Geochronology, Geochemistry and Geological Significance of Late Carboniferous-Early Permian Granites in Kumishi Area, Xinjiang
-
摘要: 南天山东缘库米什地区花岗岩广泛出露,沿库米什断裂形成NWW向花岗岩带.该地区发现有忠宝和桑树园子矽卡岩型白钨矿床,矿化与二云母花岗岩关系密切.锆石U-Pb LA-ICP-MS定年分别获得忠宝岩体年龄为296±4 Ma,桑树园子岩体年龄为293±3 Ma,形成时代为晚石炭世-早二叠世.两岩体总体具有高SiO2(72.51%~74.84%,70.68%~74.14%),K2O>Na2O,铝饱和(A/CNK=1.11~1.48,1.05~1.11),可见原生白云母矿物等特征,反映了同碰撞S型花岗岩的特点.样品总体富集LILE元素、亏损HFSE元素,稀土元素表现为轻稀土富集、重稀土亏损的“右倾”型特征,具中等的负Eu异常.综合岩体的ISr值(0.707 6~0.708 8和0.706 5~0.707 7)、负的εNd(t)值(-6.3~-7.1和-4.7~-5.1)、岩体单阶段模式年龄(TDM)值(1.59~1.8 Ga和1.50~1.56 Ga)及古老的继承锆石年龄(2.5~0.8 Ga)分析认为,忠宝及桑树园子岩体为库米什地区星星峡群变泥质岩云母类矿物脱水部分熔融的产物,并可能混有杂砂岩成分,而南天山东部存在古老基底.本次研究显示南天山洋东部(库米什地区)于晚石炭世-早二叠世最终闭合,早中二叠世A型花岗岩及基性岩浆活动的出现表明该地区进入板内伸展阶段.富钨的星星峡群是本地区钨矿化可能的矿源层,早二叠世挤压向伸展的转换阶段为南天山东部钨矿有利的成矿构造体制,经历多旋回构造重熔的星星峡群在早二叠世造山过程的再次“重熔”作用致使成矿元素最终富集成矿.Abstract: Granitoids are widely distributed in east part of south Tianshan orogen, forming a NWW orientated granite belt along Kumishi fault. Zhongbao and Sangshuyuanzi skarn-type tungsten deposits have been discovered in this region and the mineralization is closely related to two-mica granites. LA-ICP-MS U-Pb zircon dating yields the ages of Zhongbao and Sangshuyuanzi granites of 296±4 Ma and 293±3 Ma, respectively, which belong to Late Carboniferous-Early Permian. Both of the granites are peraluminous (A/CNK=1.11-1.48, 1.05-1.11) with high contents of SiO2 (72.51%-74.84%, 70.68%-74.14%) and primary muscovites, which show the characteristics of syn-collision S-type granites. The samples are characterized with enriched LILE, LREE and loss of HFSE, with HREE showing moderate negative Eu anomalies. ISr values of two granites range from 0.707 6 to 0.708 8 and 0.706 5 to 0.707 7; εNd(t) values range from -6.3 to-7.1 and -4.7 to -5.1; Nd single-stage modle ages (TDM) range from 1.59 to 1.8 Ga and 1.50 to 1.56 Ga, and the old inherited zircon ages range from 2.5 to 0.8 Ga. The above data indicate that the two granites are derived from partial melting of metapelites of Xingxingxia group and might contain mix greywacke ingredients, suggesting that there exists Precambrian basement in the eastern part of South Tianshan. Based on this research and previous studies as well, we are convinced that South Tianshan ocean finally closed in Late Carboniferous-Early Permian and the appearance of A-type granites and mafic magmatism means that the south Tianshan orogenic belt enters the post-orogenic stage.Tungsten-rich Xingxingxia Group is the possible source of regional tungsten mineralization and the conversion stage from syn-collision to post-collision is the advantageous matallotecttonic system. Xingxingxia Group that had experienced the polycycle tectonism remelted again in orogenic processes in Early Permian, resulting in the final concentration of ore-forming elements.
