Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturaiton Pressure Prediction and Volume Calibration
-
摘要: 除实验室测定参数(Th, oil、Th, aqu和Fv)外, 石油包裹体热动力学模拟古压力精度还极大地受控于石油组分模型、饱和压力预测以及气、液相摩尔体积的预测精度.在改进α-β组分模型前提下, 利用微调组分和匹配饱和压力方法改进并验证了石油流体饱和压力预测精度; 在匹配饱和压力与实验实测饱和压力前提下, 利用体积转换方法匹配22组油藏流体391个常组分膨胀实验相对体积数据, 从而改善了利用Peng-Robison状态方程计算油包裹体气泡充填度(20 ℃)和等容线的能力.最终评价了真实石油流体组分甲烷摩尔含量和等效石油流体组分甲烷摩尔含量两个组分模拟约束条件下, 改进的热动力学模拟方法和PIT软件及Vtflinc软件重构捕获压力的精度.结果表明, 改进的热动力学模拟古压力方法较其他两种方法可以有效地提高捕获压力预测的精度.考虑到石油包裹体甲烷摩尔含量难获取问题, 利用改进后的方法结合等效流体组分约束条件是重构捕获压力的理想方法组合.Abstract: The accuracy of trapping pressure reconstruction using petroleum inclusion thermodynamic modeling is largely controlled by the accuracy of composition model and the prediction of saturation pressure and gas-liquid phase mole volume of petroleum fluid besides the measured parameters including homogenization temperature of petroleum inclusion (Th, oil), homogenization temperature of aqueous fluid inclusion (Th, aqu) and the degree of bubble filling (Fv). On condition that improving the α-β composition model, the saturation pressure predicition of α-β petroleum fluid has been improved and verified by adjusting the composition and matching the saturation pressure. The Isochore and the degree of bubble filling (Fv) of petroleum inclusion at room temperature have been improved by matching the 391 relative volume data of the constant composition expansion experiment of 22 reservoir fluids using the Peng-Robinson equation of state (EoS) under match of saturation pressure. Finally, the accuracies of trapping pressure reconstruction using the proposed method, PIT software and Vtflinc software have been evaluated by two constraining conditions for composition modeling, one is methane mole content of true petroleum fluid and the other is methane mole content from the equivalent petroleum fluid. The results show that the improved petroleum inclusions thermodynamic modeling method can effectively increase the accuracy of trapping pressure reconstruction by comparing the PIT software and Vtflinc software. Taking into consideration of the difficulty in obtaining the methane mole content of petroleum inclusion, the best recommended method to reconstruct the trapping pressure is using the composition of equivalent petroleum fluid contain the petroleum inclusions thermodynamic modeling using this method.
-
Key words:
- fluids /
- inclusions /
- equations of state /
- saturation pressure /
- paleo-pressure /
- petroleum geology
-
图 1 石油包裹体热动力学模拟示意(Ping et al., 2011)(a)和典型的石油流体P-T相图(b)阐述了油包裹体显微测温和体积分析需要的不同.参数气/液不混溶线由泡点线和露点线组成,临界点位于泡点线和露点线的交点
油包裹体P-T路径通过等容线来表示,其中3个比较重要的点是油包裹体捕获点(Pt, Tt)、均一化点(Ph, Th)和室温下测定的气泡充填度P-T位置点(Pv, Tv)
Fig. 1. Schematic view for petroleum inclusion thermodynamic modeling (Ping et al., 2011) (a) and the typical P-T phase diagram of a petroleum, illustrating the different elements required for the analysis of microthermometric and volumetric data (b)
表 1 不同方法劈分C7+组分结果比较
Table 1. Comparison results for splitting hydrocarbon plus fraction using different methods
