Genetic Types of the Tight Sandstone Gas Reservoirs in the Kuqa Depression, Tarim Basin, NW China
-
摘要: 为深化对库车坳陷致密砂岩气藏成因类型的认识, 采集致密砂岩储层岩样, 开展了油气充注史和孔隙度演化史研究.通过流体包裹体岩相学和显微测温厘定了油气充注史, 利用沉积-构造-成岩一体化模型恢复了储层孔隙度演化史, 根据两者的先后关系, 划分了致密砂岩气藏的成因类型.结果表明, 依南2侏罗系气藏存在两期油气充注, 第一期是吉迪克期到康村期(23~12 Ma)的油充注, 第二期是库车期到现今(5~0 Ma)的天然气充注, 储层孔隙度在库车期前(12~8 Ma)降低到12%以下, 形成致密砂岩储层.迪那2古近系天然气藏存在两期油气充注, 第一期是康村期到库车期(12~5 Ma)的油充注, 第二期是库车期到现今(5~0 Ma)的天然气充注, 储层孔隙度在西域期(2~0 Ma)降低到12%以下, 形成致密砂岩储层.综合分析认为, 库车坳陷存在两种成因类型的致密砂岩气藏, 依南2侏罗系气藏致密储层形成之后充注天然气, 成因类型为"致密深盆气藏"; 迪那2气藏古近系致密储层形成之前, 天然气已大量充注, 成因类型为"致密常规气藏".这对深化库车坳陷致密砂岩气勘探与开发有重要意义.Abstract: To further understand the genetic types of the tight sandstone gas reservoirs in Kuqa depression, the core from tight sandstone gas reservoirs is sampled to carry out the analysis on hydrocarbon charge history and porosity evolution. The hydrocarbon charge history is investigated by analyzing the fluid inclusion petrography, and microther mometry and the porosity evolution is restored by using the model of deposition-structure -diagenesis. Combining with gas-water relationship and distribution of tight sandstone gas reservoirs. There are two charge events in the YN2 Jurassic tight sandstone reservoir, with the one of oil charge during 23-12 Ma, and the other gas charge during 5-0 Ma. The reservoir porosity dropped to less than 12% and became tight during the period of 12-8 Ma. Two charge events have been recorded in the DN2 Paleogene tight sandstone reservoir; the former is oil charge during 23-12 Ma, and the latter is the gas charge during 5-0 Ma. The reservoir porosity dropped to less than 12% during the period of 2-0 Ma and became tight later. Two genetic types of tight sandstone gas reservoirs have been confirmed. The YN2 Jurassic tight sandstone reservoir is of the genetic type of "tight deep basin gas reservoir" with the accumulation process of gas charge after the reservoir tightened and the DN2 Paleogene tight sandstone reservoir is defined as "tight conventional gas reservoir" with the accumulation process of gas charge before the reservoir tightened. This study is of significance for further exploration and exploitation of tight sandstone gas in Kuqa depression.
-
Key words:
- Kuqa depression /
- tight sandstone gas reservoirs /
- genetic types /
- gas reservoir /
- petroleum geology
-
表 1 库车坳陷两种典型致密砂岩气藏特征对比
Table 1. Comparison of the typical tight sandstone gas reservoirs in the Kuqa depression
依南2气藏 迪那2气藏 烃源岩 中-上三叠统煤系烃源岩 中-下侏罗统、中-上三叠统煤系烃源岩 储层 侏罗系阿合组含砾砂岩,气层孔隙度4%~8% 古近系苏维依组含砾细砂岩,气层孔隙度4%~7% 盖层 顶部为侏罗系阳霞组煤层,底部为三叠系塔里奇克组煤层 古近系吉迪克组膏泥岩 圈闭 岩性圈闭、成岩圈闭 背斜圈闭 油气运移动力 毛细管力和气体膨胀力 浮力和水动力 压力梯度 气层压力梯度低于同一压力系统内水层压力梯度 气层的压力梯度高于同一压力系统内水层压力梯度 气水关系 气藏边界不受构造等高线控制,含气面积大,无明显气水界面,且水层在上,气层在下 气藏分布在构造高部位,边界受等高线控制,含气面积小,具有底水,气水界面明显 成因机理 天然气充注晚于储层致密,毛管力为成藏动力 天然气充注早于储层致密,浮力为成藏动力 表 2 库车坳陷不同类型储集层岩心孔隙度与埋深关系预测模型(据张荣虎等,2011修改)