-
Key words:
- South Tianshan orogen /
- two-mica granites /
- geochemistry /
- tectonic setting /
- tungsten deposits /
-
-
图 1 库米什地区区域地质简图(据杨天南和王小平,2006修改)
1.长城系星星峡群;2.早古生界地层;3.下泥盆统阿尔彼什麦组下亚组;4.下泥盆统阿尔彼什麦组上亚组;5.中泥盆统;6.石炭系;7.蛇绿岩;8.早古生代变形花岗岩;9.晚古生代未变形花岗岩;10.辉长岩;11.北天山单元;12.逆冲断层;13.钨矿点
Fig. 1. Regional geology of Kumishi area
图 6 岩体氧化物源区判定图解(据Patino Douce, 1999)
Fig. 6. Oxide discrimination diagrams of granite source
图 7 岩体Rb/Sr-Rb/Ba源区判定图解(据Sylvester, 1998)
Fig. 7. Rb/Sr-Rb/Ba discrimination diagrams of granite source
表 1 岩体主量(%)及微量元素(10-6)化学分析结果
Table 1. Major element (%) and trace element (10-6) compositions of granites
岩性 忠宝二云母二长花岗岩 桑树园子二云母二长花岗岩 样号 ZB1-1 ZB1-2 ZB1-3 ZB1-4 ZB1-5 ZB1-6 SSY-1 SSY-2 SSY-3 SSY-4 SSY-5 SSY-6 SSY-7 SSY-8 SiO2 72.51 72.86 73.64 73.04 74.84 74.43 72.10 73.16 70.68 74.14 73.61 73.02 73.66 73.74 MgO 0.44 0.49 0.39 0.48 0.46 0.41 0.33 0.28 0.37 0.19 0.26 0.31 0.26 0.21 Al2O3 14.80 14.98 14.66 15.08 14.98 14.61 14.58 14.24 15.47 14.32 14.33 14.39 14.24 14.51 Na2O 3.70 3.42 3.50 3.39 2.91 3.10 3.34 3.45 3.49 3.05 3.51 3.48 3.56 3.24 P2O5 0.18 0.20 0.22 0.19 0.17 0.18 0.09 0.08 0.09 0.05 0.07 0.07 0.06 0.14 K2O 4.86 4.88 4.64 4.77 3.11 3.64 5.09 4.74 5.65 5.23 4.82 4.76 4.59 5.09 CaO 1.04 1.09 0.88 1.05 1.06 1.15 1.46 1.43 1.41 1.15 1.40 1.45 1.46 1.34 TiO2 0.14 0.15 0.12 0.14 0.11 0.11 0.14 0.12 0.17 0.09 0.12 0.14 0.11 0.10 MnO 0.03 0.03 0.04 0.03 0.03 0.04 0.05 0.04 0.06 0.02 0.05 0.05 0.04 0.03 Fe2O3 1.24 1.34 1.10 1.26 0.29 0.11 0.74 0.32 0.40 0.37 0.27 0.39 0.44 0.21 FeO 0.88 0.98 0.88 0.85 1.06 1.24 0.87 0.92 1.23 0.50 0.88 1.07 0.78 0.62 H2O 0.18 0.53 0.32 0.46 0.85 0.92 0.95 0.95 0.74 0.66 0.45 0.59 0.55 0.59 Li 57.4 121.0 89.2 68.3 112.3 76.5 31.7 29.2 48.2 25.7 23.9 40.5 34.6 28.5 W 31.10 15.70 10.50 20.60 18.50 27.30 7.75 8.63 9.38 10.80 8.01 9.20 6.12 8.90 Rb 245 276 292 255 273 256 261 241 303 253 248 249 236 248 Zr 90.76 136.00 98.33 200.00 74.10 90.20 133.00 103.00 137.00 49.90 90.90 108.00 92.70 79.90 Cl 342.0 478.0 523.0 421.0 396.0 406.0 301.0 309.0 150.0 53.4 62.5 77.6 65.2 83.3 Ba 311.0 318.0 81.2 231.0 356.0 389.0 480.0 454.0 522.0 353.0 468.0 444.0 480.0 397.0 Sr 65.79 68.30 26.58 51.47 112.00 138.00 148.00 148.00 157.00 124.00 151.00 151.00 152.00 136.00 Hf 3.30 4.32 3.46 5.76 3.18 3.02 5.20 4.60 6.00 1.80 3.00 4.80 4.20 3.90 Sn 7.80 7.70 8.30 6.50 9.20 10.10 4.36 4.72 6.02 9.13 4.10 4.80 3.78 6.38 Nb 19.41 19.74 19.82 8.39 12.30 11.30 33.30 18.90 22.50 18.90 14.90 15.30 13.30 16.10 Ta 3.66 3.75 4.08 3.14 2.88 3.18 3.13 2.05 2.40 1.83 1.69 1.62 1.35 1.70 U 2.02 1.55 2.36 0.96 1.66 1.79 3.23 2.83 4.40 1.72 1.89 2.99 2.49 2.19 Th 9.66 12.05 8.68 9.47 8.17 11.90 23.50 21.80 30.10 11.00 12.10 19.70 18.00 16.80 F 590 480 610 530 470 620 500 479 543 450 437 450 415 488 La 19.7 24.9 21.2 21.8 19.6 23.2 29.5 24.3 35.9 14.3 26.3 27.8 24.8 27.6 Ce 36.4 44.7 39.3 38.6 34.4 40.2 47.9 43.3 65.1 25.5 45.0 51.4 43.3 47.6 Pr 3.80 4.80 4.40 4.10 3.86 4.40 5.72 4.61 6.79 2.84 4.97 5.34 4.80 5.23 Nd 13.5 16.3 15.6 14.1 13.6 15.0 18.2 14.6 22.1 8.9 15.2 16.8 14.9 16.5 Sm 2.70 3.10 3.20 2.50 2.74 2.94 3.58 2.91 4.29 1.77 2.92 3.34 2.84 3.28 Eu 0.51 0.49 0.32 0.56 0.51 0.55 0.56 0.52 0.68 0.40 0.57 0.59 0.56 0.55 Gd 2.30 2.60 2.80 2.50 2.26 2.39 3.32 2.59 3.70 1.88 2.84 3.06 2.71 3.41 Tb 0.31 0.40 