Assumption of the Slices' Force Dips and Its Effect on Results Calculated by Slice Method
-
摘要: 以猴子石滑坡为例, 利用数值模拟方法, 计算了滑坡条块间作用力倾角.对比分析了半精确条分法中传递系数法、罗厄法、美国陆军工程师团法、简化的简布法及实用递推法所确定的条块间作用力倾角与数值模拟值计算结果的差别.讨论了半精确条分法关于条块间作用力倾角的假定对滑坡稳定系数计算精度的影响, 并与精确条分法的计算结果和基于数值模拟值的条块间作用力倾角所计算的力的平衡条件下的稳定系数进行了比较.详细论证了现行主要半精确条分法的精度与适用性.Abstract: The dips of slices' force were determined by numerical simulation method by taking Monkey Stone landslide the study subject in this paper. The differences between the dips calculated by numerical simulation and those determined by the semi-precise slice method including the transfer coefficient method, Rohre law, the U.S. Army Corps of Engineers, simplified method and practical recursive method were analyzed. The effect of assumption of the slices' force dips based on semi-accurate slice method on the accuracy of landslide stability coefficient was discussed, and the results calculated by accurate slice method were compared with those calculated by numerical simulation. The study proves the accuracy and applicability of those current major semi-precision slice methods.
-
Key words:
- slice method /
- landslide /
- numerical simulation /
- stability coefficient /
- engineering geology
-
表 1 滑坡及滑床岩土体物理力学参数设计建议值
Table 1. Recommended physical mechanical parameters of the landslide and sleigh bed
项目 密度 滑带土抗剪指标 弹性模量(GPa) 泊松比 抗拉强度(MPa) 体积模量(GPa) 剪切模量(GPa) γ天然(kN/m3) C天然(kPa) φ天然(°) γ饱和(kN/m3) C饱和(kPa) φ饱和(°) 滑带土 $\frac{{{\rm{23}}{\rm{.0}}}}{{23.5}}$ $\frac{{{\rm{35}}{\rm{.0}}}}{{23.0}}$ $\frac{{{\rm{23}}{\rm{.4}}}}{{20.7}}$ 0.026 0.34 0.005 0.027 0.010 滑体(碎块石土) $\frac{{{\rm{23}}{\rm{.0}}}}{{23.5}}$ $\frac{{{\rm{60}}{\rm{.0}}}}{{50.0}}$ $\frac{{{\rm{28}}{\rm{.0}}}}{{25.0}}$ 1.960 0.29 0.010 1.556 0.760 泥质粉砂岩、粉砂质泥岩 $\frac{{{\rm{25}}{\rm{.3}}}}{{25.6}}$ $\frac{{{\rm{1}}\;{\rm{700}}{\rm{.0}}}}{{1\;400.0}}$ $\frac{{{\rm{47}}{\rm{.0}}}}{{42.0}}$ 6.500 0.25 0.050 5.600 2.800 *原始数据来源于长江水利委员会综合勘测局内部资料(2002),苏爱军(2008). 表 2 滑坡体条块间作用力的倾角(°)
Table 2. Dips of slices' force of the landslide
条块 滑带土天然状态下数值模拟值 滑带土饱和状态下数值模拟值 传递系数法 罗厄法 美军陆军工程师团法 简化的简布法 实用递推法(SU-U法) 1 23.17 12.74 64.41 45.50 21.66 0 20.43 2 24.55 13.02 55.29 44.28 21.66 0 21.32 3 23.81 16.52 51.26 38.83 21.66 0 21.54 4 23.12 18.91 46.50 36.64 21.66 0 21.66 5 23.30 20.54 33.36 16.68 21.66 0 21.22 6 23.65 22.00 28.97 38.35 21.66 0 20.82 7 14.87 12.82 19.74 9.87 21.66 0 19.59 8 12.21 10.79 17.74 14.05 21.66 0 19.26 9 10.48 9.49 14.68 7.34 21.66 0 18.70 10 13.13 12.11 12.27 6.14 21.66 0 18.23 11 16.28 15.43 15.34 22.21 21.66 0 18.83 12 19.74 18.90 14.05 14.74 21.66 0 18.58 13 23.21 22.29 14.04 19.42 21.66 0 18.58 14 24.57 23.87 15.56 24.02 21.66 0 18.87 15 23.75 23.54 11.28 23.98 21.66 0 18.02 16 22.65 23.41 11.00 12.25 21.66 0 17.96 17 24.42 25.20 -0.62 7.75 21.66 0 15.15 18 23.82 25.39 -7.38 15.99 21.66 0 13.22 19 19.97 23.35 -7.60 3.58 21.66 0 13.16 表 3 各条分方法与数值模拟法条块间作用力倾角欧式距离和相关系数对比
