1990. Sedimentary Geology of Tethys in Tibet. Geological Publ. House, Beijing(in Chinese). [41] Zhang, Y.F., Zheng, J.K., 1994. The Geological Conditions of the Hoh Xil Region in Qinghai and the Neighbourhood. Seismological Press, Beijing (in Chinese). [42] Zhao, Z.Z., Li, Y.T., Ye, H.F., et al., 2001. Tectonic Characteristics and Basin Evolution of Qinghai-Tibet Plateau. Science Publishing House, Beijing (in Chinese). [43] Zhou, X., 1984. Plate Tectonics of Tibet. Geological Publ. House, Beijing (in Chinese). [44] Zhu, T.X., Dong, H., Li, C., et al., 2005. Distribution and Sedimentary Model of the Late Triassic Strata in Northern Qiangtang on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geolog, 25(3): 18-23 (in Chinese with English abstract). http://www.researchgate.net/publication/313083236_Distribution_and_sedimentary_model_of_the_Late_Triassic_strata_in_northern_Qiangtang_on_the_Qinghai-Xizang_Plateau [45] 蔡观强, 郭锋, 刘显太, 等, 2006. 碎屑沉积物地球化学: 物源属性、构造环境和影响因素. 地球与环境, 34(4): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200604013.htm [46] 陈文西, 王剑, 2009. 晚三叠世-中侏罗世羌塘盆地的形成与演化. 中国地质, 36(3): 682-693. doi: 10.3969/j.issn.1000-3657.2009.03.015 [47] 和钟铧, 李才, 杨德明, 等, 2000. 西藏羌塘盆地的构造沉积特征及演化. 长春科技大学学报, 30(4): 347-352. doi: 10.3969/j.issn.1671-5888.2000.04.008 [48] 黄继钧, 2000. 羌塘盆地性质及构造演化. 地质力学学报, 6(4): 58-66. doi: 10.3969/j.issn.1006-6616.2000.04.008 [49] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社. [50] 李勇, 王成善, 伊海生, 2002. 中生代羌塘前陆盆地充填序列及演化过程. 地层学杂志, 26(1): 62-67. doi: 10.3969/j.issn.0253-4959.2002.01.010 [51] 李勇, 王成善, 伊海生, 2003. 西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应. 沉积学报, 21(2): 191-197. doi: 10.3969/j.issn.1000-0550.2003.02.001 [52] 李勇, 伊海生, 王成善, 1999. 青藏高原北部晚三叠世Epigondollella动物群的发现及其地质意义. 地质论评, 45(6): 628. doi: 10.3321/j.issn:0371-5736.1999.06.015 [53] 李曰俊, 孙龙德, 龚富华, 等, 2000. 藏北查桑上三叠统复理石沉积大地构造背景的初步探讨. 岩石学报, 16(3): 443-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003018.htm [54] 刘岫峰, 1991. 沉积岩实验室研究方法. 北京: 地质出版社. [55] 潘桂棠, 陈智梁, 李兴振, 等, 1998. 东特提斯地质构造形成演化. 北京: 地质出版社. [56] 邵磊, 李文厚, 袁明生, 1999. 吐鲁番-哈密盆地的砂岩特点及构造意义. 沉积学报, 17(1)95-99. doi: 10.3969/j.issn.1000-0550.1999.01.015 [57] 王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价. 北京: 地质出版社. [58] 王剑, 丁俊, 谭福文, 等, 2009. 青藏高原油气资源战略选区调查与评价. 北京: 地质出版社. [59] 王玉净, 杨群, 郭通珍, 2005. 青海可可西里地区中三叠世晚期放射虫Spongoserrula rarauana动物群. 微体古生物学报, 22(1): 1-9. doi: 10.3969/j.issn.1000-0674.2005.01.001 [60] 西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社. [61] 杨江海, 杜远生, 朱杰, 2006. 甘肃省景泰正路下志留统复理石杂砂岩沉积地球化学特征. 地质科技情报, 25(5)27-31. doi: 10.3969/j.issn.1000-7849.2006.05.005 [62] 易积正, 邓光辉, 张修富, 1996. 藏北羌塘盆地成油气地质条件探讨. 地球科学, 21(2): 141-146. doi: 10.3321/j.issn:1000-2383.1996.02.005 [63] 余光明, 王成善, 1990. 西藏特提斯沉积地质. 北京: 地质出版社. [64] 张以茀, 郑健康, 1994. 青海可可西里及邻区地质概论. 北京: 地震出版社. [65] 赵政璋, 李永铁, 叶和飞, 等, 2001. 青藏高原大地构造特征及盆地演化. 北京: 科学出版社. [66] 周祥, 1984. 西藏板块构造-建造图及说明书. 北京: 地质出版社. [67] 朱同兴, 董瀚, 李才, 等, 2005. 青藏高原北羌塘地区晚三叠世地层展布和沉积型式. 沉积与特提斯地质, 25(3): 18-23. doi: 10.3969/j.issn.1009-3850.2005.03.003