Table 2. Prediction model for the relationship of the different types core porosity and the burial depth in the Kuqa depression
岩性 预测模型 石英含量(%) 分选 主要约束条件 中-细砂岩 Φ0=0.39638e-0.0003H 50~65 中-好 泥质1%~5%,胶结物2%~5%,溶蚀量0%~2%,构造挤压30~60MPa 极细-细砂岩 Φ0=0.37643e-0.0003H 差 泥质1%~5%,胶结物2%~5%,溶蚀量0%~2%,构造挤压≤30MPa 中细-细砂岩 Φ0=0.40359e-0.0002H 65~75 中-好 泥质1%~5%,胶结物2%~5%,溶蚀量0%~2%,构造挤压30~60MPa 注:Φ0为预测模型;H为埋深(m). 表 3 库车坳陷盐水包裹体均一化温度、盐度测试结果
Table 3. Homogenization temperature and salinity of aqueous inclusions in the Kuqa depression
包裹体编号 井号 埋深(m) 层位 宿主矿物 产状 气液比(%) Th(℃) Tm(℃) 1 依南2 4788.5 J1a 石英颗粒 次生加大边 5 91.3 -3 2 依南2 4788.5 J1a 石英颗粒 次生加大边 8 100.6 - 3 依南2 4788.5 J1a 石英颗粒 裂缝 - 135.1 0 4 依南2 4788.5 J1a 石英颗粒 裂缝 - 147.9 -4 5 依南2 4788.5 J1a 石英颗粒 裂缝 8 124.6 - 6 依南2 4788.5 J1a 石英颗粒 裂缝 6 105.6 -5 7 依南2 4788.5 J1a 石英颗粒 裂缝 - 131.1 0 8 依南2 4788.5 J1a 石英颗粒 次生加大边 8 97.6 0 9 依南2 4788.5 J1a 石英颗粒 次生加大边 5 85.7 -2 10 依南2 4788.5 J1a 石英颗粒 次生加大边 6 102.3 -3 11 依南2 4788.5 J1a 石英颗粒 裂缝 6 142.5 -3 1 迪那22 4992 E2-3s 石英颗粒 裂缝 5 103.6 -5 2 迪那22 4992 E2-3s 长石颗粒 裂缝 - 149.3 - 3 迪那22 4992 E2-3s 石英颗粒 裂缝 - 135.1 -8 4 迪那22 4992 E2-3s 石英颗粒 裂缝 7 116.1 -10 5 迪那22 4992 E2-3s 长石颗粒 裂缝 7 136.3 -18 6 迪那22 4992 E2-3s 石英颗粒 裂缝 5 117.9 -20 7 迪那22 4992 E2-3s 长石颗粒 裂缝 8 125.6 -15 8 迪那22 4992 E2-3s 长石颗粒 裂缝 7 142.1 -25 9 迪那22 4992 E2-3s 石英颗粒 裂缝 - 113.7 -20 10 迪那22 4992 E2-3s 长石颗粒 裂缝 7 143.6 -8 11 迪那22 4992 E2-3s 石英颗粒 裂缝 7 142.5 - 12 迪那22 4992 E2-3s 石英颗粒 裂缝 5 106.5 -8 13 迪那22 4992 E2-3s 石英颗粒 裂缝 5 110.4 -7 注:“-”为未测到值. 表 4 库车坳陷致密砂岩储层孔隙度演化结果
Table 4. Result of porosity evolution of tight sandstone reservoirs in the Kuqa depression
井号 层位 Φ0 最大埋深(m) 成岩作用 Φ现今 tx(Ma) ΔΦ1 ΔΦ2 ΔΦ3 ΔΦ4 依南2 J1a Φ0=0.14194e-0.0003H+0.21067e-0.0002H 4995 2% 0.5% 3%~5% 2.5% 5.2% 12~8 迪那22 E2-3s Φ0=0.33671e-0.0003H+0.3778e-0.0002H 4926 2% < 1% 0~1% 3% 5.3% 2~0 注:Φ0.孔隙度预测模型;H.埋深(m);ΔΦ1.溶蚀增孔量;ΔΦ2.裂缝增孔量;ΔΦ3.构造减孔量;ΔΦ4.胶结减孔量;Φ现今.现今实测孔隙度;
tx.致密储层形成时间(Ma). -
[1] Cant, D.J., 1983. Spirit River Formation: A Stratigraphic-Diagenetic Gas Trap in the Deep Basin of Alberta. AAPG Bulletin, 67(4): 577-587. doi: 10.1306/03B5B65F-16D1-11D7-8645000102C1865D [2] Gies, R.M., 1984. Case History for a Major Alberta Deep Basin Gas Trap, the Cadomin Formation. In: Masters, J.A., ed., Case Study of a Deep Basin Gas Field. AAPG Memoir, 38: 115-140. [3] Guan, D.S., Niu J.Y., Guo, L.N., 1995. Unconventional Petroleum Geology in China. Petroleum Industry Press, Beijing, 60-85(in Chinese). [4] Jiang, F.J., Pang, X.Q., Jiang, Z.X., et al., 2007. Physical Simulation Experiment of Gas Charging in Tight Sandstone. Geological Review, 53(6): 844-848 (in Chinese with English abstract). [5] Jiang, Z.X., Pang, X.Q., Zhang, J.C., et al., 2000. Summarization of Deep Basin Gas Studies. Advance in Earth Sciences, 15(3): 289-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200003008.htm [6] Jiang, Z.X., Lin, S.G., Pang, X.Q., et al., 2006. The Comparison of Two Types of Tight Sand Gas