0.46 0.35 0.33 0.35 0.51 0.41 0.62 0.35 0.47 0.51 0.48 0.63 Dy 1.60 1.70 2.20 1.70 1.57 1.57 2.66 2.11 3.35 2.10 2.63 2.71 2.35 3.61 Ho 0.26 0.28 0.36 0.26 0.26 0.26 0.59 0.46 0.80 0.54 0.63 0.61 0.55 0.88 Er 0.61 0.67 0.78 0.70 0.64 0.62 1.43 1.14 1.96 1.42 1.64 1.59 1.41 2.35 Tm 0.08 0.11 0.11 0.11 0.10 0.09 0.24 0.19 0.34 0.26 0.28 0.29 0.25 0.41 Yb 0.57 0.67 0.74 0.70 0.62 0.60 1.55 1.31 2.29 1.80 1.92 1.84 1.67 2.82 Lu 0.09 0.11 0.10 0.10 0.09 0.09 0.24 0.20 0.36 0.27 0.31 0.29 0.26 0.43 Y 9.70 11.60 14.60 17.20 7.25 7.25 15.00 15.60 23.80 15.10 17.70 19.90 15.90 28.50 ΣREE 82.43 100.83 91.57 88.08 80.58 92.26 116.00 98.65 148.28 62.33 105.68 116.17 100.88 115.30 LREE 76.61 94.29 84.02 81.66 74.71 86.29 105.46 90.24 134.86 53.71 94.96 105.27 91.20 100.76 HREE 5.82 6.54 7.55 6.42 5.86 5.97 10.54 8.41 13.42 8.62 10.72 10.90 9.68 14.54 LREE/HREE 13.16 14.42 11.13 12.72 12.73 14.44 10.01 10.73 10.05 6.23 8.86 9.66 9.42 6.93 (La/Yb)N 24.79 26.66 20.55 22.34 22.68 27.74 13.65 13.31 11.25 0.70 9.83 10.84 10.65 7.02 δEu 0.61 0.51 0.32 0.68 0.61 0.62 0.49 0.57 0.51 0.67 0.60 0.55 0.61 0.50 表 2 忠宝和桑树园子岩体锆石U-Pb LA-ICP-MS测试结果
Table 2. Zircon LA-ICP-MS U-Pb data of Zhongbao and Shangshuyuanzi granites
岩体 测试点 Th(10-6) U(10-6) Th/U U-Th-Pb同位素比值 年龄(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 忠宝 A1-01 90 219 0.41 0.383 9 0.023 6 0.045 8 0.000 8 0.013 9 0.000 7 330 9 291 5 288 6 A1-02 89 128 0.57 0.340 8 0.010 4 0.048 1 0.000 5 0.018 2 0.000 8 297 8 303 3 321 16 A1-03 104 230 0.45 0.348 7 0.012 6 0.046 4 0.000 5 0.015 1 0.000 5 303 9 293 3 302 6 A1-04 187 328 0.57 0.340 8 0.010 4 0.048 1 0.000 5 0.018 2 0.000 8 296 8 299 5 305 6 A1-05 72 75 0.96 0.454 2 0.029 3 0.060 9 0.001 0 0.019 6 0.000 6 380 6 381 6 393 9 A1-06 247 492 0.50 0.471 4 0.037 7 0.066 1 0.000 7 0.018 5 0.000 4 391 9 397 4 371 6 A1-07 104 230 0.45 0.348 7 0.012 6 0.046 4 0.000 5 0.015 1 0.000 5 303 9 297 3 299 6 A1-08 128 140 0.91 2.079 8 0.046 0 0.194 4 0.001 2 0.374 4 0.058 3 1 142 15 1 144 8 1 146 22 A1-09 163 330 0.49 1.316 1 0.041 5 0.142 3 0.002 7 0.042 6 0.001 4 853 18 855 15 843 26 A1-10 129 201 0.64 0.363 8 0.011 8 0.052 6 0.000 7 0.018 0 0.000 6 315 9 302 4 313 8 A1-11 106 148 0.72 4.897 6 0.092 5 0.316 1 0.002 3 0.394 2 0.090 4 1 801 16 1 771 11 1 750 15 A1-12 244 428 0.57 0.340 8 0.010 4 0.048 1 0.000 5 0.018 2 0.000 8 298 8 301 3 311 6 A1-13 95 191 0.50 1.044 4 0.058 1 0.123 4 0.002 5 0.038 2 0.001 5 726 29 750 14 758 19 A1-14 91 226 0.40 0.484 6 0.016 3 0.064 3 0.000 6 0.018 5 0.000 4 401 8 401 4 404 9 A1-15 188 250 0.75 1.219 3 0.044 2 0.132 3 0.001 8 0.039 6 0.001 3 809 20 801 10 786 15 A1-16 83 185 0.45 0.362 6 0.019 8 0.044 9 0.000 7 0.014 0 0.000 4 314 8 283 7 281 9 A1-17 94 276 0.34 14.867 2 0.257 2 0.490 1 0.005 5 0.652 3 0.145 9 2 806 16 2 571 23 2 753 21 A1-18 91 193 0.47 0.349 2 0.013 1 0.047 5 0.000 5 0.014 9 0.000 5 298 7 295 5 299 6 A1-19 91 165 0.55 8.773 2 0.163 5 0.408 9 0.003 1 0.118 2 0.002 4 2 314 16 2 209 13 2 259 24 A1-20 93 209 0.44 0.348 7 0.012 6 0.046 4 0.000 5 0.015 1 0.000 5 302 9 292 3 303 8 A1-21 112 208 0.54 0.363 8 0.011 8 0.052 6 0.000 7 0.018 0 0.000 6 315 9 330 4 360 12 桑树园子 SSY-1 100 134 0.75 0.338 5 0.012 5 0.047 1 0.000 7 0.014 1 0.000 4 296 9 297 4 283 9 SSY-2 81 112 0.72 0.373 7 0.018 9 0.046 6 0.000 