Zircon U-Pb Age and Geochemistry of Nanquanyan Diorite in the Lanjia Gold Deposit, Jilin Province
-
摘要: 南泉眼闪长岩是兰家矽卡岩型金矿的成矿岩体,研究程度极低.通过岩石地球化学和LA-ICP-MS U-Pb年代学研究,讨论了岩石成因、来源和构造背景.研究表明,南泉眼闪长岩为准铝质的钙碱性岩石;岩石明显富集大离子亲石元素(如Rb、K、Sr)、活泼的不相容元素(如Th、U)和轻稀土元素,相对亏损高场强元素(如Nb、Ta、Ti、P)和重稀土元素,具有明显的负Eu异常,Nb/Ta、La/Nb、Th/La比值显示岩石具壳源特征,Al2O3+MgO+FeOt图解显示岩浆具弧型活动大陆边缘特征.闪长岩岩浆锆石LA-ICP-MS U-Pb加权平均年龄为170.21±0.73 Ma(MSWD=0.14);谐和年龄值为170.21±0.39 Ma(MSWD=0.018),为中侏罗世.成岩构造背景为燕山早期太平洋板块俯冲引起大陆弧伸展和岩石圈减薄,软流圈物质上涌、底侵提供热动力,不成熟下地壳物质部分熔融形成南泉眼闪长岩.Abstract: Nanquanyan diorite, hardly well-studied, is the metallogenic intrusion of the Lanjia skarn type gold deposit. Based on the studies of geochemistry, zircon LA-ICP-MS U-Pb data, this paper mainly discusses petrogenesis, magma source, tectonics setting of the diorite. Studies show that Nanquanyan diorite belongs to calc-alkaline and metaluminous series. The trace elements of diorite show enrichment in LILE (such as K, Rb, Sr), more mobile incompatible elements (such as Th, U) and LREE, relative depletment of HFSE (such as Nb, Ta, Ti, P) and HREE, and show obvious negative Eu anomalies (δEu=0.19~0.25). The ratios of Nb/Ta, La/Nb and Th/La indicate that the diorite mainly comes from the crust. In the Al2O3+MgO+FeOt diagram, the characteristics of the diorite are similar to those of arc-type active continental margin magmatic rocks. LA-ICP-MS U-Pb zircon data of the diorite give weighted average ages of 170.21±0.73 Ma(MSWD=0.14) and concordant age of 170.21±0.39 Ma (MSWD = 0.018), which are in the middle Jurassic period. It is suggested that during the early Yanshan, subduction of Pacific plate led to extension of continental arc and lithospheric thinning, and asthenosphere mantle magma underplated subsequently and provided thermopower, finally partial melting of the immature lower crurst formed Nanquanyan diorite.
-
Key words:
- geochemistry /
- zircon U-Pb age /
- geochronology /
- Nanquanyan diorite /
- gold deposit /
- Jilin Province
-
图 1 东北地区区域地质简图(据Li and Shen, 2012)
Fig. 1. Geological sketch map of Northeast China
图 7 兰家金矿南泉眼闪长岩的稀土元素球粒陨石标准化配分曲线图(a) (球粒陨石标准化值引自Boynton, 1984)和原始地幔标准化蛛网图(b) (原始地幔值引自Sun and McDonough, 1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagams (b) of Nanquanyan diorite in the Lanjia gold deposit
表 1 兰家金矿南泉眼闪长岩锆石LA-ICP-MS U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb data of Nanquanyan diorite in the Lanjia gold deposit