Reservoir. Petroleum Geology & Experiment, 28(3): 210-214 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200603003.htm [7] Jin, Z.J., Zhang, J.C., Wang, Z.X., 2003. Some Remarks on Deep Basin Gas Accumulation. Geological Review, 49(4): 401-407 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200304009.htm [8] Law, B.E., 2002. Basin-Centered Gas Systems. AAPG Bulletin, 86(11): 1891-1919. doi: 10.1306/61EEDDB4-173E-11D7-8645000102C1865D [9] Ma, X.H., Wang, T., Pang, X.Q., et al., 2002. Pressure Features and Trapping Mechanism of Deep Basin Gas Pool. Acta Petrolei Sinica, 23(5): 24-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200205004.htm [10] Masters, J.A., 1979. Deep Basin Gas Trap, Western Canada. AAPG Bulletin, 63(2): 152-181. doi: 10.1306/C1EA55CB-16C9-11D7-8645000102C1865D [11] McPeek, L.A., 1981. Eastern Green River Basin: A Developing Giant Gas Supply from Deep, Overpressured Upper Cretaceous Sandstones. AAPG Bulletin, 65: 1078-098. doi: 10.1306/03B5945E-16D1-11D7-8645000102C1865D [12] Pang, X.Q., Jin, Z.J., Jiang, Z.X., et al., 2003. Critical Condition for Gas Accumulation in the Deep Basin Trap and Physical Modeling. Natural Gas Geoscience, 14(3): 207-214(in Chinese with English abstract). http://www.oalib.com/paper/1417630 [13] Tan, X.C., Li, L., Cao, J., et al., 2007. Mechanism and Models for the Lower Tertiary Detrital Reservoir Evolution, Eastern Kuqa Depression of the Tarim Basin. Earth Science—Journal of China University of Geosciences, 32(1): 99-104 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dqkx200701014.htm [14] Yang, X.N., Zhang, H.L. Zhu, G.H., 2005. Formation Mechanism and Geological Implication of Tight Sandstones: A Case of Well YN-2 in Tarim Basin. Marine Origin Petoleum Geology, 10 (1): 31-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200501005.htm [15] Zhang, J.C., Jin, Z.J., Pang, X.Q., 2000. Formation Conditions and Internal Features of Deep Basin Gas Accumulations. Experimental Petroleum Geology, 22(3): 210-214 (in Chinese with English abstract). [16] Zhang, J.C., Liu, L.F., Zhang, J., et al., 2004. Experiments on the Abnormal Pressure of Source-Contacting Gas (Basin-Centered Gas) Accumulation. Petroleum Exploration and Development, 31(1): 119-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200401038.htm [17] Zhang, R.H., Yao, G.X., Shou, J.F., et al., 2011. An Integration Porosity Forecast Model of Deposition, Diagenesis and Structure. Petroleum Exploration and Development, 38(2): 145-151 (in Chinese with English abstract). [18] Zhang, Z.H., Lv, X.X., Li, J.J., et al., 2004. Experimental Evidence of Oil and Gas Migration and Accumulation in Dina 2 Structure of Kuqa Depression. Earth Science—Journal of China University of Geosciences, 29(4): 500-504 (in Chinese with English