6 0.016 1 0.000 6 322 14 293 4 323 12 SSY-3 108 137 0.79 0.323 3 0.010 4 0.046 6 0.000 6 0.013 6 0.000 4 284 8 293 4 274 8 SSY-4 640 820 0.78 0.347 3 0.012 4 0.047 1 0.000 5 0.014 5 0.000 4 303 9 297 3 292 8 SSY-5 260 278 0.94 0.364 0 0.011 5 0.046 8 0.000 6 0.014 5 0.000 4 315 7 295 4 291 8 SSY-6 110 146 0.75 0.453 2 0.019 3 0.049 3 0.000 5 0.017 1 0.000 6 380 14 310 3 343 12 SSY-7 724 927 0.78 0.318 8 0.012 3 0.046 8 0.000 6 0.013 6 0.000 4 281 9 295 4 272 8 SSY-8 120 117 1.03 0.295 7 0.010 7 0.046 7 0.000 5 0.013 7 0.000 5 263 8 294 3 274 9 SSY-9 63 93 0.68 0.322 6 0.012 8 0.047 0 0.000 6 0.014 6 0.000 4 284 10 296 4 294 9 SSY-10 108 151 0.72 0.339 2 0.012 8 0.046 8 0.000 6 0.015 4 0.000 4 297 9 295 4 309 8 SSY-11 87 119 0.73 0.313 8 0.011 4 0.044 7 0.000 5 0.014 4 0.000 4 277 9 282 3 289 8 SSY-12 256 277 0.92 0.519 1 0.023 5 0.065 7 0.000 9 0.020 5 0.000 7 425 16 410 6 410 13 SSY-13 106 124 0.85 0.336 0 0.011 5 0.041 5 0.000 5 0.013 3 0.000 4 294 9 285 3 288 8 SSY-14 57 149 0.38 2.188 7 0.102 8 0.181 8 0.005 1 0.078 0 0.003 6 1 177 33 1 077 28 1 519 68 SSY-15 294 537 0.55 0.337 3 0.015 6 0.047 5 0.000 6 0.014 6 0.000 6 295 12 299 4 293 12 SSY-16 140 139 1.01 0.377 3 0.012 0 0.040 2 0.000 9 0.012 8 0.000 4 325 9 254 5 256 8 SSY-17 73 327 0.22 0.425 1 0.019 0 0.062 0 0.000 9 0.021 5 0.001 1 360 14 388 6 431 22 SSY-18 115 188 0.61 0.505 5 0.027 1 0.072 2 0.001 2 0.020 1 0.000 8 415 18 449 7 402 16 表 3 忠宝、桑树园子岩体Sr-Nd同位素测试结果
Table 3. Sr-Nd isotope composition of Zhongbao and Shangshuyuanzi granites
样品号 87Rb/86Sr 87Sr/86Sr I(Sr) 147Sm/144Nd 143Nd/144Nd I(Nd) εNd(t) TDM(Ma) ZB-1 6.525 0.736 289 0.708 8 0.126 1 0.512 159 0.511 916 -6.7 1 723 ZB-2 15.471 0.772 732 0.707 6 0.129 3 0.512 147 0.511 898 -7.1 1 810 ZB-3 7.836 0.741 456 0.708 5 0.111 8 0.512 150 0.511 935 -6.3 1 495 ZB-4 5.678 0.732 198 0.708 3 0.119 8 0.512 136 0.511 905 -6.9 1 646 SSY-1 4.967 0.727 818 0.707 1 0.123 9 0.512 262 0.512 018 -4.7 1 509 SSY-2 4.586 0.726 478 0.707 4 0.125 6 0.512 248 0.512 005 -5.0 1 561 SSY-3 5.436 0.730 355 0.707 7 0.122 3 0.512 235 0.511 994 -5.1 1 527 SSY-4 5.747 0.730 421 0.706 5 0.125 3 0.512 251 0.512 004 -4.9 1 551 TDM的计算公式如下:TDM=1/λln[1 +[(143Nd/144Nd)s-(143Nd/144Nd)DM]/[(147Sm/144Nd)s-(147Sm/144Nd)DM];式中下标s和DM分别代表现今样品测定值和亏损地幔值;式中(147Sm/144Nd)DM=0.213 57,(143Nd/144Nd)DM=0.513 215(Miller and OpNions, 1985);t代表样品结晶年龄;λ= 6.54 ×10-12 a-1. 表 4 忠宝、桑树园子岩体长石Pb同位素测试结果
Table 4. Pb isotope compositions of Zhongbao and Shangshuyuanzi granites feldspar
样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Pb(10-6) Th(10-6) U(10-6) (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t ZB-1 18.671 15.636 38.504 24.4 9.7 2.0 18.386 15.621 38.072 ZB-2 18.526 15.629 38.497 22.8 12.1 1.6 18.293 15.617 37.924 ZB-3 18.753 15.651 38.399 24.1 8.7 2.4 18.416 15.633 38.008 ZB-4 18.199 15.619 38.232 18.0 9.5 1.0 18.017 15.610 37.664 SSY-1 19.073 15.666 38.680 19.8 8.2 1.7 18.784 15.651 38.231 SSY-2 19.310 15.663 39.150 21.6 12.1 1.9 19.006 15.648 38.534 SSY-3 18.877 15.641 38.975 27.7 19.7 3.0 18.505 15.621 38.200 SSY-4 18.796 15.637 39.071 25.3 18.0 2.5 18.458 15.619 38.297 -