点号 238U(10-6) 232Th(10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 误差 比值 误差 比值 误差 年龄(Ma) 误差 LJ-N1-01 919.18 651.81 0.049 87 0.001 70 0.183 90 0.006 44 0.026 67 0.000 24 169.7 1.5 LJ-N1-02 983.69 924.68 0.049 38 0.001 32 0.182 60 0.004 98 0.026 72 0.000 19 170.0 1.2 LJ-N1-03 783.07 645.88 0.049 40 0.002 40 0.182 95 0.008 93 0.026 80 0.000 36 170.5 2.2 LJ-N1-04 523.12 294.37 0.049 52 0.004 36 0.179 88 0.015 39 0.026 51 0.000 61 168.7 3.8 LJ-N1-07 868.49 613.83 0.049 53 0.003 87 0.182 57 0.014 11 0.026 68 0.000 40 169.7 2.5 LJ-N1-08 1 262.49 1 321.77 0.049 37 0.002 05 0.183 10 0.007 44 0.026 86 0.000 29 170.8 1.8 LJ-N1-10 1 020.14 765.69 0.050 09 0.003 14 0.183 18 0.011 01 0.026 68 0.000 43 169.7 2.7 LJ-N1-11 556.23 428.77 0.049 71 0.001 66 0.182 50 0.006 02 0.026 73 0.000 27 170.1 1.7 LJ-N1-12 1 075.90 884.23 0.049 27 0.002 80 0.183 45 0.011 65 0.026 82 0.000 40 170.6 2.5 LJ-N1-13 1 291.93 1 372.54 0.049 48 0.001 30 0.182 76 0.004 88 0.026 74 0.000 23 170.1 1.4 LJ-N1-14 766.38 396.49 0.049 48 0.001 52 0.182 59 0.005 84 0.026 75 0.000 30 170.2 1.9 LJ-N1-15 1 400.61 1 512.29 0.049 37 0.001 69 0.182 54 0.006 40 0.026 74 0.000 23 170.1 1.5 LJ-N1-18 953.91 438.58 0.049 80 0.003 01 0.183 61 0.009 94 0.026 85 0.000 41 170.8 2.6 LJ-N1-21 1 045.74 971.17 0.049 37 0.001 86 0.184 25 0.007 16 0.026 99 0.000 27 171.7 1.7 LJ-N1-22 658.53 412.11 0.049 06 0.001 61 0.182 32 0.006 00 0.027 00 0.000 31 171.8 1.9 LJ-N1-23 1 469.43 1 475.00 0.049 82 0.003 35 0.181 74 0.009 53 0.026 63 0.000 61 169.4 3.9 LJ-N1-24 747.25 340.75 0.049 34 0.003 61 0.182 12 0.013 11 0.026 83 0.000 55 170.7 3.5 LJ-N1-26 974.65 743.62 0.049 59 0.001 35 0.182 32 0.004 95 0.026 73 0.000 24 170.0 1.5 LJ-N1-27 752.28 411.95 0.049 86 0.001 47 0.182 96 0.005 61 0.026 63 0.000 28 169.4 1.7 LJ-N1-28 947.15 616.39 0.049 69 0.001 31 0.182 86 0.004 82 0.026 79 0.000 24 170.4 1.5 LJ-N1-29 1 177.17 963.36 0.048 91 0.002 40 0.181 26 0.008 99 0.026 92 0.000 77 171.2 4.8 LJ-N1-30 790.35 611.81 0.050 15 0.002 52 0.182 70 0.008 16 0.026 66 0.000 35 169.6 2.2 测试单位:西北大学大陆动力学国家重点实验室,2011;1σ为误差;普通Pb用测量的204Pb校正. 表 2 兰家金矿南泉眼闪长岩主量元素(%)和微量元素含量(10-6)
Table 2. Contents of major elements (%) and trace elements (10-6) of acid intrusive rocks of Nanquanyan diorite in the Lanjia gold deposit
样品 LJ-1 LJ-2 LJ-3 LJ-4 LJ-5 LJ-6 LJ-7 LJ-8 LJ-9 LJ-10 LJ-11 LJ-12 LJ-13 SiO2 59.26 56.29 59.22 59.24 57.37 58.17 61.55 54.04 59.48 57.60 58.28 58.03 56.69 Al2O3 14.86 14.52 14.81 14.45 15.59 13.97 15.38 15.30 14.81 15.09 15.20 13.86 13.89 FeOt 7.45 7.19 7.21 7.79 8.18 6.67 5.09 7.46 6.94 8.13 7.44 8.96 7.76 CaO 5.84 9.99 6.61 6.49 6.77 8.81 7.51 11.01 5.79 7.04 6.32 5.86 9.67 MgO 3.44 4.09 3.52 3.86 3.92 3.71 2.57 3.44 3.17 4.01 3.65 4.21 3.47 Na2O 3.10 1.97 3.06 2.95 3.02 3.01 3.25 2.62 3.14 3.14 3.14 2.74 2.13 K2O 2.13 0.58 1.46 1.54 1.88 1.17 1.23 0.89 2.09 1.09 1.74 1.52 0.57 TiO2 1.10 1.15 1.06 1.14 1.14 1.11 0.88 1.09 1.03 1.10 0.96 1.27 1.12 MnO 0.21 0.29 0.21 0.22 0.16 0.29 0.22 0.29 0.21 0.20 0.15 0.26 0.37 P2O5 0.260 0.295 0.296 0.314 0.291 0.266 0.222 0.274 