abstract). http://www.researchgate.net/publication/296287748_Experimental_evidence_of_oil_and_gas_migration_and_accumulation_in_Dina_2_structure_of_Kuqa_depression [19] Zhang, Z.P., Wang, Q.C., Wang, Y., et al., 2006. Brittle Structure Sequence in the Kuqa Depression and Its Implications to the Tectonic Paleostress. Earth Science—Journal of China University of Geosciences, 31(3): 306-316 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200603003.htm [20] Zhao, M.J., Lu, S.F., 2003. Two Periods of Reservoir Forming and Their Significance for Hydrocarbon Distribution in Kuqa Depression. Acta Petrolei Sinica, 24(5): 16-25 (in Chinese with English abstract). http://www.researchgate.net/publication/296587789_Two_periods_of_reservoir_forming_and_their_significance_for_hydrocarbon_distribution_in_Kuqa_Depression [21] Zhao, M.J., Wang, Z.M., Zhang, S.C., et al., 2005. Accumulation and Features of Natural Gas in the Kuqa Foreland Basin. Acta Geologica Sinica, 79(3): 415-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200503023.htm [22] 关德师, 牛嘉玉, 郭丽娜, 1995. 中国非常规油气地质. 北京: 石油工业出版社, 60-85. [23] 姜福杰, 庞雄奇, 姜振学, 等, 2007. 致密砂岩气藏成藏过程的物理模拟实验. 地质论评, 53(6): 844-848. doi: 10.3321/j.issn:0371-5736.2007.06.020 [24] 姜振学, 林世国, 庞雄奇, 等, 2006. 两种类型致密砂岩气藏对比. 石油实验地质, 28(3): 210-214. doi: 10.3969/j.issn.1001-6112.2006.03.003 [25] 姜振学, 庞雄奇, 张金川, 等, 2000. 深盆气研究现状综述. 地球科学进展, 15(3): 289-292. doi: 10.3321/j.issn:1001-8166.2000.03.009 [26] 金之钧, 张金川, 王志欣, 2003. 深盆气成藏关键地质问题. 地质论评, 49(4): 401-407. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200304009.htm [27] 马新华, 王涛, 庞雄奇, 等, 2002. 深盆气藏的压力特征及成因机理. 石油学报, 23(5): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200205004.htm [28] 庞雄奇, 金之钧, 姜振学, 等, 2003. 深盆气成藏门限及其物理模拟实验. 天然气地球科学, 14(3): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200303012.htm [29] 谭秀成, 李凌, 曹剑, 等, 2007. 库车坳陷东部下第三系碎屑岩储层分异成因模式. 地球科学——中国地质大学学报, 32(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701014.htm [30] 杨晓宁, 张惠良, 朱国华, 2005. 致密砂岩的形成机制及其地质意义——以塔里木盆地英南2井为例. 海相油气地质, 10(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200501005.htm [31] 张金川, 金之钧, 庞雄奇, 2000. 深盆气成藏条件及其内部特征. 石油实验地质, 22(3): 210-214. doi: 10.3969/j.issn.1001-6112.2000.03.004 [32] 张金川, 刘丽芳, 张杰, 等, 2004. 根缘气(深盆气)成藏异常压力属性实验分析. 石油勘探与开发, 31(1): 119-122. doi: 10.3321/j.issn:1000-0747.2004.01.038 [33] 张荣虎, 姚根顺, 寿建峰, 等, 2011. 沉积、成岩、构造一体化孔隙度预测模型. 石油勘探与开发, 38(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102005.htm [34] 张振红, 吕修祥, 李建交, 等, 2004. 库车坳陷迪那2构造油气运聚模拟实验. 地球科学——中国地质大学学报, 29(4): 500-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404019.htm [35] 张仲培, 王清晨, 王毅, 等, 2006. 库车坳陷脆性构造序列及其对构造古应力的指示. 地球科学——中国地质大学学报, 31(3): 309-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603003.htm [36] 赵孟军, 卢双舫, 2003. 库车坳陷两期成藏及其对油气分布的影响. 石油学报, 24(5): 16-25. doi: 10.3321/j.issn:0253-2697.2003.05.004 [37] 赵孟军, 王招明, 张水昌, 等, 2005. 库车前陆盆地天然气成藏过程及聚集特征. 地质学报, 79(3): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200503023.htm