[1] Arndt, N.T., Goldstein, S.L., 1987. Use and Abuse of Crust-Formation Ages. Geology, 15(10): 893-895. doi: 10.1130/0091-7613(1987)15<893:UAAOCA>2.0.CO;2 [2] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1 [3] Brookfield, M.E., 2000. Geological Development and Phanerozoic Crustal Accretion in the Western Segment of the Southern TienShan (Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysics, 328(1-2): 1-14. doi: 10.1016/S0040-1951(00)00175-X [4] Chen, C., 2010. Geological Characteristics and Genesis of Zhongbao Tungsten Deposit and Prediction of Its Surrounding Prospecting Objects, Tuokexun, Xinjiang Prov (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [5] Deng, J.F., Zhao, H.L., Lai, S.C., et al., 1994. Generation of Muscovite/Two-Mica Granite and Intracontinental Subduction. Earth Science—Journal of China University of Geosciences, 19(2): 139-147(in Chinese with English abstract). http://www.cqvip.com/QK/84134A/199401/4001418664.html [6] Deng, J.F., Zhao, H.L., Mo, X.X., et al., 1995. Intracontinental Subduction of the Yangtze Continent and Continent Reducing-Inferred from Muscovite (Two-Mica) Granites. Geological Journal of Universities, 1(1): 50-57(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GXDX501.005&dbcode=CJFD&year=1995&dflag=pdfdown [7] Dong, Y.P., Zhou, D.W., Zhang, G.W., et al., 2005. Tectonic Setting of the Wuwamen Ophiolite at the Southern Margin of Middle Tianshan Belt. Acta Petrologica Sinica, 21(1): 37-44(in Chinese with English abstract). http://www.researchgate.net/publication/279574130_Tectonic_setting_of_the_Wuwamen_ophiolite_at_the_southern_margin_of_Middle_Tianshan_Belt [8] Douce, A.E.P., Beard, J.S., 1995. Dehydration Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. J. Petrol. , 36: 707-738. doi: 10.1093/petrology/36.3.707 [9] Douce, A.E.P., Johnston, A.D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granoids and Aluminous Granulites. Cotrib. Mineral. Etrol. , 107(2): 202-218. doi: 10.1007/BF00310707 [10] Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Earth Continental Crust Controlled by Melting of Amphibolites in Subduction Zones. Nature, 417: 837-840. doi: 10.1038/nature00799 [11] Gao, J., Long, L.L., Qian, Q., et al., 2006. Southern Tianshan: A Late Paleozoic or a Triassic Orogen? Acta Petrologica Sinica, 22(5): 1049-1061 (in Chinese with English abstract). [12] Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Cross Cutting the HPLT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. doi: 10.1016/j.tecto.2011.01.001 [13] Gao, L.E., Zeng, L.S., Liu, J., et al., 2009. Early Oligocene Na- Rich Peraluminous Leucogranites in the YardoiGneiss Dome, Southern Tibet: Formation Mechanism and Tectonic Implications. Acta Petrologica Sinica, 25(9): 2289- 2302 (in Chinese with English abstract). [14] Gao, L.E., Zeng, L.S., Xie, K.J., 2011. Eocene High-Grade Metamorphism and Crustal Anatexis in North Himalayan Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 56(36): 3078-3090 (in Chinese with English abstract). doi: 10.1360/csb2011-56-36-3078 [15] Gao, X.Y., Zheng, Y.F., 2011. On the Zr-in-Rutile and Ti-in-Zircon Geothermometers. Acta Petrologica Sinica, 27(2): 417- 432(in Chinese with English abstract). http://www.researchgate.net/publication/279605387_On_the_Zr-in-rutile_and_Ti-in-zircon_geothermometers [16] He, G.Q., Li, M.S., Han, B.F., 2001. Geotectonic Research of South-West Tianshan and Its West Adjacent