Al-Meshari(2005) Whitson(1983)方法 α-β模型 Katz(1983)方法 Ahmed(1989)方法 流体编号 α β Cn+ ARD AAD ARD AAD ARD AAD ARD AAD 1 0.81 0.80 C36+ -4.36 18.45 -67.68 24.76 -32.91 51.32 -0.37 16.74 2 0.89 0.80 C30+ -2.58 26.78 -16.13 25.83 -32.99 62.07 -8.75 30.11 3 0.79 0.63 C20+ 6.24 14.20 -10.67 21.15 -2.52 14.33 -2.09 10.99 4 0.88 0.68 C20+ 9.63 17.96 9.42 17.24 -10.25 22.64 2.42 9.22 5 0.95 0.80 C20+ 8.31 20.67 -12.41 21.65 7.81 45.61 7.33 12.87 6 0.95 0.79 C20+ 8.62 15.86 -13.75 21.65 5.63 46.98 6.00 11.55 7 0.94 0.72 C30+ 13.03 20.01 46.09 64.44 -34.54 48.93 -4.92 12.20 8 0.97 0.80 C36+ 0.39 9.38 -1.87 42.41 -42.78 75.76 -11.68 21.85 9 0.97 0.79 C45+ 10.30 22.76 -6.37 40.27 -43.53 95.01 -3.17 18.97 10 0.96 0.67 C36+ 12.40 18.01 17.54 41.79 -43.03 69.93 -4.30 11.50 平均值 6.19 18.41 -5.58 32.12 -22.91 53.26 -1.95 15.60 表 2 石油饱和条件下压力-温度-组分实验数据来源
Table 2. References of experimental data from the literature
数据来源 数据点数(个) Agarwal(1990) 1 Ahmed(1989) 3 Al-Meshari(2005) 10 Coats(1986) 9 Danesh(1992) 8 Drohm(1988) 1 Elsharkawy(2003) 58 Hoffman(1953) 2 Hong(1982) 2 Jacopy(1958) 1 Jhavery(1988) 2 Li(1985) 1 Moharam(1995) 7 Pedersen et al.(1988, 1989) 9 Riemens et al.(1988) 1 Rosenegger(1999) 22 Vogel(1980) 1 Williams et al.(1980) 1 Yang et al.(1997) 2 表 3 计算未改进α-β组分模型中单个碳数组分(C7~C500)动力学参数方法
Table 3. Methods for calculating the thermodynamics parameters of SCN (C7 to C500) for unimproved α-β composition model
方法 正常沸点温度(Tb) 临界温度(Tc) 临界压力(Pc) 偏心因子(ω) Thiéry et al.(2002) - - - - T-method 1 Twu (1984) Twu (1984) Twu (1984) Kesler-Lee (1976) T-method 2 Twu (1984) Kesler-Lee (1976) Kesler-Lee (1976) Kesler-Lee (1976) T-method 3 Pedersen (1985) Pedersen (1989) Pedersen (1989) Kesler-Lee (1976) T-method 4 Pedersen (1985) Kesler-Lee (1976) Kesler-Lee (1976) Kesler-Lee (1976) 表 4 石油饱和条件下压力-温度-组分实验数据来源
Table 4. References of experimental data from the literature (P-T-composition conditions of petroleum saturations)
表 5 不同方法预测饱和压力误差分析
Table 5. Error analysis of different methods for calculation of saturation pressures
Model-1 Model-2 Thiéry et al. (2002) T-method 1 T-method 2 T-method 3 T-method 4 ARD -0.64 -1.51 8.70 -23.47 -9.39 3.85 -6.27 AAD 6.23 5.12 29.50 23.65 12.56 10.56 10.95 表 6 用于改进和验证模型的输入组分范围
Table 6. Composition range used for developing and testing the proposed model
用于改进模型的数据范围(mol%) 验证改进模型数据范围(mol%) 最小值 平均值 最大值 最小值 平均值 最大值 N2 0.00 0.50 3.95 0.00 0.91 3.91 CO2 0.00 1.17 9.11 0.05 1.61 3.67 H2S 0.00 0.20 4.99 0.00 0.56 4.99 C1 0.64 35.59 74.18 6.20 46.38 70.20 C2 0.56 7.68 14.09 1.63 9.21 14.09 C3 0.43 6.21 11.87 1.18 6.30 10.48 C4 0.95 4.47 8.43 1.25 4.19 8.40 C5 0.40 3.19 6.65 0.82 2.80 5.85 C6 0.00 3.07 6.65 0.59 2.22 4.84 C7+ 9.87 37.97 84.41 9.87 25.90 67.69 温度(℃) 26.70 84.08 156.67 26.70 94.87 132.50 饱和压力(MPa) 0.55 17.88 51.39 9.69 25.78 46.68 表 7 利用T-method 3方法计算的捕获压力误差分析
Table 7. Error analysis of trapping pressure reconstruction for T-method 3
Th, oil (℃) 80 80 80 120 120 120 Tt (℃) 95 110 125 135 150 165 AAD%(Pt) 12.05 12.24 13.13 11.43 11.50 11.56 ACD%(P sat) 8.08 6.21 5.06 8.50 6.78 5.68 ACD%(Piso) 4.34 6.34 7.20 3.42 5.02 6.08 表 8 利用Vtflinc软件计算的捕获压力误差分析