0.250 0.297 0.277 0.315 0.241 SrO 0.05 0.07 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.06 BaO 0.04 0.00 0.05 0.04 0.03 0.05 0.05 0.02 0.04 0.02 0.03 0.03 0.00 LOI 1.34 3.29 1.50 1.47 1.30 2.40 1.59 2.27 1.30 2.12 1.40 1.47 2.54 Total 99.08 99.72 99.04 99.54 99.70 99.66 99.58 98.76 98.29 99.88 98.63 98.56 98.50 Ba 518 108 519 469 389 553 596 324 503 289 408 399 136 Ce 46.0 46.6 50.1 51.1 46.0 42.0 39.9 45.4 48.1 50.0 48.4 54.4 53.0 Cr 50 50 40 40 40 40 30 40 40 40 40 40 30 Cs 8.41 14.55 6.69 6.64 4.10 9.54 9.86 6.51 9.55 5.06 5.38 6.85 19.05 Dy 4.71 4.08 5.11 5.08 4.71 4.32 4.11 5.18 4.79 5.45 4.46 4.78 4.72 Er 2.66 2.29 2.82 2.90 2.61 2.44 2.41 2.75 2.79 3.01 2.49 2.71 2.58 Eu 1.10 1.19 1.06 1.07 1.26 1.07 1.09 1.32 1.05 1.24 1.25 1.11 1.13 Ga 18.5 15.9 17.6 17.7 19.7 16.0 16.7 18.9 17.6 18.9 19.4 16.6 15.5 Gd 5.18 4.64 5.55 5.70 5.47 4.74 4.43 6.17 5.38 6.14 5.07 5.13 4.86 Hf 4.9 5.5 5.1 5.3 4.7 4.5 4.2 4.5 4.9 4.7 4.7 5.4 5.0 Ho 0.99 0.85 1.04 1.06 0.97 0.89 0.85 1.05 1.02 1.11 0.91 0.95 0.93 La 22.6 22.4 24.1 24.3 21.9 18.4 19.0 21.0 23.4 23.1 23.9 25.9 25.8 Lu 0.40 0.36 0.43 0.44 0.37 0.37 0.36 0.36 0.42 0.42 0.37 0.42 0.41 Nb 8.0 8.4 8.0 8.8 7.9 8.0 7.2 7.3 7.2 7.8 6.9 8.8 8.0 Nd 23.6 23.3 25.8 26.6 24.7 22.5 20.2 26.4 24.3 27.8 24.5 27.0 25.7 Pr 5.77 5.75 6.34 6.42 5.82 5.49 5.00 6.02 5.96 6.55 5.98 6.77 6.47 Rb 76.3 34.5 48.5 55.6 68.9 39.7 42.0 24.8 70.1 32.7 60.1 56.3 28.0 Sm 5.13 4.86 5.58 5.73 5.37 4.84 4.40 6.04 5.35 6.12 5.08 5.71 5.50 Sn 2 2 1 1 2 1 1 1 1 1 1 1 2 Sr 400 654 390 382 432 450 474 529 403 418 427 379 582 Ta 0.7 0.7 0.6 0.7 1.1 0.7 0.6 0.6 0.7 0.6 0.5 0.8 0.7 Tb 0.81 0.72 0.86 0.88 0.82 0.74 0.70 0.91 0.82 0.92 0.77 0.78 0.76 Th 11.30 13.50 11.40 12.65 7.88 12.30 11.05 9.26 11.80 10.40 11.90 12.50 11.95 Tm 0.38 0.34 0.41 0.42 0.37 0.36 0.35 0.39 0.40 0.42 0.36 0.40 0.39 U 2.89 3.66 3.31 3.52 4.09 4.20 4.50 2.74 3.54 3.38 2.98 3.61 4.48 V 226 251 223 250 251 233 157 223 214 254 223 189 153 W 2 3 2 2 1 3 3 3 2 2 1 2 3 Y 26.0 23.6 28.3 29.0 26.5 24.4 24.3 28.9 27.9 30.8 25.4 30.5 29.6 Yb 2.54 2.27 2.66 2.81 2.46 2.39 2.35 2.39 2.72 2.73 2.41 2.68 2.50 Zr 167 188 171 184 167 139 129 138 163 139 150 190 168 ANK 2.01 3.75 2.24 2.21 2.22 2.25 2.30 2.90 1.99 2.38 2.15 2.25 3.37 ACNK 0.82 0.66 0.79 0.79 0.81 0.63 0.76 0.60 0.82 0.79 0.82 0.82 0.64 (La/Yb)N 6.38 7.08 6.50 6.20 6.39 5.52 5.80 6.30 6.17 6.07 7.11 6.93 7.40 Zr/Y 6.42 7.97 6.04 6.34 6.30 5.70 5.31 4.78 5.84 4.51 5.91 6.23 5.68 La/Nb 2.8 2.7 3.0 2.8 2.8 2.3 2.6 2.9 3.3 3.0 3.5 2.9 3.2 Nb/Ta 11.4 12.0 13.3 12.6 7.2 11.4 12.0 12.2 10.3 13.0 13.8 11.0 11.4 Th/Nb 0.48 0.58 0.44 0.48 0.32 0.55 0.55 0.35 0.49 0.37 0.49 0.46 0.46 Th/La 0.50 0.60 0.47 0.52 0.36 0.67 0.58 0.44 0.50 0.45 0.50 0.48 0.46 -