Area, China. Xinjiang Geology, 19(1): 7-11(in Chinese with English abstract). http://www.researchgate.net/publication/312979796_Geotectonic_research_of_southwest_Tianshan_and_its_west_adjacent_area_China [17] Hu, A.Q., Wang, Z.G., Tu, G.Z., et al., 1997. Geological Evolution and Diagenetic Mineralization Regularity of Northern Xinjiang. Geological Publishing House, Beijing (in Chinese). [18] Hu, A.Q., Zhang, G.X., Chen, Y.B., et al., 2006. Isotope Geochronology and Geochemistry for Major Geological Events of Continental Crust Evolution of Xinjiang, China. Science Press, Beijing (in Chinese). [19] Huang, G., Wang, X.L., Zhang, W.F., et al., 2011. Zircon LA-ICP-MS U-Pb Age and Geochemistry of Two-Mica Granite in Kumishi Area in Eastern Part of Southern Tianshan Mountains. Xinjiang Geology, 29 (3): 263-269(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201103005.htm [20] Huang, H., Zhang, Z.C., Zhang, D.Y., et al., 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, 85(8): 1305-1333 (in Chinese with English abstract). http://www.researchgate.net/publication/284459890_Petrogenesis_of_Late_Carboniferous_to_Early_Permian_granitoid_plutons_in_the_Chinese_South_Tianshan_Implications_for_crustal_accretion [21] Huang, W. L, Wyllie, P.J., 1973. Muscovite Dehydration and Melting in Deep Crust and Subducted Oceanic Sediments. Earth and Planetary Science Letters, 18(1): 133-136. doi: 10.1016/0012-821X(73)90045-9 [22] Jahn, B.M., Griffin, W.L., Windley, B., 2000. Continental Growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 328(1-2): 7-10. doi: 10.1016/S0040-1951(00)00174-8 [23] Jiang, C.Y., Mu, Y.M., Bai, K.Y., et al., 1999. Chronology, Petrology, Geochemistry and Tectonic Environment of Granitoids in the Southern Tianshan Mountain, Western China. Acta Petrologica Sinica, 15(2): 298-308 (in Chinese with English abstract). http://www.oalib.com/paper/1472082 [24] Jiang, C.Y., Wu, W.K., Li, L.C., et al., 2001. Phanerozoic Tectonic Evolution of South Tianshan Orogenic Belt. Geological Publishing House, Beijing (in Chinese). [25] Li, J.Y., Yang, J.S., Xu, X.Z., et al., 2011. Characteristics and Genesis of Ultrabasic and Basic Rocks in the Kuzi Mountain on the Eastern Margin of Southern Tianshan, Xinjiang. Acta Petrologica Sinica, 38(4): 890-908(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201104009.htm [26] Li, Q.G., Liu, S.W., Han, B.F., et al., 2005. The Constraints of the Source Area and the Role of the Ancient Weathering from the Geochemical Characteristics of Xingxingxia Group Metapelites in East Part of Middle Tianshan. Science in China (Series D), 35 (3): 225-234 (in Chinese with English abstract). [27] Li, Y.J., Yang, H.J., Zhao, Y., et al., 2009. Tectonic Frame Work and Evolution of South Tianshan, NW China. Geotectonica et Metallogenia, 33(1): 94-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200901013.htm [28] Liu, S.W., Guo, Z.J., Zhang, Z.C., et al., 2004. The Characteristic of East Part of Middle Tianshan Precambrian Metamorphic Blocks: Constraints from Geochronology and Nd Isotopic Geochemistry. Science in China (Series D), 34(5): 395~403(in Chinese with English abstract). [29] Patino Douce, A.E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magma? In: Castro, A., Fernandez, C., Vigneresse, T.L., eds., Understanding