Table 8. Error analysis of trapping pressure construction for Vtflinc software
Th, oil (℃) 80 80 80 120 120 120 Tt (℃) 95 110 125 135 150 165 AAD%(Pt) 10.70 9.52 9.24 7.84 8.08 7.80 ACD%(Psat) 7.38 5.23 4.08 5.96 4.39 3.52 ACD%(Piso) 3.55 4.59 5.38 2.24 3.15 3.68 表 9 不同的约束组分模拟的方法列表
Table 9. Methods for trapping pressure reconstruction with different constraint on composition modeling
捕获压力重构方法 输入参数 组分约束条件 本文方法 Th, oil、Fv和Tt 真实流体中甲烷的摩尔百分含量等效流体中甲烷的摩尔百分含量 Thiéry et al.(2000, 2002)PIT软件 Th, oil、Fv和Tt 真实流体中甲烷的摩尔百分含量等效流体中甲烷的摩尔百分含量 Aplin et al.(1999)Vtflinc软件 输入组分、Th, oil、Fv和Tt 真实流体及其各组分热动力学参数(Tc,Pc,ω)等效流体组分及各组分热动力学参数(Tc,Pc,ω) 表 10 不同方法重构捕获压力的总体误差分析
Table 10. Global error analysis of trapping pressure reconstruction for different methods
捕获压力重构方法 本文方法 Thiéry et al.(2000 , 2002)PIT软件Aplin et al.(1999) Vtflinc软件组分约束条件 C1%(mol)-等效流体 C1%(mol)-真实流体 C1%(mol)-等效流体 C1%(mol)-真实流体 C1%(mol)-等效流体 C1%(mol)-真实流体 最小绝对误差(AD%) 0.08 0.03 0.47 0.55 0.75 0.13 最大绝对误差(AD%) 39.73 26.47 84.24 89.52 62.25 28.59 平均绝对误差(AAD%) 12.06 6.46 20.58 14.12 19.91 7.84 -
[1] Agarwal, R., Li, Y., Nghiem, L., 1990. A Regression Technique with Dynamic Parameter Selection for Phase-Behavior Matching. SPE Reservoir Engineering, 5(1): 115-120. doi: 10.2118/16343-MS [2] Ahmed, T., 1989. Hydrocarbon Phase Behavior. Gulf Pub. Co., Houston. [3] Ahmed, T., Cady, G., Story, A., 1985. A Generalized Correlation for Characterizing the Hydrocarbon Heavy Fraction, SPE Annual Technical Conference and Exhibition. SPE, Las Vegas, Nevada, 14266-MS. doi: 10.2118/14266-MS [4] Al-Meshari, A.A., Armco, S., MaCain, W.D., 2007. Validation of Splitting the Hydrocarbon Plus Fraction: First Step in Tuning Equation-of-State, SPE Middle East Oil and Gas Show and Conference. SPE, Kingdom of Bahrain, 104631. doi: 10.2118/104631-MS [5] Al-Meshari, A., 2004. New Strategic Method to Tune Equation-of-State to Match Experimental Data for Compositional Simulation, Texas A & M University, USA, 248. [6] Al-Meshari, A.A., McCain, W.D., 2005. New Strategic Method to Tune Equation-of-State for Compositional Simulation, SPE Technical Symposium of Saudi Arabia Section. SPE, Dhahran, Saudi Arabia. doi: 10.2118/106332-MS [7] Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8 [8] Avaullee, L., Neau, E., Jaubert, J.N., 1997. Thermodynamic Modeling for Petroleum Fluids II. Prediction of PVT Properties of Oils and Gases by Fitting One or Two Parameters to the Saturation Pressures of Reservoir fluids. Fluid Phase Equilibria, 139(1-2): 171-203. doi: 10.1016/S0378-3812(97)00170-2 [9] Baron, M., Parnell, J., Mark, D., et al., 2008. Evolution of Hydrocarbon Migration Style in a Fractured Reservoir Deduced from Fluid Inclusion Data, Clair Field, West of Shetland, UK. Marine and Petroleum Geology, 25(2): 153-172. doi: 10.1016/j.marpetgeo.2007.05.010 [10] Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination Through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. doi: 10.1111/j.1468-8123.2007.00204.x [11] Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003 [12] Cavett, R., 1962. Physical Data for Distillation Calculations-Vapor-Liquid Equilibria, Proc. 27th Annual Meeting, American Petroleum Institute, Dallas, 351-366. [13] Coats, K., Smart, G., 1986. Application of a Regression-Based EOS PVT Program to Laboratory Data. SPE Reservoir Engineering, 1(3): 277-299. doi: 10.2118/11197-PA [14] Danesh, A., Xu, D. Todd, A., 1992. A Grouping Method to Optimize Oil Description for Compositional Simulation of Gas-Injection Processes. SPE Reservoir Engineering, 7(3): 343-348. doi: 10.2118/20745-PA [15] Drohm, J.K., Goldthorpe, W.H., Trengove, R., 1988. Enhancing the Evaluation of PVT Data, Offshore South East Asia Show Singapore, 17685-MS. doi: 10.2118/17685-MS [16] Elsharkawy, A.M., 2003. An Empirical Model for Estimating the Saturation Pressures of Crude Oils. Journal of Petroleum Science and Engineering, 38(1-2): 57-77. doi: 10.1016/S0920-4105(03)00035-4 [17] Ferket, H., Guilhaumou, N., Roure, F., et al., 2011. Insights from Fluid Inclusions, Thermal and PVT Modeling for Paleo-Burial and Thermal Reconstruction of the Cordoba Petroleum System (Ne Mexico). Marine and Petroleum Geology, 28(4): 936-958. doi: 10.1016/j.marpetgeo.2010.01.020 [18] George, S.C., Dutkiewicz, A., Volk, H., et al., 2009. Oil-Bearing Fluid Inclusions from the Palaeoproterozoic: A Review of Biogeochemical Results from Time-Capsules > 2.0 Ga Old. Science in China Series D-Earth Sciences, 52(1): 1-11. doi: 10.1007/s11430-009-0004-4 [19] George, S.C., Volk, H., Dutkiewicz, A., et al., 2008. Preservation of Hydrocarbons and Biomarkers in Oil Trapped Inside Fluid Inclusions for > 2 Billion Years. Geochimica et Cosmochimica Acta, 72(3): 844-870. doi: 10.1016/j.gca.2007.11.021 [20] Goldstein, R.H., Reynolds, T.J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals, SEM Short Course 31. Society of Sedimentary Geology (SEPM), Tulsa, 199. [21] Guilhaumou, N., Dumas, P., 2005. Synchrotron FTIR Hydrocarbon Fluid Inclusion Microanalysis Applied to Diagenetic History and Fluid Flow Reconstruction in Reservoir Appraisal. Oil & Gas Science and Technology, 60(5): 763-779. doi: 10.2516/ogst:2005054 [22] Hoffman, A., Crump, J., Hocott, C., 1953. Equilibrium Constants for a Gas-Condensate System. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 198: 1-10. [23] Hong, K., 1982. Lumped-Component Characterization of Crude Oils for Compositional Simulation, SPE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 10691-MS. doi: 10.2118/10691-MS [24] Jacopy, R.H., Berry, V.J., 1958. A Method for Predicting Pressure Maintenance for Reservoirs Producing Volatile Oil. Petroleum Transactions, Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 213: 59-65. [25] Jaubert, J.N., Avaullee, L., Souvay, J.F., 2002. A Crude oil Data Bank Containing More than 5 000 PVT and Gas Injection Data. Journal of Petroleum Science and Engineering, 34(1-4): 65-107. doi: 10.1016/S0920-4105(02)00153-5 [26] Jaubert, J.N., Neau, E., Avaullee, L., et al., 1995. Characterization of Heavy Oils. 3. Prediction of Gas Injection Behavior: Swelling Test, Multicontact Test, Multiple-Contact Minimum Miscibility Pressure, and Multiple-Contact Minimum Miscibility Enrichment. Industrial & Engineering Chemistry Research, 34(11): 4016-4032. doi: 10.1021/ie00038a043 [27] Jhaveri, B., Youngren, G., 1988. Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions. SPE Reservoir Engineering, 3(3): 1033-1040. doi: 10.2118/13118-PA [28] Karlsen, D.A., Nedkvitne, T., Larter, S.R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. doi: 10.1016/0016-7037(93)90146-N [29] Katz, D., 1983. Overview of Phase Behavior in Oil and Gas Production. Journal of Petroleum Technology, 35(6): 1205-1214. doi: 10.2118/9995-PA [30] Katz, D., Firoozabadi, A., 1978. Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients. Journal of Petroleum Technology, 30(11): 1649-1655. doi: 10.2118/6721-PA [31] Kay, W.B., 1936. Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure. Industrial & Engineering Chemistry, 28(8): 1014-1019. doi: 10.1021/ie50321a008 [32] Li, Y., Nghiem, L., Siu, A., 1985. Phase Behavior Computations for Reservoir Fluids: Effect of Pseudo-Components on Phase Diagrams and Simulation Results. Journal of Canadian Petroleum Technology, 24(6): 29-36. http://www.researchgate.net/publication/250091952_Phase_Behaviour_Computations_For_Reservoir_Fluids_Effect_Of_Pseudo-Components_On_Phase_Diagrams_And_Simulation_Results [33] Lisk, M., O'Brien, G.W., Eadington, P.J., 2002. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 86(9): 1531-1542. doi: 10.1306/61eedcec-173e-11d7-8645000102c1865d [34] McCain, W.D., 1994. Heavy Components Control Reservoir Fluid Behavior. Journal of Petroleum Technology, 46: 746-750. doi: 10.2118/28214-PA [35] McLimans, R.K., 1987. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Applied Geochemistry, 2(5-6): 585-603. doi: 10.1016/0883-2927(87)90011-4 [36] Moharam, H.M., Fahim, M.A., 1995. Prediction of Viscosity of Heavy Petroleum Fractions and Crude Oils Using a Corresponding States Method. Industrial & Engineering Chemistry Research, 34(11): 4140-4144. doi: 10.1021/ie00038a061 [37] Montel, F., 1993. Phase Equilibria Needs for Petroleum Exploration and Production Industry. Fluid Phase Equilibria, 84: 343-367. doi: 10.1016/0378-3812(93)85132-6 [38] Munz, I.A., Johansen, H., Johanse, I., 1999. Characterisation of Composition and PVT Properties of Petroleum Inclusions: Implications of Reservoir Filling and Compartmentalisation, SPE Annual Technical Conference and Exhibition. SPE, Houston, Texas, 56519-MS. doi: 10.2118/56519-MS [39] Munz, I.A., Wangen, M., Girard, J.P., et al., 2004. Pressure-Temperature-Time-Composition (P-T-t-X) Constraints of Multiple Petroleum Charges in the Hild Field, Norwegian North Sea. Marine and Petroleum Geology, 21(8): 1043-1060. doi: 10.1016/j.marpetgeo.2004.05.006 [40] Neau, E., Jaubert, J.N., Rogalski, M., 1993. Characterization of Heavy Oils. Industrial & Engineering Chemistry Research, 32(6): 1196-1203. doi: 10.1021/ie00018a027 [41] Péneloux, A., Rauzy, E., Fréze, R., 1982. A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equilibria, 8(1): 7-23. doi: 10.1016/0378-3812(82)80002-2 [42] Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A Study of the Gross Compositions of Oil-Bearing Fluid Inclusions Using High Performance Liquid Chromatography. Organic Geochemistry, 29(5-7): 1149-1161. doi: 10.1016/S0146-6380(98)00135-1 [43] Parnell, J., Carey, P.F., Monson, B., 1996. Fluid Inclusion Constraints on Temperatures of Petroleum Migration from Authigenic Quartz in Bitumen Veins. Chemical Geology, 129(3-4): 217-226. doi: 10.1016/0009-2541(95)00141-7 [44] Pedersen, K.S., Blilie, A.L., Meisingset, K.K., 1992. PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated Compositional Data for the Plus Fraction. Industrial & Engineering Chemistry Research, 31(5): 1378-1384. doi: 10.1021/ie00005a019 [45] Pedersen, K., Christensen, P., 2006. Phase Behavior of Petroleum Reservoir Fluids. CRC Press, Toylor & Francis, UK. [46] Pedersen, K., Fredenslund, A., Thomassen, P., 1989. Properties of Oils and Natural Gases, Contributions in Petroleum Geology & Engineering. Gulf Pub. Co., Houston, 252. [47] Pedersen, K.S., Rasmussen, P., Fredenslund, A., 1985. Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 3. Efficient Flash Calculation Procedures Using the SRK Equation of State. Industrial & Engineering Chemistry Process Design and Development, 24(4): 948-954. doi: 10.1021/i200031a009 [48] Pedersen, K., Thomassen, P., Fredenslund, A., 1988. On the Danger of Tuning Equation of Sate Parameters. Chemical Engineering Science, 43: 269-278. doi: 10.1016/0009-2509(88)85039-5 [49] Peng, D., Robinson, D., 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Research Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011 [50] Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic Modelling of Petroleum Inclusions: The Prediction of the Saturation Pressure of Crude Oils. Geofluids, 11(3), doi: 10.1111/j.1468-8123.2011.00343.x [51] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012a. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science—Journal of China University of Geosciences, 37(1): 163-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201201020.htm [52] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012b. Individual Oil Inclusion Composition Prediction and Its Application in the Research of Oil and Gas Accumulation. Earth Science—Journal of China University of Geosciences, 37(4): 815-824. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204021.htm [53] Pironon, J., Canals, M., Dubessy, J., et al., 1998. Volumetric Reconstruction of Individual Oil Iinclusions by Confocal Scanning Laser Microscopy. European Journal of Mineralogy, 10: 1143-1150. doi: 10.1127/ejm/10/6/1143 [54] Pironon, J., 2004. Fluid Inclusions in Petroleum Environments: Analytical Procedure for PTX Reconstruction. Acta Petrologica Sinica, 20(6): 1333-1342. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406002.htm [55] Riazi, M.R., Al-Sahhaf, T.A., 1996. Physical Properties of Heavy Petroleum Fractions and Crude Oils. Fluid Phase Equilibria, 117(1-2): 217-224. doi: 10.1016/0378-3812(95)02956-7 [56] Riemens, W.G., Schulte, A.M., de Jong, L.N., 1988. Birba Field PVT Variations Along the Hydrocarbon Column and Confirmatory Field Tests. Journal of Petroleum Technology, 40(1): 83-88. doi: 10.2118/13719-PA [57] Rosenegger, L., Wu, R., 1999. Intergrated Oil PVT Data Characterization-Lessons from Four Case Histories. Journal of Canadian Petroleum Technology, 38(13): 97-05. http://www.researchgate.net/publication/240780849_Integrated_Oil_PVT_Characterization_-_Lessons_From_Four_Case_Histories [58] Sellwood, B.W., Wilkes, M., James, B., 1993. Hydrocarbon Inclusions in Late Calcite Cements: Migration Indicators in the Great Oolite Group, Weald Basin, S. England. Sedimentary Geology, 84(1-4): 51-55. doi: 10.1016/0037-0738(93)90044-6 [59] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (Petroleum Inclusion Thermodynamic): A New Modeling Tool for the Characterization of Hydrocarbon Fluid Inclusions from Volumetric and Microthermometric Measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6 [60] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1 [61] Thomassen, P., Pedersen, K.S., Fredenslund, A., 1987. Adjustment of C7+ Molecular Weights in the Characterization of Petroleum Mixtures Containing Heavy Hydrocarbons. SPE: 16036-MS. [62] Tseng, H.Y., Pottorf, R.J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn—South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0 [63] Vogel, J.L., Yarborough, L., 1980. The Effect of Nitrogen on the Phase Behavior and Physical Properties of Reservoir, SPE/DOE Enhanced Oil Recovery Symposium. SPE, Tulsa, Oklahoma, 8815-MS. doi: 10.2118/8815-MS [64] Wang, L.S., Gmehling, J., 1999. Improvement of SRK Equation of State for Vapor-Liquid Equilibria of Petroleum Fluids. Aiche Journal, 45(5): 1125-1134. doi: 10.1002/aic.690450519 [65] Whitson, C.H., 1983. Characterizing Hydrocarbon Plus Fractions. SPE, 23(4): 683-694. doi: 10.2118/12233-PA [66] William, D., McCain, J., 1990. The Properties of Petroleum Fluids, 2nd ed. Pennwell Publishing Company, Tulsa. [67] Williams, C.A., Zana, E.N., Humphrys, G.E., 1980. Use of the Peng-Robinson Equation of State to Predict Hydrocarbon Phase Behavior and Miscibility for Fluid Displacement, SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma. doi: 10.2118/8817-MS [68] Yang, T., Chen, W.D., Guo, T.M., 1997. Phase Behavior of a Near-Critical Reservoir Fluid Mixture. Fluid Phase Equilibria, 128(1-2): 183-197. doi: 10.1016/S0378-3812(96)03163-9 [69] Zurita, R.A.A., William, D.M.J., 2002. An Efficient Tuning Strategy to Calibrate Cubic EoS for Compositional Simulation, SPE Annual Technical Conference and Exhibition. SPE, San Antonio, Texas, 77382. doi: 10.2118/77382-MS [70] 平宏伟, 陈红汉, 宋国奇, 等, 2012a. 油气充注成藏贡献度及其意义. 地球科学——中国地质大学学报, 37(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201020.htm [71] 平宏伟, 陈红汉, 宋国奇, 等, 2012b. 石油包裹体组分预测及其在油气成藏研究中的应用. 地球科学——中国地质大学学报, 37(4): 815-824.