[1] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Aassociated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. doi: 10.1016/j.lithos.2004.05.010 [3] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier Science Publishers, New York, 63-114. [4] Busby, C., 2004. Continental Growth at Convergent Margins Facing Large Ocean Basins: A Case Study From Mesozoic Convergent-Margin Basins of Baja California, Mexico. Tectonophysics, 392(1-4): 241-277. doi: 10.1016/j.tecto.2004.04.017 [5] Chen, J., 2011. Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Lesser Hinggan Mountain, Heilongjiang Province(Dissertation). Jilin University, Changchun, 34-73 (in Chinese with English abstract). [6] Chen, Y.J., Qin, S., Li, X., 1997. Mineralization Time, Space, Geodynamic Background and Metallogenic Model of the Skarn Gold Deposits, China. Acta Scientiarum Naturalium-Universitatis Pekinensis, 33(4): 456-466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ704.007.htm [7] Condie, K.C., 1993. Chemical Composition and Evolution of the Upper Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E [8] Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3-6): 435-453. doi: 10.1016/0024-4937(92)90018-T [9] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2007. Porphyry Cu-Mo Deposits in the Eastern Xing'an-Mongolian Orogenic Belt: Mineralization Ages and Their Geodynamic Implication. Chin. Sci. Bull. , 52(20): 2407-2417(in Chinese with English abstract). doi: 10.1360/csb2007-52-20-2407 [10] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X [11] Guo, F.X., 1998. Meso-Cenozoic Nanhua (South China) Orogenic Belt-Subaerial Tridirectional Orogen. Acta Geologica Sinica, 72(1): 22-33 (in Chinese with English abstract). [12] Isozaki, Y., 1997. Jurassic Accretion Tectonics of Japan. The Island Arc, 6(1): 25-51. doi: 10.1111/j.1440-1738.1997.tb00039.x [13] Li, B.L., 2001. Study on the Tectono-Magmatic Events and Their Control on Gold Metallogeny at Jiapigou Area, Jilin Province (Dissertation). Jilin University, Changchun, 84-105 (in Chinese with English abstract). [14] Li, B.L., Shen, X., 2012. Discussion on Middle Jurassic Metallogenic Mechanism of Au-Mo Polymetallic Hydrothermal Deposits in Eastern Jilin. Global Geology, 15(1): 19-25. doi: 10.3969/j.issn.1673-9736.2012.01.03 [15] Li, B.L., Sun, F.Y., Yao, F.L., 2002. Large Scale Sinistral Strike-Slip Movement of Dunhua-Mishan Fracture Zone and Its Control on Gold Metallogeny in the Mesozoic. Geotectonica et Metallogenia, 26(4): 390-395 (in Chinese with English abstract). [16] Li, L.X., Song, Q.H., Wang, D.H., et al., 2009. Re-Os Isotopic Dating of Molybdenite from the Fuanpu Molybdenum Deposit of Jilin Province and Discussion on Its