Granites: Intergrating New and Classical Techniques. Geol. Soc. London, Spec Publ. , 168: 55-75. doi: 101007/s00410-009-0465-7 [30] Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3 [31] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effect in Avariety of Crustal Magmas Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X [32] Wu, Y.B., Zheng, Y.F., 2004. The Zircon Minerageny Research and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589 [33] Xiao, W. J, . Windley, B.F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. doi: 10.2475/03.2009.02 [34] Xiao, W.J., Huang, B. C, Han, C.M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. doi: 10.1016/j.gr.2010.01.007 [35] Xiao, X.C., Tang, Y.Q., Feng, Y.M., et al., 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Geological Publishing House, Beijing (in Chinese). [36] Yang, T.N., Wang, X.P., 2006. Geochronology, Petrochemistry and Tectonic Implications of Early Devonian Pluton in Kumux Area, Xinjiang. Acta Petrologica et Mineralogica, 25 (5): 401-411 (in Chinese with English abstract). http://www.researchgate.net/publication/313059166_Geochronology_petrochemistry_and_tectonic_implications_of_Early_Devonian_plutons_in_Kumux_area_Xinjiang [37] Yang, J.S., Xu, X.Z., Li, T.F., et al., 2011. U-Pb Ages of Zircons from Ophiolite and Related Rocks in the Kumishi Region at the Southern Margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic Oceanic Basin. Acta Petrologica Sinica, 27(1): 77-95 (in Chinese with English abstract). [38] Yang, T.N., Li, J.Y., Sun, G.H., et al., 2006. Earlier Devonian Active Continental Arc in Central: Evidence of Geochemical Analyses and Zircon SHRIMP Dating on Mylonitized Granitic Rock. Acta Petrologica Sinica, 22 (1): 41-48 (in Chinese with English abstract). http://www.oalib.com/paper/1471515 [39] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Zircon LA-ICP-MS U-Pb Dating and Rare Earth Element Component Analysis of Cenozoic Intrution from North East China. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese with English abstract). doi: 10.1360/csb2003-48-14-1511 [40] Zhang, H.F., Nigel, H., Randall, P., et al., 2005. Geochemistry of North Himalayan Leucogranites: Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science—Journal of China University of Geosciences, 30(3): 275- 288(in Chinese with English abstract). [41] Zhang, L.F., Ai, Y.L., Li, X. P., et al., 2007. Triassic Collision of Western Tianshan Orogenic Belt, China: Evidence from SHRIMP U-Pb Dating of Zircon from HP/ HP Eclogitic Rocks. Lithos, 96(1-2): 266-280. doi: 10.1016/j.lithos.2006.09.012 [42] Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269(in Chinese with English abstract). http://www.oalib.com/paper/1473353 [43] Zhang, Z.M., Ma, H. F, Cai, G.Q., 2001. The Main Characteristics of Geological Tectonic Evolution of Kumishi Basin. Xinjiang Geology, 19(1): 49-53 (in Chinese with English abstract). [44] Zhu, Z.X., Li, J.Y., Dong. L.H., et al., 2008. The Age Determineation of Late Carboniferous Intrusions in Mangqisu Region and Its Constraints to the Closure of Oceanic Basin in South Tianshan, Xinjiang. Acta Petrologica Sinica, 24 (12): 2761-2766(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200812011.htm [45] 陈超, 2010. 新疆忠宝钨矿地质特征、成因研究及外围预测(硕士学位论文). 武汉: 中国地质大学. [46] 邓晋福, 赵海玲, 赖绍聪, 等, 1994. 白云母∕二云母花岗岩形成与陆内俯冲作用. 地球科学——中国地质大学学报, 19(2): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199402001.htm [47] 邓晋福, 赵海玲, 莫宣学, 等, 1995. 扬子大陆的陆内俯冲与大陆的缩小——由白云母(二云母)花岗岩推导. 高校地质学报, 1(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX501.005.htm [48] 董云鹏, 周鼎武, 张国伟, 等, 2005. 中天山南缘乌瓦门蛇绿岩形成构造环境. 岩石学报, 21(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501004.htm [49] 高俊, 龙灵利, 钱青, 等, 2006. 南天山晚古生代还是三叠纪碰撞造山带?岩石学报, 22(5): 1049-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605001.htm [50] 高利娥, 曾令森, 刘静, 等, 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909021.htm [51] 高利娥, 曾令森, 谢克家, 2011. 北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定. 科学通报, 56(36): 3078 -3090. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201136008.htm [52] 高晓英, 郑永飞, 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm [53] 何国琦, 李茂松, 韩宝福, 等, 2001. 中国西南天山及邻区大地构造研究. 新疆地质, 19(1): 7-11. doi: 10.3969/j.issn.1000-8845.2001.01.002 [54] 胡霭琴, 王中刚, 涂光炽, 等, 1997. 新疆北部地质演化及成岩成矿规律. 北京: 科学出版社. [55] 胡霭琴, 张国新, 陈义兵, 等, 2006. 中国新疆地壳演化主要地质事件年代学和地球化学. 北京: 地质出版社. [56] 黄岗, 王新录, 张文峰, 等, 2011. 库米什地区二云母花岗岩锆石LA-ICP-MS U-Pb定年及岩石地球化学特征. 新疆地质, 29(3): 263-269. doi: 10.3969/j.issn.1000-8845.2011.03.004 [57] 黄河, 张招崇, 张东阳, 等, 2011. 中国南天山晚石炭世-早二叠世花岗质侵入岩的岩石成因与地壳增生. 地质学报, 85(8): 1305-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108007.htm [58] 姜常义, 穆艳梅, 白开寅, 等, 1999. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境. 岩石学报, 15(2): 298-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.017.htm [59] 姜常义, 吴文奎, 李良辰, 等, 2001. 南天山东段显生宙构造演化. 北京: 地质出版社. [60] 李金阳, 杨经绥, 徐向珍, 等, 2011. 新疆南天山东段库兹山基性超基性岩特征和成因探讨. 中国地质, 38(4): 890-908. doi: 10.3969/j.issn.1000-3657.2011.04.008 [61] 李秋根, 刘树文, 韩宝福, 等. 2005. 中天山东段星星峡群变质泥质岩的地球化学特征及其对物源区和古风化作用的制约. 中国科学(D辑), 35(3): 225-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200503003.htm [62] 李曰俊, 杨海军, 赵岩, 等, 2009. 南天山区域大地构造与演化. 大地构造与成矿学, 33(1): 94-104. doi: 10.3969/j.issn.1001-1552.2009.01.012 [63] 刘树文, 郭召杰, 张志诚, 等, 2004. 中天山东段前寒武纪变质地块的性质: 地质年代学和钕同位素地球化学的约束. 中国科学(D辑), 34(5): 395-403. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200405000.htm [64] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [65] 肖序常, 汤耀庆, 冯益民, 等, 1992. 新疆北部及其邻区大地构造. 北京: 北京科学技术出版社. [66] 杨经绥, 徐向珍, 李天福, 等, 2011. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据. 岩石学报, 27(1): 77-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101006.htm [67] 杨天南, 李锦轶, 孙桂华, 等, 2006. 中天山早泥盆世陆弧来自花岗质糜棱岩地球化学及SHRIMP U-Pb定年的证据. 岩石学报, 22(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601004.htm [68] 杨天南, 王小平, 2006. 新疆库米什早泥盆世侵入岩时代、地球化学及大地构造意义. 岩石矿物学杂志, 25(5): 401-411. doi: 10.3969/j.issn.1000-6524.2006.05.004 [69] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [70] 张宏飞, Nigel, H., Randall, P., 等, 2005. 北喜马拉雅淡色花岗岩地球化学: 区域对比、岩石成因及其构造意. 地球科学——中国地质大学学报, 30(3): 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503003.htm [71] 张旗, 王焰, 李承东, 等, 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm [72] 张子敏, 马汉峰, 蔡根庆, 2001. 南天山独山锡矿床的成矿特征及成矿模式. 新疆地质, 19(1): 49-53. doi: 10.3969/j.issn.1000-8845.2001.01.009 [73] 朱志新, 李锦轶, 董连慧, 等, 2008. 新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定. 岩石学报, 24(12): 2761-2766. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812011.htm