Table 3. Comparison of Euclidean distance and correlation coefficient of the slices' force dips between different slice methods and numerical simulation
滑带土状态 相关性 传递系数法 罗厄法 美军陆军工程师团法 简化的简布法 实用递推法 天然 欧式距离 83.66 49.33 20.52 91.83 23.75 相关系数 0.24 0.53 0 0.03 饱和 欧式距离 99.62 64.69 26.69 83.51 29.43 相关系数 -0.46 -0.11 0 -0.49 表 4 基于数值模拟值的条块间作用力倾角所计算的力的平衡条件下稳定系数与多种条分法的比较
Table 4. The comparison of stability coefficient calculated by accurate slice method and numerical simulation
滑带土状态 半精确条分法 精确条分法 采用数值模拟值计算 传递系数法 改进的传递系数法 罗厄法 美国陆军工程师团法 简化的简布法 实用递推法 精确递推法 斯宾赛法 摩根斯坦-陈法 天然 1.46 1.57 1.53 1.51 1.50 1.38 1.49 1.49 1.49 1.46 饱和 1.25 1.33 1.31 1.29 1.29 1.18 1.27 1.27 1.27 1.25 -
[1] Chen, Z.Y., 1983. The Generalized Method of Slice for Slope Stability Analysis and Its Modification. Chinese Journal of Geotechnical Engineering, 5(4): 11-27(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YTGC198304001&dbcode=CJFD&year=1983&dflag=pdfdown [2] Chen, Z.Y., Morgenstern, N. R, 1983. Extensions to the Generalized Method of Slices for Stability Analysis. Canadian Geotechnical Journal, 20(1): 104-119. doi: 10.1139/183-010 [3] Chen, Z.Y., 2003. Principles Method and Program of Soil Slope Stability Analysis. China Water Power Press, Beijing(in Chinese). [4] Duncan, J.M., 1996. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122(7): 577-596. doi: 10.1061/(ASCE)0733-9410(1996)122:7(577) [5] Duncan, J.M., Wright, S.G., 1980. The Accuracy of Equilibrium Methods of Slope Stability Analysis. Engineering Geology, 16(1-2): 5-17. doi: 10.1016/0013-7952(80)90003-4 [6] Morgenstern, N.R., Price, V., 1967. A Numerical Method of Solving the Equations of Stability of General Slip Surfaces. Computer Journal, 9(4): 388-393. doi: 10.1093/comjnl/9.4.388 [7] Pan, J.Z., 1980. Sliding Stability of Buildings and Landslide Analysis. China Water Conservation Publishing House, Beijing(in Chinese). [8] Su, A.J., 2008. Principles and Methods of Slope Stability Evaluation-Improvement of Slice Methods. China University of Geosciences Press, Wuhan(in Chinese). [9] Su, A.J., Feng, M.Q., 2002. Improving on Transfer Coefficient Method Applied to Landslide Stability Analyse and Landslide Thrust Value Calculation. Journal of Geological Hazards and Environment Preservation, 13(3): 51-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZHB200203012.htm [10] 陈祖煜, 2003. 土质边坡稳定分析——原理·方法·程序. 北京: 中国水利水电出版社. [11] 陈祖煜, 1983. 土坡稳定分析通用条分法及其改进. 岩土工程学报, 5(4): 11-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198304001.htm [12] 潘家铮, 1980. 建筑物的抗滑稳定和滑坡分析. 北京: 水利出版社. [13] 苏爱军, 2008. 滑坡稳定性评价原理与方法——条分法的改进. 武汉: 中国地质大学出版社. [14] 苏爱军, 冯明权, 2002. 滑坡稳定性传递系数计算法的改进. 地质灾害与环境保护, 13(3): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB200203012.htm