Metallogenesis. Rock and Mineral Analysis, 28(3): 283-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903026.htm [17] Li, X.H., Zhou, H.W., Liu, Y., et. al., 2000. Mesozoic Shoshonitic Intrusives in the Yangchun Basin, Western Guangdong, and Their Tectonic Significance: Ⅰ. Petrology and Isotope Geochronology. Geochimica, 29(6): 513-520 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252983452.html [18] Li, Y.X., Zhang, J.H., Li, Z., et. al., 2006. The Underthrust of Pacific Plate to Eurasian Plate and Its Effect on Chinese Mainland. Acta Geodaetica et Cartographica Sinica, 35(2): 99-105 (in Chinese with English abstract). http://www.researchgate.net/publication/289883940_The_underthrust_of_pacific_plate_to_Eurasian_plate_and_its_effect_on_Chinese_mainland [19] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537. doi: 10.1093/petrology/egp082 [20] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [21] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 70. [22] Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, Supercontinent, and Post-Perovskite: Mantle Dynamics and Anti-Plate Tectonics on the Core Mantle Boundary. Gondwana Res. , 11(1-2): 7-37. doi: 10.1016/j.gr.2006.06.003 [23] Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and Chemically Depleted Mantle Reservoirs: Trace Element Constraints. Journal of Petrology, Special_Volume(1): 415-445. doi: 10.1093/petrology/Special_Volume.1 [24] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond., 42: 313-345. [25] Taira, A., 2001. Tectonic Evolution of the Japanese Island Arc System. Annu. Rev. Earth Planet Sci. , 29: 109-134. doi: 10.1146/annurev.earth.29.1.109 [26] Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Black-Well, London. [27] Wang, C.H., Song, Q.H., Wang, D.H., et al., 2009. Re-Os Isotopic Dating of Molybdenite from the Dabeishan Molybdenum Deposit of Jilin Province and Its Geological Significance. Rock and Mineral Analysis, 28(3): 269-273(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903023.htm [28] Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constrains. Earth Planet Sci. , 104(2-4), 381-397. doi: 10.1016/0012-821X(91)90217-6 [29] Xiao, Q.H., Wang, T., Deng, J.F., et. al., 2009. Study on Typical Orogenic Belt Granite and the Growth of Continental Crust in China. Geological Publishing House, Beijing, 256-288 (in Chinese). [30] Yan, Q.R., Gao, S.L., Wang, Z.Q., et al., 2002. Geochronology and Geochemistry of Volcanic Rocks from the Songliao Basin and Their Implications. Geochimica, 31(2): 169-179 (in Chinese with English abstract). http://www.researchgate.net/publication/284596506_Geochronology_and_geochemistry_of_volcanic_rocks_from_the_Songliao_Basin_and_their_implications [31] Yuan, H.L., Gao, S., Liu, X.M., et. al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [32] Yuan, H.L., Wu, F.Y., Gao, S., et. al., 2003. Zircon Laser Microprobe U-Pb Dating and Rare Earth Element Component Analysis of Cenozoic Intrusions in Northeastern China. Chinese Science Bulletin, 48(14): 1511-1520 (in Chinese with English abstract). doi: 10.1360/csb2003-48-14-1511 [33] Zhang, W.B., 1998. The Division of Mineralized Series of Gold-Silver in the North Eastern Section of Dabeishan Striped Rampart. Gold, 19(1): 13-17 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJZZ801.002.htm [34] Zhao, Y., Yang, Z.Y., Ma, X.H., 1994. Geotectonic Transition from Paleoasian System and Paleotethyan System to Paleopacific Active Continental Margin in Eastern Asia. Scientia Geologica Sinica, 29(2): 105-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX402.000.htm [35] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China: Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93: 248-272. doi: 10.1016/j.lithos.2006.03.067 [36] 陈静, 2011. 黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用(博士学位论文). 长春: 吉林大学, 34-73. [37] 陈衍景, 秦善, 李欣, 1997. 中国矽卡岩型金矿的成矿时间-空间-地球动力学背景和成矿模式. 北京大学学报(自然科学版), 33(4): 456-466. doi: 10.3321/j.issn:0479-8023.1997.04.008 [38] 葛文春, 吴福元, 周长勇, 等, 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012 [39] 郭福祥, 1998. 中国南方中新生代大地构造属性和南华造山带褶皱过程. 地质学报, 72(1): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199801002.htm [40] 李碧乐, 2001. 吉林省夹皮沟地区构造、岩浆事件及其对金矿形成的控制作用研究(博士学位论文). 长春: 吉林大学, 84-105. [41] 李碧乐, 孙丰月, 姚凤良, 2002. 中生代敦化-密山断裂大规模左旋平移及其对金矿床形成的控制作用. 大地构造与成矿学, 26(4): 390-395. doi: 10.3969/j.issn.1001-1552.2002.04.008 [42] 李立兴, 松权衡, 王登红, 等, 2009. 吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨. 岩矿测试, 28(3): 283-287. doi: 10.3969/j.issn.0254-5357.2009.03.018 [43] 李献华, 周汉文, 刘颖, 等, 2000. 粤西阳春中生代钾玄质侵入岩及其构造意义: Ⅰ. 岩石学和同位素地质年代学. 地球化学, 29(6): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101007.htm [44] 李延兴, 张静华, 李智, 等, 2006. 太平洋板块俯冲对中国大陆的影响. 测绘学报, 35(2): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200602001.htm [45] 王成辉, 松权衡, 王登红, 等, 2009. 吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义. 岩矿测试, 28(3): 269-273. doi: 10.3969/j.issn.0254-5357.2009.03.015 [46] 肖庆辉, 王涛, 邓晋福, 等, 2009. 中国典型造山带花岗岩与大陆地壳生长研究. 北京: 地质出版社, 265-288. [47] 闫全人, 高山林, 王宗起, 等, 2002. 松辽盆地火山岩的同位素年代、地球化学特征及意义. 地球化学, 31(2): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202007.htm [48] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314007.htm [49] 张文博, 1998. 吉林省大黑山条垒北东段金-银成矿系列的划分. 黄金, 19(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ801.002.htm [50] 赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折. 地质科学, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm